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We investigate the finite temperature and density chiral Gross-Neveu (¢cGN) model with an axial
U4(1) symmetry in 1 + 1 dimensions on the lattice. In the limit where the number of flavors
N¢ tends to infinity the continuum model has been solved analytically and shows two phases: a
symmetric high-temperature phase with a vanishing condensate and a low-temperature phase in
which the complex condensate forms a chiral spiral which breaks translation invariance. In the lattice
simulations we employ chiral SLAC fermions with exact axial symmetry. Similarly to Ny — oo, we
find for 8 flavors, where quantum and thermal fluctuations are suppressed, two distinct regimes in
the (T, ) phase diagram, characterized by qualitatively different behavior of the two-point functions
of the condensate fields. More surprisingly, at Ny = 2, where fluctuations are no longer suppressed,
the model still behaves similarly to the Ny — oo model and we conclude that the chiral spiral leaves
its footprints even on systems with a small number of flavors. For example, at low temperature
the two-point functions are still dominated by chiral spirals with pitches proportional to the inverse
chemical potential, although in contrast to large-N; their amplitudes decrease with distance. With
Dyson-Schwinger equations we calculate the decay of the U 4 (1)-invariant fermion four-point function
in search for a BKT phase at zero temperature.

I. INTRODUCTION

A surprising amount of physical phenomena in particle
and condensed matter physics are well described by four-
Fermi theories. For instance, they are employed to model
low-energy chiral properties of Quantum Chromodynam-
ics (QCD). The effective four-Fermi theory describing the
dynamics of nucleons and mesons goes back to Nambu
and Jona-Lasinio (NJL) [I] and is built upon interact-
ing Dirac fermions with chiral symmetry, paralleling the
construction of Cooper pairs from electrons in the BCS
theory of superconductivity.

In fact, most of our knowledge about QCD at inter-
mediate baryon densities stems from the study of NJL-
type effective theories, since in this regime one needs non-
perturbative methods but cannot use lattice field theory
techniques due to the complex-action problem. In a simi-
lar spirit, a four-Fermi current-current interaction among
leptons (and quarks) was proven to give an accurate phe-
nomenological description of the weak interaction at low
energy p? < m%v In the pioneering work by E. Fermi the
currents are made up from the proton, neutron, electron
and neutrino fields [2]. In four spacetime dimensions in-
teracting Fermi theories, such as the NJL model or Fermi
theory, are non-renormalizable and thus can only serve as
effective (low-energy) approximations which need to be
UV completed. For the two examples given these com-
pletions are of course known.

The dynamical creation of a condensate from strong
fermion interactions as seen in NJL-type models inspired
many theories of the breaking of electroweak symmetry,
such as technicolor (see the review [3]) and the top-quark
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condensate [4].

Four-Fermi theories in two spacetime dimensions are
renormalizable and asymptotically free (some are inte-
grable or even soluble) and share certain features with
their cousins in four dimensions. The most prominent
examples are the Thirring model with a current-current
interaction [5], which is S-dual to the sine-Gordon model,
and the Gross-Neveu (GN) model with a scalar-scalar in-
teraction [6], which serves as a toy model for the theory
of strong interactions.

With the discovery of novel materials (like Dirac and
Weyl semimetals in two and three spatial dimensions)
and the development of experimental techniques (for ex-
ample optical lattices to trap atoms) we have witnessed
a steadily increasing interest in models describing inter-
acting Fermions. Such models in lower dimensions de-
scribe one-dimensional and planar systems, such as poly-
mers [(HIT], graphene [12] [T3] or high-T.. superconductors
[14, [15], to name some prominent examples.

Interacting Fermi theories at finite temperature and
density were mainly investigated in the limit of a large
number of fermion flavors N¢. For Ny — oo the saddle
point approximation becomes exact and one can solve the
corresponding gap equation analytically on the set of ho-
mogeneous condensates. But for the (1 4 1)-dimensional
GN model at low temperature and large chemical poten-
tial the relevant solutions of the gap equation are actually
inhomogeneous in space. They have been constructed in
[16] for the GN model with discrete and in [I7, [I8] for the
chiral GN model with continuous chiral symmetry. These
remarkable analytic results for Ny — oo prove the exis-
tence of inhomogeneous phases, which are regions in pa-
rameter space where the chiral condensate acquires a spa-
tial dependence, indicating the spontaneous breakdown
of not only chiral symmetry alone but in a combination
with spacetime symmetries (see [19] for a review).

Are these inhomogeneous phases at large densities an
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artifact of the large-Ny limit as suggested by various
no-go theorems in two spacetime dimensions? To ad-
dress this question, a better understanding of interacting
Fermi systems at finite Ny with regards to inhomoge-
neous phases is required. But the spontaneous break-
ing of translation invariance is not merely of academic
interest: Systems where an inhomogeneous state devel-
ops spontaneously have been extensively discussed in the
condensed matter literature. A prominent example is
the inhomogeneous pairing inside a superconductor in a
magnetic field, predicted by Larkin, Ovchinnikov, Fulde
and Ferrell (LOFF phase) [20] 2T]. Similar types of pair-
ings can occur in many other physical systems, ranging
from supersolids to ultracold atomic gases (see the re-
views [22], 23]). The UV cutoff which is inherent in all
condensed matter systems inhibits a direct translation
of these findings to quantum field theory and particle
physics where one removes the cutoff during the process
of renormalization.

A first attempt to investigate the fate of inhomogenous
phases at finite Nt has been made in recent lattice studies
[24, 25], where the existence of spatially varying chiral
condensates in the (1 + 1)-dimensional GN model with
2, 8 and 16 flavors was confirmed. The present work
serves as a follow-up, providing a similar analysis of the
chiral Gross-Neveu (¢cGN) model with a continuous axial
symmetry, characterized by the Lagrangian

L = Pidy + j—Nf ()2 + @ine)?) , (1)

where g% denotes a dimensionless coupling constant and
the two-dimensional matrix v, = iygy; is the analog of
~5 in two spacetime dimensions. The summation over
Nt flavors of fermions is implied in the fermion bilinears
entering Eq. .

Below we shall see that the results of our simulations
with chiral SLAC fermions resemble the analytical find-
ings of the large-N¢ limit [I7), I§]. The analysis of the
GN model in [24] has already given clear evidence that
the chiral and doubler-free SLAC fermions and naive
fermions yield comparable results in the continuum limit,
with the former converging considerably fasterﬂ Us-
ing SLAC fermions has the additional advantages that
the lattice ¢<GN model is invariant under axial Uy4(1)
transformations and that we can study the system with
Nt = 2 without encountering a sign problem. With naive
fermions the GN and ¢cGN models have no sign problems
only for Ny a multiple of 8. In the present work, however,
we want to investigate how much the models at finite fla-
vor number differ from the analytic solutions at infinite
Ny, for which Ny = 8 might be too large, see [24]. We
do not use Wilson fermions since we are mainly inter-
ested in the chiral properties of cGN models. Staggered

1 The same observation applies to supersymmetric Yukawa models
26} 27].

fermions, on the other hand, may lead to wrong results
for interacting Fermi systems, as has been demonstrated
in [28H30].

Our work is organized as follows. In Sec. [ we summa-
rize relevant facts about the finite temperature and den-
sity ¢cGN model with Lagrangian in the continuum,
which will be used in the subsequent sections. In Section
[T the lattice ¢cGN model with chiral SLAC fermions is
presented, relevant observables are introduced and the
lattice setup is discussed. Section [[V] contains our sim-
ulation results on the inhomogeneous condensation of
the scalar and pseudo-scalar bilinears and their inter-
relation. We calculate the phase diagram in the (T, u)
plane for various lattice sizes and lattice constants in or-
der to study the thermodynamic and continuum limits.
We shall see that even for the smallest accessible value
N¢ = 2 the results resemble those for the exact solution
of the system with Ny — co. Towards the end we exploit
Dyson-Schwinger equations to study the U 4 (1)-invariant
fermion four-point function in the infrared.

II. ANALYTICAL CONSIDERATIONS
A. Symmetries and reformulations

The chiral GN model with Lagrangian most promi-
nently features a global axial U4(1) symmetry,

v(@) = T Y(@), (@) > d(x) e, (2)

with a continuous parameter o € R. In this work we
denote spacetime coordinates by bold letters, for example

z = (;) . 3)

The continuous axial symmetry is to be compared with
the discrete Zs symmetry of the model considered in
[24, 25]. Further symmetries of the model include a
flavor-vector symmetry that ensures the factorization of
the fermion determinant, parity and charge conjugation
symmetry responsible for the absence of the sign problem
for even Nt (see [24] for details) and, of course, Euclidean
spacetime symmetry.

As is usually done we introduce the complex auxiliary
field A in order to bring the Lagrangian to the equiv-
alent form

L=ih (J+ PiA+P_A") oy + 2N7f2|A|2 (4

where Py = %(]1 + v,) are the chiral projectors. This
Lagrangian is invariant under the axial transformations
supplemented by

Az) — e HoA(x) . (5)

One can show the equivalence of Lagrangians and
by using the equations of motion for the auxiliary field



A. This equivalence persists on the quantum level be-
cause the A-integration in the path integral is Gaussian
and can be done analytically, leading back to Eq. .
It is no more difficult to obtain the following Dyson-
Schwinger (DS) equations relating the expectation values
of the auxiliary fields to the symmetry-breaking chiral
condensates{]

Nj iNt

(BP) = 127;<A*> . (DP_y) =

= @%) - (6)

For later use we introduce two further parametrizations
of A in terms of its real and imaginary parts o and 7 and
in terms of its absolute value p and phase 6:

A=o+ir=pe?. (7)

In order to study finite baryon densities we also introduce
a chemical potential p for the fermion number density
101, such that the Lagrangian takes the form

. Ne 2
L=9iDY+ 507, (®)
where the Dirac operator D is defined as

D=+ puyo + pe? . (9)

It is understood that this operator acts on all flavors in
the same way, such that in the multi-flavor case we may
use the same symbol as for one flavor.

While there is no gauge invariance in this model, one
can still trade the compact field 6 for an imaginary vector
potential

i
A# = iswaﬁ (501 = 1) (10)

in the following sense:
D= 617*9/2 (1m+p) 617*9/2 7 (11)

where the covariant derivative D), is defined as
D, =0, —1A, + 1o - (12)

Since the main focus in our work is on homogeneous
and inhomogeneous phases of the finite-temperature and
finite-density ¢cGN model we impose that 1, ¢ are anti-
periodic and A, A* are periodic in Euclidean time with
period B, where g is the inverse temperature. We fur-
thermore impose that all fields are periodic in the spatial
direction with period L.

Integrating out the fermions in the partition function
yields an effective bosonic theory in which the auxiliary
bosons become dynamical via fermion loops,

Z = /.@A e~ NeSet[A] (13)

2 In 1 + 1 dimensions the condensates vanish for finite N;. Later
we shall study DS equations for bilinears of the condensate fields.

with the effective action
1
Sef[A] = —Indet D + @/de P (x) . (14)

We used that the fermion determinant of the multi-flavor
model is (det D)™t with the one-flavor operator D ap-
pearing in Eq. (14). A convenient (and widely adopted)
way of renormalizing this formal expression is a choice
of the bare coupling ¢g? such that Seg for T = 0 and
p = 0 takes its global minimum at some prescribed pos-
itive value p(t,z) = pg. The corresponding gap equation
in the thermodynamic limit,

1 1 [N pd
S = o 2pp27 (15)
g° 27y p°+p5

yields the cutoff dependence of the bare coupling.

B. Large-N; results

In the large-N¢ limit the saddle point approximation
to the path integral becomes exact and the grand
potential ) proportional to the minimum of the effective
action on the space of auxiliary fields,

LOT, 1, L) = —— log Z V=5° min Sua[A]. (16)
N¢ A
This means that in the large- Ny limit the path integral
is localized at the minimizing configuration Ai,. It fol-
lows, for example, that the expectation value of A is
equal to Anin.

The condition of a (local) minimum, maximum or sad-
dle point is expressed by the gap equation

_ 6Seff

= 1
'=san a7

which has been extensively studied in the literature. A
constant solution A of this equation can be mapped into
the constant real solution |A| by an axial rotation. But
for real A the effective action of the cGN model simplifies
to that of the GN model. Hence, if py solves the GN gap
equation then pge'? with constant # solves the cGN gap
equation.
On can show that for temperatures above the critical
temperature
2l
Lo _ & <0567 (18)
Po m
and for all 4 the ¢cGN model (in the large-N; limit) is
in a symmetric phase with a vanishing condensate field
[31]. Here v is the Euler-Mascheroni constant. More
surprising is the fact that below T, and for all u # 0 there
are no homogeneous solutions of the gap equation which
minimize Seg. Instead, the minimizing configurations are
helixes with pitch 7/,

A(z) = Alx) = p(T) 2007 (19)



so-called chiral spirals, with a temperature-dependent
amplitude p(T) and k(u) = —p in the large-N¢ limit.
For vanishing chemical potential the chiral spiral degen-
erates to a homogeneous configuration, which relates to
the large- Nt solution of the Zs GN model at p = 0. We
conclude that the profile function p(T) is just the conden-
sate of the GN model at p = 0, which decreases mono-
tonically in T until it vanishes at T.. The large- Nt phase
diagram in the (7, u) plane is depicted in Fig.
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FIG. 1: The phase diagram of the cGN model in the large-N¢
limit (see [I8]). One critical temperature T¢ for all ;1 marks the
transition from chiral spirals at T' < T to the symmetric phase at
T > Tc. Units are set by the condensate pg at zero temperature
and zero chemical potential.

C. Spontaneous symmetry breaking (SSB) in low
dimensions

Under rather natural assumptions the existence of per-
fect long-range order (as opposed to gquasi-long-range or-
der) in lower dimensions is excluded by the celebrated
Coleman-Hohenberg-Mermin-Wagner theorem [32H35].
This theorem states that continuous symmetries cannot
be spontaneously broken at finite 7' in low-dimensional
systems with short-range interactions. In particular, for
zero-temperature systems the theorem says: The con-
tinuous symmetries cannot be spontaneously broken in
(1 + 1)-dimensional quantum systems. If a continuous
symmetry were spontaneously broken, then the system
would contain Goldstone bosons, which is impossible in
two spacetime dimensions because massless scalar fields
have an IR-divergent behavior [35]. Discrete symmetries,
on the other hand, can still be spontaneously broken in
two dimensions.

There is a domain-wall proof of the theorem, of which
the basic intuition is to rotate the field or, in a spin-model
language, the values of spins in a finite region with an ar-
bitrarily small energy cost. This is achieved by creating a

domain wall of finite thickness interpolating between the
regions with rotated and unrotated spins. If the sym-
metry group were discrete, there would be no smooth
interpolation and hence a finite cost for creating domain
walls.

The increasing strength of fluctuations (thermal and
quantum) in the IR with decreasing dimension is known
from the (Euclidean) free scalar field with propagators

—3|z] d=1,
(B(x)p(0)) "= —Llogle| d=2,  (20)
1

The interpretation of the IR divergence in d = 1 and 2
is that the field fluctuations cannot stay centered around
a mean. It implies that far away from a given spacetime
point the field takes completely different values than at
the given point. This happens in one and two dimensions
where the fluctuations move the field arbitrarily far from
an initial value such that it has no well-defined average.

This reasoning should apply to translation invariance
as well: If the distance between two neighboring particles
on a wire fluctuates by dx, then the nth particle’s sepa-
ration fluctuates as y/n dx and thus diverges for large n.
These large fluctuations destroy any long-range order in
the position of the particles and R. Peierls concluded that
a one-dimensional equally spaced chain with one electron
per ion is unstable [36]. In higher dimensions (d > 3) the
fluctuation-induced correlations fall off at large distances
and are not strong enough to destroy long-range order.

Furthermore, based on the powerful energy-entropy ar-
gument it has been argued that any SSB should be dis-
allowed in 1 + 1 dimensions at finite temperature [32].
In the argument one considers a small number N of lo-
cal perturbations of an ordered state (e.g. aligned spins
in the Ising model). The entropic contribution of these
perturbations to the free energy is o N In N while the
energy penalty is only oc V. Thus, the entropic contri-
bution can overcome the energy barrier and destroy the
order. This perspective is directly applied to the discrete
GN model in [37].

Hence, the breaking of translation invariance in the
(1 + 1)-dimensional GN model seems to be excluded on
general grounds. On the other hand, the no-go theo-
rems do not apply in the large-N; limit where the an-
alytical solution shows that the finite-temperature and
finite-density equilibrium state is not translation invari-
ant. What may happen at finite Ny is a subtle issue and
has been discussed (including the underlying assumptions
of certain no-go theorems) in [24].

Besides the questions raised in [24] there are more
points to be clarified with regards to the applicability
of the no-go theorems: It is not obvious whether the
effective action Seg[A] containing the non-local fermion
determinant is short-ranged enough to ensure the con-
vergence of certain integrals, which is assumed in [33].
Although [34] treats fermions as well, the result is based
on sufficient convergence (in form of f sum rules) and
gives itself an example of violation.



We emphasize that the no-go theorems allow for a BKT
phase with quasi-long-range order expressed by slowly
decaying correlations o< 1/|z|* and a BKT transition to
a massive phase with short-range correlations oc e~
[38, B9]. There is no symmetry breaking and no order
parameter involved in the strict sense, but the slowly de-
caying correlations of a BK'T phase allow for large regions
of one distinguished local state.

D. Perturbations of chiral spirals

How are the inhomogeneous phases of the GN and ¢cGN
models in the large-N; limit compatible with the no-go
theorems discussed above? In a way the large parameter
Nt takes over the role of an extra spatial dimension. For
example, in the domain-wall argument given above the
energy penalty is multiplied by the large number N; and
in the limit Ny — oo may overcome the entropy gain.

This and further heuristic arguments can be substan-
tiated by a systematic expansion in the small parameter
1/N¢, whereby one assumes that for finite N¢ the contin-
uous U4(1) axial symmetry is not spontaneously broken.
Under an axial rotation the radial field p is left invari-
ant and @ is shifted by a constant. This means that an
invariant effective action is a functional of the form [40]

Seff = Seg[p,aue] . (21)

This effective action is used to calculate expectation val-
ues of functions of A = pe'? and its complex conjugate
field A*. However, in the continuum model a condensate
(A) cannot form (it would break the axial symmetry) and
with chiral SLAC fermions and the ergodic rHMC algo-
rithm it averages out in lattice simulations, see subsection
Thus, following our previous studies [24], 25], the
correlator

C(z) = (A" (t,z)A(t,0)) (22)

will be of particular interest to us.
For Nt — oo the path integral is localized at the chiral
spiral and we find

C( ) p2 —2ikx ) (23)

Clearly, for finite Ny we must admit small deviations from
the chiral spiral,

A(:L') _ (ﬁ+ 5'0(:1:)) eQikx+i§6(m) , (24)
and expand the effective action in powers of the fluctu-
ation fields dp and d6. An explicit calculation at zero
temperature and in an infinite volume shows that the
term linear in the fluctuation fields vanishes if the bare
GN-coupling depends on p according to

A? + p?
:71 =

g* 2 p

1 1
— and k+p=0. (25

The first relation is recognized as the gap equation of the
Zo GN model. For large volumes the wave number k be-
comes continuous and the second relation can be fulfilled
for all pu. Since the effective action only depends on k
via k + pu, this relation implies that Seg is independent
of both k£ and p. In a finite box with quantized k, how-
ever, the background field p and the effective action will
generically depend on k + p.

The contribution quadratic in the fluctuation fields is
rather lengthy and has divergent terms which all cancel
when one uses the gap equation . If in addition the
wave number of the chiral spiral obeys k + g = 0, then
one obtains

V-=A
Sett = VUt (p) —I—/épKAasmh( % )6,0

2 /=
—|—i 59<Ka81nh<A>+A>56+...,

2w A 2p 8

(26)

where the dots indicate higher-order terms, the integrals
extend over the spacetime volume and we introduced the
(nonlocal) operator K o containing the Laplace operator,

o\ 1/2
K= (1 - 4§> . (27)

In a low-energy approximation we may perform the gra-
dient expansion, which yields the simple expression

Seff - VUeff

(Vép)?  (Adp)?
* /(5 + 1292 120p°

+> (28)
((V69)2 5 2(Aée) ) T

containing the standard kinetic terms plus higher deriva-
tive terms. The first term under the first integral is just
the second-order term in the expansion of Ues(p + 0p)
in powers of dp. Thus, up to second order the effective
action for p = p+dp and 060 at low energies has the form

. i
167

1 [ ol P
Seff = 47r/d xp (logﬁ2 1)
1 o ((Vp)?  (Ap)?
+ 2471' /d ‘T( 72 105 ) (29)

2 ((v50)2 - 3%_)2(459)2) T

+ 16
where we inserted the explicit form of the effective po-
tential at zero temperature and the dots indicate cubic
and higher-order terms and higher derivative terms. We
see explicitly that p describes a massive field and 66 a
massless would-be Nambu-Goldstone mode. At large N¢
the latter decouples from the system while at finite Nt it
destroys perfect long-range order.

To study long-range correlations we can safely neglect
contributions from the massive field and obtain, for large
but finite N¢, the valid approximation

Clz) ~ ﬁ2e—21kw<ei60(t,0)—i69(t,x)> _ (30)



It holds information about the dominant wave numbers
of typical configurations in an ensemble. Due to the loga-
rithmic divergence in the correlator of the massless scalar
field one finds for x — oo

T=0,

31
T>0, (81)

_1

1560(¢,0)—i86(t,2) x N

( {0

such that in a BKT phase with quasi-long-range order

the amplitude of the oscillating correlator decays fairly

slowly, following a power law. At finite temperature the
correlation length, given by

2N

§p="po, a=1+23 (-1)"(nBp)Ki(nfp), (32)

n>1

where K7 denotes a modified Bessel function of the sec-
ond kind, is finite. The coefficient « increases mono-
tonically with the inverse temperature 8 from a = 0 to
a = 1. This means that the correlation length diverges
in the large- Nt limit or for 7' — 0.

III. LATTICE FIELD THEORY APPROACH
A. Objectives and observables

The previous discussion makes clear that we should not
expect to see SSB in the ¢cGN model with U,(1) symme-
try. Indeed, there are stronger arguments against perfect
long-range order in this model than in the GN model with
Zo symmetry. However, the difference between a spon-
taneously broken and a BKT phase at zero temperature
most likely appears on exponentially large length scales
that cannot be reached in our lattice simulations, see, for
instance, [41]. Tt could very well happen that on phys-
ically relevant length scales one can hardly distinguish
between quasi-long-range and perfect long-range order.
Furthermore, we shall see that even the distinction be-
tween a massive symmetric phase and a BKT phase at
low temperatures is non-trivial if one allows for contri-
butions of the first excited state.

Either way we will find striking similarities between
the ¢cGN model with only two flavors and the model with
Nt — oo, which, for u # 0, shows SSB of translation in-
variance. If similar observations apply to more realistic
models in higher dimensions then this could be relevant
for the physics of compact neutron stars, heavy-ion col-
lisions or condensed matter in small systems.

We shall see that for 8 flavors the correlation function
C(z) in has the form predicted by the effective
low-energy Lagrangian and can be hardly distinguished
from the large- Nt result . For example, at low tem-
perature its discrete Fourier transform F[C](k) is peaked
at the dominant wave number

Ko = yargmax | FICI(K)] (33
k

which for large Nt is given by the chemical potential,

Ko 5 (34)

while for Ny = 2 we find knax < p. Notice that we
have included a factor of 1/2 in Eq. , in line with the
introduction of k in Eq. as half the wave number. We
will use this convention for k£ and k. in the remainder
of this work.

The spatial correlation function C(z) also encodes the
distinction between the massive symmetric and BKT
phases in its decay properties,

e~%/¢  massive symmetric ,
IC(x)| = {2z~ % BKT), (35)
const. symmetry-broken .

For a comparison we included the asymptotic behavior in
a symmetry-broken phase. The temperature-dependent
correlation length £z was defined in Eq. .

B. Lattice setup

We discretize two-dimensional Euclidean spacetime to
a finite lattice with N, and IV; lattice sites in the spatial
and temporal directions respectively, such that L = Nsa
is the spatial extent, T = 1/N;a is the temperature and
a denotes the lattice constant. The use of chiral SLAC
fermions [42] [43] restricts N, to be odd and N, to be even
[26]. Our lattice setup is the same as in [24] with the only
difference that besides a scalar field o we now have an
additional pseudo-scalar field 7 and both fields enter the
complex condensate field A via Eq. .

For an easy comparison with the analytic results we ex-
press physical quantities in units of the expectation value
(p) at T = p = 0, denoted by pg. This is analogous to the
scale g in our previous studies [24] [25]. One should stress
that this neither assumes any form of symmetry breaking
nor is in conflict with any no-go theorem because a non-
vanishing expectation value of p does not break any sym-
metry. Fig. [2[shows histograms of >__ A(z) in the com-
plex plane for = 0 and 12 different temperatures. For
these histograms we used ensembles with O(10%) config-
urations each. We clearly observe that the distribution of
A is angle-independent or U 4(1)-invariant. At low tem-
perature it is ring-shaped with its maximum at p > 0,
while at high temperature it turns into a Gaussian-like
distribution and the maximum moves to p = 0.

In the actual simulations, however, the quantity pg is
surprisingly hard to determine. App. [A]sheds some light
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on the details of this procedure. In summary, we usedE|
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with 7 = 1,..., Ny enumerating the Monte-Carlo (MC)
configurations. This yields a good signal at low temper-
atures where (p) is required.

For most of our simulations, we used one of three dif-
ferent spatial extents Ny = 63,127,255 and lattice con-
stants apg =~ 0.46, 0.19, 0.08 in order to study both the
continuum limit and the infinite-volume limit. We vary
the temperature by changing the number of lattice points
in the temporal direction, Ny, at fixed a and we vary a by
changing the coupling 1/¢? in Eq. . For these lattices
we map out phase diagrams in the (T, i) plane. More de-
tails as well as a table summarizing all parameter settings
are given in App.[C]

Experience with interacting fermion models teaches us
[24] that systems exhibiting (quasi-)long-range inhomo-
geneous structures can have rather long thermalization

: (36)

3 Notice that this is not identical to taking the absolute values and
MC-averages of the distributions shown in Fig. For a more
detailed discussion about the order of taking absolute values and
averages, see App. |§|

times when running simulations with randomly gener-
ated initial configurations, e.g., using a Gaussian distri-
bution. As a way to counteract this problem, we employ
a different approach for the majority of results presented
in this work and perform a systematic ”freezing-out” in
the following way: Starting at high temperatures with
Ny < Ng, where thermalization times are not an issue,
we generate at least 1000 configurations to ensure proper
thermalization. We then map the last of these configu-
rations to a lower-temperature lattice with Ny > N; by
simply repeating the data in temporal direction and use it
as a seed configuration on the larger lattice. This reduces
the thermalization period (where no measurements are
performed) if the temperature step is small. In our simu-
lations we systematically approach lower and lower tem-
peratures using this ”freeze-out” procedure. This way we
experienced significantly less ” getting stuck” in some far-
from-typical configurations, although it could still not be
completely prevented from happening.

A cross-check with thermalized results using standard
Gaussian-distributed initial configurations yields equiva-
lent results, with the ”freezing” method having notice-
ably better thermalization properties and thus overall
smoother results. As an additional cross-check we also
performed the inverse procedure, i.e., a "heating”, for a
handful of parameters in order to exclude any hysteresis
effects caused by the ”freezing” method.

As can be seen from Fig. [3] where we show the Fourier
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FIG. 3: The Fourier transform of C(z) as a function of k for the
three different methods mentioned in the main text on a 48 x 127
lattice for apg &~ 0.46 and different . The temperature is the
second lowest considered, i.e. we compare several ”freezing” steps
with a single ”heating” step. The vertical lines indicate the
maxima of the ”frozen” results at the lowest temperature.

transform of C'(z) computed via each of the three meth-
ods, the "frozen” and ”heated” results agree very well,
indicating that hysteresis effects are negligible. The fact
that the ”independent” results, i.e. the ones obtained by
using Gaussian-distributed initial configurations, show
some deviation is likely to be attributed to their lower
statistics and worse thermalization properties.

The vertical lines in Fig. [3] show the peak positions,
which were estimated with the ” freezing” method, for the
lowest temperature considered. We see that for the high-
est density (u/po & 1.31 in the figure) the peak positions
of the two lowest temperatures differ. This dependence
on temperature is not seen in the large-Ny limit and is
caused by bosonic fluctuations.

For small i on our smallest lattice, where homogeneous
configurations dominate, we furthermore compared with
a ”cold start”, which amounts to starting the simulation
from A©)(t, 2) = 1+1i. Again we found matching results
except for the lowest temperatures where the cold start is
expected to suffer from severe autocorrelation problems.

C. Lattice estimators

We have argued that spatial correlation functions are
useful tools to probe for inhomogeneous phases since they
avoid the destructive interference one would encounter
when directly calculating chiral condensates on the lat-
tice. We consider the two spatial correlators

ng(fli) = N, N, Z<J(tvy +x)a(t7y)> )
. " (37)
Cmr(x) = N, N, Z<J(t»y —|—x)7r(t,y)> )

where the sums extend over all lattice sites and (-) de-
notes the Monte-Carlo average. If these correlators show
an oscillating behavior, one can infer the existence of
inhomogeneities. The unbroken U 4(1) symmetry im-
plies that for any temperature and chemical potential

Coo(x) = Crr(x) and Cor(x) = —Cro(z). (38)

Also note that the fermion determinant is invariant when
o and p both change their signs, such that

(o(@)m(y))p = —(o(2)m(y))—p , (39)
from which we conclude that

Corn(x) =Cro(x) =0 for pu=0. (40)
We see that additional correlators that arise from inter-
changing o <> 7 in Eq. are not independent and we
refrain from using them in subsequent equations to save
some space. In the measurements, however, we do not
implement the symmetries and instead use all four
correlators Cyy, Cor, Cro and Cr, in order to reduce
statistical uncertainties. From Eq. one obtains

C(x) = 2(Coo(z) +1Cor(7)) (41)

and the property means that C is real for vanishing

W
In [24] we introduced the minimal value

> (0 homogeneous
Crnin = min Cpp () ¢ & 0 symmetric (42)

< 0 inhomogeneous

to map out the entire phase diagram of the (discrete)
GN model. This parameter is negative if there is (quasi-)
long-range order with oscillating Cy, () and is also useful
for discussing the physics of the chiral GN model. For
the chiral model the choice of C,, might seem arbitrary
but because of any quadratic correlator of a linear
combination of o and 7w would serve the same purpose.

It is important to note that taking the minimum is a
global operation that disqualifies this quantity as a lo-
cal observable. Furthermore, this minimum might (and
actually commonly will) be taken for small spatial sepa-
rations x. In such cases, Chi, does not probe the long-
range behavior of the system.

We estimate the dominant wave number k.5 as given
by Eq. , but calculated from C,,, instead of C'. Some-
times we quote results in terms of the integer-valued dom-
inant winding number vy, related to kpax via

L
max — *kmax . 43
Vi = & (13)

From analytical studies [40} [44] it is expected that the
U(1)-invariant fermionic four-point function of the GN
model,

Car(zsy) = (VL + ) (@) (1 — v )v(y)) ,  (44)



at zero temperature and zero fermion density should have
a power-law behavior in the limit of large separations,

Cip(z;y) ~clz —y| ™, (45)

where ¢ is some constant. Similarly to the spatial correla-
tion functions for the condensate fields we introduce
the spatial correlation function for the N; fermionic lat-
tice fields,

1
C4F(£E) = W E C4F(t,y +$§t7y) . (46)
5ty

The asymptotic form would imply a power-law decay

Cyr(z) ~ cx ™ for z3>1. (47)

Dyson-Schwinger equations (see App. [B) relate Cyr () to
the spatial correlation functions of the condensate fields,

2

Cyp(z) = -2 (ngzf> (Coo(x) +1Cor(x)) (48)
since the contact term in Eq. does not contribute
for large x. Since C,, and C,, are easily accessible in
lattice simulations we shall use this relation to study the
infrared properties of Cyp. For g = 0 the latter is real,
see .

From the effective low-energy approximation outlined
in Sec. [ID] we expect that the phase of the complex
condensate field, § = arg(A), holds important informa-
tion about the existence of inhomogeneous structures.
We thus studied the space dependence of its expectation
value, defined in the following way:

(0(z)) = (arg (A(2))) (49)

where the bar indicates time averaging, i.e.,
- 1
Ar) = — Alt,x). 50
(0) = 5 2 aa) (50)

We chose this (unusual) order of time- and MC-averaging
to suppress statistical uncertainties. Although the two
averages in do not commute the given prescription is
justified since the configurations are essentially constant
in time direction, see Fig. [ for an example configuration
of the o field.

IV. NUMERICAL RESULTS

In previous studies of the discrete GN model [24], 25],
2, 8 and 16 flavors have been investigated with the focus
on Ny = 8 in order to compare different types of chiral
fermionsEl and their suitability to investigate inhomoge-
neous phases. But Ny = 8 is still close to Ny = oo in the

4 N; = 8 is the smallest number of flavors where naive fermions
have no sign problem.

FIG. 4: Typical configuration of o(x) on a 72 x 127 lattice for
w1/ po =~ 0.44 and app ~ 0.46.

sense that on an intermediate scale quantum fluctuations
away from the chiral spiral are suppressed. To be more
precise, if the BKT scenario were correct, then, for in-
stance, in order to obtain a decay to half the amplitude

a crude estimate using C(z) ~ |z|~'/® yields
C@) 1 /
== —2 1
co =3 = Il=26ls] (51)

at the very least. Thus, in order to make any meaning-
ful statements about such an amplitude decay we would
require around O(10%) lattice points at sufficiently small
temperature (large temporal extent). This does not take
into account severe autocorrelation problems, finite-size
effects and contributions from excited states that might
all spoil the signal. This crude estimate motivated us
to study the long-range behavior for Ny = 2 in [24], for
which the same estimate yields feasible 40 lattice points.

A. Overview for Ny =8

Although our focus is on 2 flavors we performed one
parameter scan in (T, u) for N = 8, Ny =63 and apg ~
0.41 in order to compare with results for the discrete
GN model. Some of our results are depicted in Fig.
Fig.|balshows the phase diagram extracted from Cy,iy, (see
Eq. (42)), which is to be compared with Fig.|1|for infinite
flavor number and is also the equivalent of Fig. 7 in [24].
We see that the phase diagram agrees well with the large-
Nt prediction for small chemical potential (u < 0.5p0)
and at least shows the predicted structure at larger pu.

At vanishing chemical potential Ci.;, is positive for
small temperatures, indicating predominantly homo-
geneous configurations with non-vanishing amplitudes.
They relate to the homogeneously symmetry-broken
phase at large N¢. In Fig. we see that in this regime
Cy,o(x) is a positive and monotonically decaying func-
tion (blue curve) and Cyr(x) = 0 in agreement with
(40). Raising the temperature we find a small tem-
perature regime around T ~ 0.3pg where we observe
a sudden drop of the amplitude such that the u = 0
data mimic a second-order phase transition. In the high-
temperature regime the non-zero correlator C,, falls off
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(a) Phase diagram via Cmin from

Eq. .
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(c) Dominant winding number vmax
from Eq. and Eq. for
T/po =~ 0.030. The linear fit has a slope
of 7.91 £ 0.10.

FIG. 5: Collection of results for Ny = 8, N5 = 63, app =~ 0.41.

even more rapidly. This (would-be) transition tempera-
ture at p = 0 is approximately equal to the one found in
the discrete GN model in [24]. This was to be expected
since in the large-NV¢ limit the GN and ¢cGN models at
vanishing chemical potential have the same critical tem-
perature. It is also not surprising that for Ny = 8 the
transition temperature is significantly lower than in the
large- Nt limit (c.f. Eq. ), where quantum fluctuations
are suppressed. The symmetric high-temperature regime
at u = 0 extends to non-vanishing chemical potential
(orange curve in Fig. .

At low temperature and non-vanishing fermion density
we can clearly confirm that the dominant contributions
to the path integral come from chiral-spiral-like configu-
rations. An example of this is shown in Fig. (green
curve). Such configurations are the cause of the large
region of negative values in Fig. The transition line
to the region where oscillations are no longer dominant
is roughly a line of constant temperature for small chem-
ical potential (1 < 0.5p9), as expected from the large-N¢
solution. For large chemical potential it tilts upwards
unexpectedly, thereby enlarging the regime where inho-
mogeneities are found. This effect was also observed in
[24] for Nf = 2 in the discrete GN model and is related
to short- and intermediate-range phenomena that will be
discussed later. Nevertheless, the fact that we encounter
it already for Ny = 8 strengthens the point that quan-
tum fluctuations are much stronger in the chiral model
compared to the discrete one.

For Ny = 8 the winding numbers of the inho-
mogeneous configurations match the large-N; expecta-
tion very well if one accounts for the discretization of the
wave number due to the finite box size, as can be seen in
Fig. [6d| (note that .y is integer valued by definition).
As in [25] there is a tendency for the lattice data to lie
slightly below the N = oo expectation. The linear fit
through the origin yields a slope of roughly 7.91, which
is lower than the large-N¢ value L/m ~ 8.27, but well
within the expected accuracy of the large-Ny expansion
O(1/N¢) ~ 10%.
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FIG. 6: Histograms of kmax for Ny = 2, Ny = 63, app ~ 0.46 and
various values of temperature and chemical potential.

B. Deviations of Ny=2 from the large-N; limit

After discussing the results for Ny = 8, which in many
ways confirm the large-N; expectations, we now study
the 2-flavor cGN model for which we expect sizable de-
viations from the large-N¢ solution.

To monitor the fluctuations in the system at finite tem-
perature and density, we measure the dominant wave
number of the equilibrium ensemble. It character-
izes important configurations for the given set of control
parameters and tells us which chiral spiral is favored in
the rough landscape defined by the effective action with
its many local minima. This analysis presupposes that
chiral spirals are the dominant configurations even for
N¢ = 2 or that the non-dominant winding numbers are
suppressed. We shall see that this is a valid assumption
at small temperatures.

Fig. [6] shows such histograms for 3 values of 7' and 3
values of u. As expected, the data show three distinct



FIG. 7: Correlators Csos and Cor (from Eq.
T/po ~ 0.030 showing the chiral spiral. (b):
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(37)) for Ny = 2, Ns = 63, u/po =~ 1.14 and app = 0.46. (a): 3D plot of the correlators at
The same data as in (a) but in 2D. (c¢) 2D plot of the correlators at higher temperature.

peaks, one for each value of u. At the lowest tempera-
ture and p # 0 the peaks are pronounced with over 80%
of the configurations sharing the same dominant wave
number. Increasing the temperature then broadens the
peaks. Concerning the question of spontaneous symme-
try breaking, one should stress three features:

1. While the peaks flatten significantly for rising tem-
perature, they do not vanish completely. At tem-
peratures as high as ~ 0.5p9 we could still make
out small bumps. Thus, even at these high temper-
atures the system knows about the inhomogeneity
arising from its finite density.

2. There is no qualitative (or even sudden) change
in these distributions that could characterize a
second-order phase transition. Instead the flatten-
ing of the peaks is a rather smooth process.

3. Even at low temperatures (e.g. T =~ 0.05p0), well
inside the would-be symmetry-broken regime, the
contributions from concurrent frequencies are sig-
nificant (around ~ 10 — 20% in the example). The
interference of these contributions is the mechanism
which prevents a breaking of symmetry.

The features [1| and [2| discussed above are clearly visi-
ble in the spatial correlators depicted in Fig. [} At low
T and non-vanishing p we clearly observe remnants of a
chiral spiral, see Fig. [Ta] From Fig. [7Th] we see that both
correlators are oscillating with a phase shift of /2. This
is the parameter region where there are sharp peaks in
Fig.[6] At higher temperature the peaks flatten and the
correlators show damped oscillations as shown in Fig.
Notice, however, that even in this regime we still find
Chin < 0, i.e., this is classified as a region of spatial
inhomogeneities according to our definition. Here we ob-
serve a clear deviation from the large- Nt solution. Since
the oscillations in Fig. are only seen on short scales
we must be cautious when interpreting a negative Chyin
as a signal for inhomogeneities. As already stressed be-
fore, a negative C,in ensures that there are oscillations
on some length scale but this scale can be — and certainly
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FIG. 8: vmax as a function of u for Ny=2, Ns = 63, app ~ 0.46
and T'/po ~ 0.030. The linear fit has a slope of 6.8 + 0.2.

is for large parts of the blue region of the phase diagram
— a short or intermediate one. Finally, at even higher
temperatures one again finds correlation functions with
Chin =~ 0, indicating a symmetric region.

Similarly to Ny = 8 we determined the dependence of
the dominant winding number in Eq. on the chem-
ical potential and we present the results in Fig. [§] As
expected, the (dominant) winding numbers for Ny = 2
deviate considerably from those in the large- Nt limit and
those for Ny = 8, c.f. Fig. One might conjecture that
the winding numbers decrease with decreasing Ny.

C. Phase diagram for N;=2

One could expect a qualitatively different 'phase dia-
gram’ for the cGN model with 2 flavors as compared to
the large- Ny diagram depicted in Fig. [I| In order to test
this expectation we calculated Ci,in defined in Eq.
on a grid in the space of control parameters u and T
on lattices with Ny = 63, 127 and 255 lattice points in
the spatial direction. We studied both an infinite-volume
extrapolation at (approximately) fixed lattice constant
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FIG. 10: Continuum extrapolation: phase diagrams for decreasing lattice constant. The color coding is different from Fig. El

apo ~ 0.46 and a continuum extrapolation at (approxi-
mately) fixed physical volume.

The diagrams for systems with constant lattice spac-
ing in Fig. [0] show that the infinite-volume limit signifi-
cantly shrinks the red (Cppin > 0, i.e. predominant homo-
geneous contributions) region without affecting the blue
and green region of predominant inhomogeneous resp.
symmetric configurations. There are three rather differ-
ent phenomena at work here:

1. The simplest one is just geometrical: When we en-
large the spatial volume, we can fit larger wave-
lengths into the finite box. For small p the pitch of
the chiral spiral would exceed the box size, which
means that the chiral spiral does not fit into the
box. Such a suppression of chiral spirals with large
pitches disappears for larger volumes. Hence, the
region of predominant homogeneous configurations
must shrink in the direction of non-vanishing p.

. Finding a shrinking of the Cp;, > 0 region in
the temperature direction is clear evidence against
spontaneous symmetry breaking. In fact, the (qual-
itative) behavior of the apparent transition temper-
ature and the condensate is well understood by a
comparison of the analytically known correlation
length Eq. with the box size. We can thereby
clearly identify the remnant condensates that were
measured as finite-size effects.

3. The transition from the blue (Chin < 0, i.e. pre-

dominant inhomogeneities) to the green (Cpin ~ 0,

i.e. predominantly symmetric) regime can be eas-

ily understood as the following short-range effect:

At finite temperature there are two length scales

in the system (besides the finite box size), i.e.

the temperature-induced finite correlation length

&p from Eq. and the predominant wavelength

inversely proportional to u (up to discretization due

to the finite box size). Obviously, for Ciin to be

negative, the amplitude, which decays due to g,

must not have dropped to (almost) vanishing val-

ues at separations where the first minimum of the

oscillations occurs. Since the latter is given by pu

(up to a constant factor), the transition line from

blue to green signals that the temperature scale

takes over as the shortest relevant scale from the

chemical potential. This is not really a qualitative

change. As this is independent of the much larger

box size, it is not affected by the infinite-volume
limit.

An interesting, but unfortunately hard to quantify ob-

servation is the following. While on smaller lattices (e.g.

Ns = 63) the data tends to fluctuate around only one

background configuration, like a chiral spiral with a fixed

winding number, larger lattices admit changing the wind-

ing number more often as opposed to less often. An

example is depicted in Fig. which shows a time se-

ries of the modulus p(™) of the spacetime average of A(7)



defined in Eq. of appendix Even for vanishing
chemical potential and low temperature, the regime in
the phase diagram where we set the scale and where the
dominant configurations are homogeneous, we still find
several occasions on which there are dominant inhomo-
geneous contributions.
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FIG. 11: Monte Carlo time series of p{7) defined in (A2) (top)
with the A%XAg correlator at 7 = 2604 (bottom, left) and 7 = 3856
(bottom, right) for Ny = 72, N5 = 255, g~2 = 1.0540 and u = 0.

For most of the MC time, p(™) fluctuates about a con-
stant value. During this time the real part C,, of C de-
fined in is almost constant and the imaginary part
Cyr is small (recall that (Cy,) = 0). But at several MC
times, e.g. 7 ~ 1100 or 3860, the field p(™) drops and the
real and imaginary parts of C'(z) show the profiles typi-
cal for a chiral spiral. While the lower left plot in Fig.
is representative for most of the configurations, the sud-
den drops in the time series are strongly correlated with
the appearance of inhomogeneous configurations as seen
in the lower right panel. That this is only seen on large
lattices is counterintuitive at first since autocorrelation
times usually increase with the system size and it is also
the opposite of what was observed for the Zs GN model
during the work on [24] 25]. However, the fact that con-
siderable phase fluctuations on large scales are allowed is
the analytically predicted mechanism for avoiding spon-
taneous symmetry breaking, see Sec. [[Il From that per-
spective, it supports the analytical claims.

The phase diagrams for systems with approximately
constant physical volume and successively smaller lattice
spacing are shown in Fig. As can be seen, we find in-
homogeneitied’| for all our lattice spacings and the results
are consistent with their existence in the continuum limit.
Unfortunately, setting the scale in a partially conformal
system is a very subtle issue as the dominant fluctuations
have no scale at all (at zero temperature). Since the de-
tails of this scale setting procedure are highly non-trivial

5 As discussed previously, these are probably all short- and
intermediate-ranged, although their range does exceed the finite
box size at low temperatures.
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(see Appendix, we must leave a more detailed analysis
to a future publication.

We conclude that we observe inhomogeneous struc-
tures in the ¢cGN model with only 2 flavors — similarly
as in the large-Ny model. A comparable study of the
Z2 GN model with 8 flavors in [24] led to a similar con-
clusion: inhomogeneous structures persist in the infinite
volume limit. We cannot say for certain whether this
remarkable feature survives the continuum limit of the
c¢GN lattice models.

D. Decay properties of Cyr

We analyzed the decay properties of Cyp(x) as given
by Eq. on a 72 x 63 lattice with apg ~ 0.46, i.e. at
a temperature T = 0.03pg. In order to study its infrared
behavior we computed the connected correlation func-
tion. Motivated by the asymptotic forms predicted
by the low-energy effective action we fit the data points
via a (symmetrized) algebraic function

« «

C4F(£E) = J? + (52)

as well as a double-cosh ansatz,

Car(z) = éq/ cosh [mi (ac - 5)} 63

and show the results in Fig.
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FIG. 12: Modulus of the connected four-point function Cyr (from
Eq. ) with algebraic and exponential fits whose fit parameters

are given in and .
The fit parameters for a power-law decay are

=6.52+£0.02, S =0.521+0.001 (54)

Sl ©



and for an exponential decay we find

N 395154410, "L = (5.76+£0.03) - 102,
o Po

2 (43+03)-107, T2 =0.533 +0.006 .

Po Po

(55)

These results confirm similar findings obtained for the
Zo GN model, namely that it is very difficult to dis-
tinguish between power-law and exponential decays on
the lattices with Ny, = 63, which was also to be ex-
pected following the previous discussion and [41]. How-
ever, from the perspective of our analytical discussion,
where we predicted a massive phase for any 7" > 0 with
the mass vanishing in the limit 7" — 0, there is a very
well-motivated explanation. Eq. predicts

my=1/g~2-1072, (56)

which is reasonably close to the fitted value (remember
that we expanded in O(1/Nf) ~ 50% for Ny = 2) and
explains its seemingly unnaturally small magnitude.

On the other hand, we find that the value § =
0.52 is only marginally larger than the theoretical zero-
temperature prediction of § = 0.5 for two flavors in
Eq. . This result — although not precisely a proof
— is in astonishing agreement with the analytical predic-
tion coming from an expansion around N = oo > 2 and
furthermore beautifully reveals how the massive phase
more and more approximates the conformal behavior at
zero temperature by the unexpectedly large mass ratio
ma/my ~ 10.

E. The phase field 6

In this section we analyze (f(x)). This discussion
should be regarded as complementary to the previous
analysis of the correlators in the sense that we now use
a quantity directly related to the fields. It will further
substantiate our previous findings.

We show the z-dependence of the average (6(z)), as
defined in Eq. , on a 72 x 63 lattice for apg ~ 0.46
and for three values of the chemical potential in Fig.
For vanishing p the averaged argument of the complex
condensate field A is constant which means that the lat-
ter does not wind. For the intermediate value p = 0.88pq
the average angle is an almost linear function of x and
the complex condensate winds 6 times when one moves
along the spatial direction. When one further increases
the chemical potential to u =~ 1.31pg, the slope of the
(almost) linear mapping x +— (#(z)) increases and the
condensate winds 9 times.

We see that the winding number of the chiral spiral
around the spatial direction increases with increasing pu.
In fact, the winding number extracted from the averaged
field (0(x)) perfectly agrees with the dominant winding
number defined in Eq. and depicted in Fig. To
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FIG. 13: Monte-Carlo average over the angle 6§ = arg(A),
calculated from time-averaged fields & and 7, as a function of the
spatial coordinate for different p at Ny = 72.

summarize: at low temperature the average argument
field is almost a linear function of x with a slope
proportional to u. In agreement with the analysis based
on the dominant wave number we detect a chiral spiral
with a winding number proportional to p.

V. CONCLUSIONS

In the present work we studied the (1+ 1)-dimensional
chiral Gross-Neveu model with chiral SLAC fermions and
exact axial U 4(1) symmetry on the lattice. Our two main
results are summarized in the following.

First, we have strong and multiple evidence that the
analytical prediction from an expansion in 1/N¢ well de-
scribes the qualitative features of the ¢cGN model with
2 flavors. As expected we see no spontaneous symme-
try breaking with long-range order in the strict sense,
and our results suggest that at 7' = 0 there is a
BKT phase with quasi-long-range order. For example,
the low-temperature regime, where we have signals of
(in)homogeneous ordering over the whole lattice, is well
explained by the analytically predicted correlation length
exceeding the finite box size and it shrinks consistently in
the thermodynamic limit. Additionally, the decay prop-
erties of pertinent correlation functions are well fitted by
the analytically predicted ansédtze with reasonable pa-
rameter values.

The latter suggests that for 7' = 0 fluctuations of the
phase field 6 on all scales exist and are responsible for the
restoration of the axial symmetry. We demonstrated that
0 is uniformly distributed on unit circles in complex field
space and that large system sizes allow for long-range
phase fluctuations strong enough to change the winding
number. This behavior is predicted by the effective low-
energy theory for § which has been taken from [44] and
extended to p # 0.

Despite this, our second finding is that, rather unex-
pectedly, our simulations at finite temperature and den-



sity reveal that the ¢cGN model with only Ny = 2 fla-
vors resembles the analytic large-N; solution in many
ways. The chiral spirals are still seen in the dominant
configurations and their winding numbers increase lin-
early with the chemical potential. The only qualitative
difference at low temperatures is that these structures are
only coherent in finite but — depending on the temper-
ature — potentially very large regions of space. Instead
of a temperature-driven phase transition at intermediate
temperatures, we found a competition of the two impor-
tant scales in the system, viz the temperature-induced
finite correlation length and the density-induced wave-
length. So, the question whether or not oscillating be-
havior was observed (on potentially short scales) can be
answered only from comparison of the wavelength with
the correlation length. Or, put differently, it is very likely
that oscillating behavior can be found for any tempera-
ture and non-vanishing chemical potential as long as the
wavelength is shorter than the correlation length of the
system. This is qualitatively different from the large-
Nt behavior where there is a strict critical temperature
above which no oscillation can be observed.

We have verified these results mainly via the corre-
lator C' in and by analyzing the average phase of
A defined in . We generated many ensembles for
the control parameters 7' and p on grids with up to 192
points. To quantify finite-size and discretization effects
the simulations were repeated on lattices with 63,127
and 255 points in the spatial direction. While we have
good signals for the behavior in the thermodynamic limit,
whether the inhomogeneities remain after the continuum
limit has been taken is less clear. With the chosen scale
setting, which is a subtle issue in a theory with quasi-
long-range order, we observe that inhomogeneities re-
main in the limit apg — 0. We hope to gain a more
thorough understanding of this limit in the future.

Although we found strong evidence that consistently
supports the analytical predictions, our method of MC
simulations will never be able to prove this in a rigorous
sense. Therefore, it would be interesting to compare our
findings with results from other methods, for example the
functional renormalization group. It would be valuable
to continue the study of the (1 + 1)-dimensional Gross-
Neveu-Yukawa model in [45] to related systems in finite
volumes and inhomogeneous background fields.

The mechanism of how the cGN-model realizes the
Ua(1) symmetry is similar to the flattening of the con-
straint effective potential for a spacetime-averaged order
parameter A [46]. For example, in the Ising model at
low temperature, if we impose that the spatially aver-
aged spin vanishes in the sum over spin configurations,
then in a typical configuration we observe large regions
with spin up and large regions with spin down. Despite
the surface energy stored in the walls separating the ”up”
and ”"down” regions this is the energetically preferred way
of fulfilling the external constraint.

Models with a continuous symmetry react differently
to the constraints. For example, in the 3-dimensional
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0O(2) model with a Mexican hat potential for a complex
scalar field A the constraint |A| < (JA|) is met by inho-
mogeneous spin-wave-like configurations with |A(x)| =~
(JA]) [7]. These configurations resemble the chiral spi-
ral in the ¢cGN model, for which the modulus of A can
be much smaller than (|A[|). In the 2-dimensional ¢cGN
model the constraint A ~ 0 is not imposed by hand but
by general theorems which ensure that (A) = 0. In a
typical configuration the modulus of A(z) is near the
minimum p of the effective potential — in order to mini-
mize the bulk energy — but the real and imaginary parts o
and 7 have vanishing expectation values caused by large
phase fluctuations about the relevant chiral spiral. The
main difference between the 3-dimensional O(2) model
and the 2-dimensional cGN model is that in the former
model the wavelength of the inhomogeneity is given by
the box size [47] and in the latter by the inverse chemical
potential.

In [48] it has been emphasized, that the occurrence
of correlation functions exhibiting damped oscillations in
the spatial directions is directly related to particular fea-
tures of the dispersion relations. The associated quantum
spin liquid behavior, which we also spotted in the 2-flavor
¢GN model, may thus be observed in a larger class of field
theories.
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Appendix A: Details of scale setting

For an easy comparison of our results with the analytic
large-Ny solution we use pg = (p)p_,—, to set the scale.
Unfortunately, it is difficult to obtain an accurate esti-
mate for (p) in our simulations. In this appendix, we first
explain the (statistical) problems with direct approaches
to measure (p) and afterwards present our solution.

From a field theory perspective, the direct lattice es-
timator for (p) would be p; , for any (fixed) point (¢, x)
on the lattice. Now, p;, should be homogeneous up to
fluctuations and, hence, one can improve the statistics by
combining the data from all estimators p; , for all lattice
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FIG. 14: Histogram data of various estimators of {p) for N5 = 255, Ny = 72, u = 0 and g~2 = 1.0540. The vertical axes show the relative
number of hits per bin, with 200 bins used for each histogram. Note that all values of p shown here are raw numerical data not in
physical units.

points. Example data for this estimator can be seen in
Fig.

The final estimate for (p) would then read
(A1)

(p) ~ (mean, o mean, o mean; o abs) Ag J

where 7 is the MC time, AETw) the field value at site (¢, x)
of the 7’th configuration and meany means averaging
with respect to the respective subscript. In order to actu-
ally show the distribution from which the final estimates
are calculated, we present (here and in the following) the
histograms one obtains by stripping the means after the
absolute values have been taken.

The histogram of the straightforward estimator shown
in Fig. is dominated by its broad variance (as is ex-
pected for a local estimator). More importantly, since
the field 6 is quasi-long-range, it requires many sweeps
through the lattice to obtain a #-independent distribu-
tion of A like the ones depicted in Fig. In fact, a
typical configuration in the simulations is not distributed
symmetrically around the origin but rather around some
finite value Ag. The center of the configurations moves
slowly (in Monte-Carlo time) around the origin in field
space. For this reason, taking the modulus right in the
beginning leads to a significant bias towards larger values
in the estimator .

The broad variance mentioned above is a known statis-
tical phenomenon in MC simulations and is usually cured
by averaging over the spacetime lattice before taking the
absolute value, schematically

(p) ~ (mean, o abs o mean, o mean;) Ag? . (A2)
This sharpens the distribution but is less well-motivated
from a field theory perspective. The choice can
be justified if there is spontaneous symmetry breaking
and a small trigger is sufficient to align the values of the
field on the lattice sites. In this case the absolute value
does not change the result if we take the limits in the
correct order, i.e. the spatial volume to infinity before

removing the trigger. In the symmetric phase, on the
other hand, already the spatial average should vanish in
the thermodynamic limit and again taking the absolute
value does not make a difference. Example distributions
of this estimator are shown in Fig. Note the different
scales on the z-axes.

It may come as a surprise that there is a second peak
visible that distorts the mean of this distribution. This
is due to the fact that at any non-zero temperature
there are contributions from inhomogeneous configura-
tions, which average out over the lattice to a very good
approximation, see also Fig. While for this data the
distortion might be mild, we are not willing to take the
risk of severely underestimating the observable for scale
setting.

In the present work, what is even more problematic
is that long-range (quasi-periodic) inhomogeneities must
not be averaged over the spatial direction before taking
absolute values. But since we have to improve statistics
as much as possible we will compromise by using
(A3)

(p) ~ (mean, o mean, o abs o mean;) Ang) )

where we, similarly as in the spatial correlation functions
, first average over time.

As Fig. indicates, this yields acceptable statistics
while only using the assumption of temporal homogeneity
which is a feature of all large- Ny results we know of and
was checked to be valid in our MC data, see, for example,
Fig. @ One should note that this procedure does not
work in the high-temperature regime as the distribution
in this case approaches that of Eq. .

In future works other scale settings could be used and
the corresponding results should be compared with those
obtained in the present work. For example, the mass
of the field p(t,z) may serve as an energy scale. The
drawback of choosing a scale different from the minimum
of the effective potential Ues(p) (at zero temperature and
density) is that it is less straightforward to relate to the
analytic results for large N;. In the large-N¢ limit the
field p becomes infinitely heavy.



Appendix B: On fermionic 4-point functions

We aim at relating the U4 (1)-invariant fermion 4-point
function to the spatial correlation functions C,, and
C,r defined in Eq. (37)). To find such a relation we exploit
the following Dyson-Schwinger equations, which can be
derived in analogy to Eq. @:

Wy (x)p(y)) = —r*(o(z)o(y)) + K> (z —y) ,
(bo(@)i0(w) = ir o (@) (w) -
(D (®)p(y)) = ik (m(z)o(y)) ,

(e (@) Py (y)) = &2 (m(x)m(y)) — k6% (z — y) ,
wherein we used the abbreviation
:%. (B2)

Recalling that A =
4-point function as

—kH (A% (z)Aly)) + 266 (x) |

o + im we can write the invariant

Cir(z;y) = (B3)

and the axial U4 (1) symmetry implies (c.f. Eq. (38))

(A%(2)A(y)) = 2(o(z)a(y)) + 2i(o(2)n(y)) -

In analogy to the spatial correlation functions for the
condensate fields we introduced the spatial correlation
function for the Ny Fermi fields on the lattice in Eq. (46]).
Inserting into we can relate to (37) as

follows:

(B4)

Cyr(z) = —2k% (Coo () +1Cur(x)) + 266(z) , (B5)
where on the lattice the spatial J-distribution on the

right-hand side turns into the Kronecker symbol 6, ¢.

Appendix C: Parameters

In order to calculate the various phase diagrams we
generated many ensembles characterized by the control
parameters (Ng, T, L,u) or (Ng, Ni, Ns, pop), plus the
four-Fermi coupling g2 tuned to the required lattice spac-
ing measured in units of py = (p)r=y=0. We summarize
the lattice spacings corresponding to the different values
of N¢, Ny and g2 in Tab.

As explained in the main text, we used different initial
conditions for the fields to deal with thermalization prob-
lems: We performed scans with Gaussian-distributed
seeds with mean zero, a freeze-out from high tempera-
tures to reduce thermalization times and a heat-up pro-
cedure from the lowest temperature to exclude any hys-
teresis effects from the freeze-out. We also used a ho-
mogeneous cold start, in the sense of setting the initial
configuration to A(x) = 1+1 for all x, at small p, where
inhomogeneous configurations are suppressed. In Tab. [[I]
we collect the control parameters N; and u for which
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TABLE I: Lattice spacings for each set of (N, Ns, g?). The right
column contains the values of Ny at which the scale setting was
performed and the asterisk on one value of app indicates that the
given uncertainty was estimated by hand to be larger than the
computed jackknife uncertainty due to small statistics.

N Ni=L/a 1/g* apo Ny
2 63 1.0540 0.45655 #+ 0.00061 72
2 127 1.0540 0.45844 + 0.00095 72
2 255 1.0540  0.4573 £0.0012 72
2 127 1.3895  0.1904 +0.0027 240
2 255 1.8254  0.084+0.01* 648
8 63 5.1013 0.41235 =+ 0.00023 80

we generated ensembles in equilibrium for each of these
methods. Notice that we use the same lattice spacings
as in Tab. |l which were determined via the freeze-out
procedure, irrespective of the initial conditions.
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TABLE II: Parameter sets used in the simulations. Note that the uncertainty of apg (from Tab. [I)) propagates to the values of u/po,
although we did not make this explicit for the sake of readability.

Ns=L/a 1/4° Ny =1/Ta w/po
infinite-volume extrapolation (N; = 2)

2,4, 6,8, 10, 12, 16,

63 1.0540 24, 32, 40, 48, 72 0, 0.0876, ..., 1.3142
2,4, 6, 8,10, 12, 16,
127 1.0540 24, 36, 48, 72 0, 0.0873, ..., 1.3088
2,4, 6, 8, 10, 12, 16,
255 1.0540 24, 36, 48, 72 0, 0.0875, ..., 1.3121
continuum extrapolation (N; = 2)
4, 6, 8, 10, 12, 16, 24,
127 1.3895 36, 48, 72, 96, 144 0, 0.1050, ..., 1.5756
8, 12, 16, 24, 36,
255 1.8254 48, 72, 96, 144 0, 0.1250, ..., 1.8750
independent initial conditions (N; = 2, for crosschecks)
16, 24, 32, 40,
63 1.0540 48, 56, 64, 80 0, 0.0876, ..., 1.3142
127 1.0540 24, 32, 40, 48, 64, 80 0, 0.0873, ..., 1.3088
8, 16, 24, 32, 40
255 1.0540 48, 64, 80 0, 0.0875, ..., 1.3121
127 1.3895 8, 16, 40, 48, 64, 80 0, 0.1050, ..., 1.5756
255 1.8254 24, 32, 40, 48, 64 0, 0.1250, ..., 1.8750
independent initial conditions (N; = 8)
4, 6, 8, 12, 16, 20, 24, 28
63 5.1013 32, 36, 40, 48, 56, 64, 80 0, 0.0970, ..., 1.4551

heat-up initial conditions (N; = 2, for checking hysteresis effects)

127 1.0540 16, 24, 36, 48, 72 0.4363, 0.8725, 1.3088

cold start (N; =2, small p)

2, 4, 6, 8, 10,

63 1.0540 12, 24, 48, 72 0, 0.0876, 0.1752
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