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tWe use zeta fun
tion te
hniques to give a �nite de�nition for the Casimir energy of anarbitrary ultrastati
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al to, the one{loop e�e
tive energy. We show thatin general the Casimir energy depends on a normalization s
ale. This phenomenon hasrelevan
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ations of the Casimir energy in bag models of QCD.Within the framework of Kaluza{Klein theories we dis
uss the one{loop 
orre
tions tothe indu
ed 
osmologi
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al
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1 Introdu
tionThe study of va
uum 
u
tuations, as embodied in the Casimir e�e
t [1℄, has been a subje
t ofextensive resear
h [2℄. The Casimir energy may be thought of as the energy due to the distortionof the va
uum. This distortion may be 
aused either by some ba
kground �eld (e.g. gravity), orby the presen
e of boundaries in the spa
e{time manifold (e.g. 
ondu
tors). Early investigationsof the e�e
ts of a gravitational ba
kground were performed by Utiyama and De Witt [3℄, andwork has 
ontinued on this important subje
t [4, 5, 6, 7, 8, 9℄. Early work on the e�e
t ofboundaries was performed by Casimir [1℄, and was later extended by Fierz, Boyer, deRaad, andMilton [10, 11, 12, 13℄. More re
ently boundary e�e
ts have been 
entral to the 
al
ulation ofthe Casimir energy in bag models of QCD [14, 15, 16℄.We feel that interesting things remain to be said. In this paper heat kernel and zeta fun
tionte
hniques will be utilized to investigate these topi
s [4, 17℄. The uni�ed treatment presentedhere is appli
able to a very wide 
lass of models and physi
al situations.We start by developing a de�nition of the Casimir energy whi
h is �nite and applies toarbitrary stati
 manifolds with or without boundariesECasimir = 12�h
� � PP [�3(�12 + �)℄: (1.1)Here � is a normalization s
ale of dimension (length)�1, and the PP symbol indi
ates that weare to extra
t the \prin
ipal part". This de�nition yields a �nite quantity in both 
at and
urved spa
e{times, with or without boundaries, for both massive and massless parti
les. Thenormalization s
ale � appearing in the above is required to keep the zeta fun
tion dimensionlessfor all values of s. The introdu
tion of this s
ale leads generi
ally to non-trivial s
aling behaviourfor the Casimir energy. It is pointed out how this de�nition relates in spe
ial 
ases to well{knownresults.Our de�nition of the Casimir energy allows us to investigate its dependen
e on the \radius"of the manifold. We �nd that for massless �eldsECasimir(R) = �h
R � f�0 � �1 � ln(�R)g; (1.2)where the �-independent 
oeÆ
ients �0 and �1 are dimensionless numbers depending on thegeometry of the manifold. This result has some very interesting 
onsequen
es when applied tothe bag models of hadrons in QCD.Further, we may relate the Casimir energy to the one{loop e�e
tive a
tion (i.e. the deter-minant of a suitable four dimensional di�erential operator). This is done by relating the zetafun
tion of D4 = ��02 +D3 to the zeta fun
tion of D3�4(s) = �
Tp4� � �(s� 12 )�(s) � �3(s� 12): (1.3)Thus we obtain a non-trivial relationship between the Casimir energy and the one-loop e�e
tiveenergy Ee� = ECasimir + 12�h
� h (1) �  (�12 )i C2(4�)2 : (1.4)To help understand the signi�
an
e of this relationship we in
lude a dis
ussion of the variousdi�erent 
on
epts 
ommonly lumped together as \va
uum energy".We next apply our analysis to the one{loop 
orre
tions to the e�e
tive 
osmologi
al 
onstantand Newton 
onstant in Kaluza{Klein theories. These one-loop 
orre
tions may be interpreted as2



a Casimir-like e�e
t. We derive the following �nite expressions for the one-loop four-dimensionale�e
tive 
osmologi
al and Newton 
onstants.�e� = � � vol(
) +G�1 � Z
pg Rd � �42(4�)2 n12� 0d(�2)� 34�d(�2)o ;G�1e� = G�1 � vol(
)� k �22(4�)2 �� 0d(�1)� �d(�1)	 : (1.5)In parti
ular, this allows us to study the dependen
e of these 
onstants on the \radius" of the
ompa
t dimensions, without having to resort to expli
it 
al
ulations.
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2 Zeta fun
tions on manifolds with boundary.As regularization te
hnique we shall use the zeta-fun
tion method due to Dowker and Crit
h-ley [4℄ and Hawking [17℄. Its relation to other methods (e.g., dimensional regularization) hasbeen dis
ussed in the literature [4℄. In order to make subsequent arguments understandable,we must �rst brie
y review the mathemati
al ma
hinery of zeta fun
tions. Consider the zetafun
tion asso
iated with a se
ond-order self-adjoint ellipti
 operator D de�ned on a 
ompa
tmanifold 
 with boundary �
�(s) = tr0f(��2D)�sg =X0(��2�n)�s; (2.1)where the �n are eigenvalues of D; while the prime on tr0 and P0 indi
ates that we shouldnot in
lude the zero eigenvalues of D in the sum. We have introdu
ed a \s
ale" �, with thedimensions of (length)�1, in order to keep the zeta-fun
tion dimensionless for all s.The zeta fun
tion is related to the di�usion operator (heat kernel) via a Mellin transform:�(s) = X0 1�(s) Z 10 dt ts�1 exp(��n��2t)= 1�(s) Z 10 dt ts�1 tr0(e�tD��2): (2.2)Here t is a dimensionless parameter, not to be 
onfused with physi
al time (x0=
). From nowon, in the interests of notational simpli
ity, we ignore zero modes. The tra
e of the di�usionoperator is given by the integral of the diagonal part of the heat kernel over the manifold:tr(e�tD��2) = Z
K(t; x; x) pg ddx: (2.3)The heat kernel K possesses an asymptoti
 expansion for small t:K(t; x; x) =  �24�t!d=2 �( NX0 an(x) (��2t)n + o(tN )) : (2.4)The sum is over integer values of n. The an are fun
tions of the gravitational �eld, they maybe expressed as polynomials in the Riemann tensor, its 
ontra
tions, and 
ovariant derivatives.(See Appendix A.) The diagonal part of the heat kernel 
ontains exponentially suppressed terms(e�k(x)=t) that do not 
ontribute to the asymptoti
 expansion (2.4). These exponentially sup-pressed terms do however 
ontribute an expli
it boundary term to the tra
e of the heat kerneltr(e�tD��2) =  �24�t!d=2 �( NX0 �Z
 an(x) (��2t)n + Z�
 bn(y) (��2t)n�+ o(tN )) : (2.5)The sum runs over half{integers, (but the an vanish for half-odd-integers). The bn are fun
tionsof the se
ond fundamental form of the boundary (extrinsi
 
urvature), the indu
ed geometryon the boundary (intrinsi
 
urvature), and the nature of boundary 
onditions imposed. Theseobje
ts are tabulated in many pla
es: e.g., Birrell and Davies [19℄ and Appendix A of this paper.For future referen
e we de�ne the dimensionless quantities: An = �d�2n R
 an(x) pg ddx,Bn = �d�2n R�
 bn(y) p~g dd�1y, and Cn = An +Bn.In view of the asymptoti
 expansion (2.5), it is 
lear that the zeta fun
tion �(s) is a mero-morphi
 fun
tion of the 
omplex variable s possessing only simple poles whose residues aredetermined by Cn. Observe that (2.5) implies that �(s) has a pole stru
ture given by�(s) = 1�(s) (4�)d=2 � ( 1X0 Cn(s� [d2 � n℄) + f(s)) : (2.6)4



The fun
tion f(s) is an entire analyti
 fun
tion of s, but, in general, we have little additionalinformation 
on
erning its behaviour. However, we do know that �(s) is analyti
 at s = 0. It isthus possible to de�ne the determinant of D to be [17℄det0(��2D) = exp�� dds�(s)����s=0� : (2.7)Observe that many of the te
hni
al details asso
iated with renormalization have been hiddenby these zeta fun
tion te
hniques. We shall now utilize this mathemati
al ma
hinery to de�nethe Casimir energy, and relate ECasimir to the one{loop E�e
tive a
tion Se� = 12 ln detD.
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3 The Casimir energy.In order to have a well{de�ned notion of energy, it is useful to work in a stati
 spa
etime [18℄,spe
i�
ally let us take g4 = �(dx0)2 + g3, in whi
h 
ase we de
ompose the di�erential operatorD4 as D4 = �(�0)2 +D3. The eigen-frequen
ies asso
iated with D3 are !n = p�n(D3) � 
. Wewish to 
onsider the zero{point energy:ECasimir = 12Xn �h!n: (3.1)This sum is, of 
ourse, divergent. We regularize it by de�ningEreg(�) = 12�h
� �Pn(�n��2)( 12��) = 12�h
� � �3 ��12 + �� : (3.2)Where �3 is the zeta fun
tion asso
iated with the three-dimensional operator D3. A qui
kglan
e at the previous se
tion shows that Ereg(�) is a meromorphi
 fun
tion with a pole at� = 0, with residue �12�h
� C2(g3)=(4�)2 = �12�h
fR
 a2 + R�
 b2g=(4�)2, where the integral isover three-dimensional spa
e and its two-dimensional boundary. Be
ause of the pole at � = 0,we 
annot, in general, remove the regulator; the geometri
 
oeÆ
ient C2 is an obsta
le to givinga �nite de�nition for the Casimir energy. Note, however, that in many interesting 
ases (e.g.,
at spa
e with 
at boundaries and massless parti
les) C2 = 0, so that lim�!0Ereg(�) is �nite,and independent of the normalization s
ale �.How is one to understand the unphysi
al pole and � dependen
e of the (zeta-fun
tion regu-lated) Casimir energy? First we note that the Casimir energy in isolation is unphysi
al. Whenphysi
ists speak of the Casimir energy they usually are identifying terms in the renormalizedtotal energy whi
h they interpret as arising from boundary or gravitational e�e
ts. There is ipsofa
to no pole in the total energy; the pole in equation (3.2) is absorbed into the bare a
tion whi
hmust 
ontain a term proportional to C2. Having seen this we must admit that the way in whi
hthe pole is removed is not unique. The possibility of di�erent renormalization s
hemes meansthat the Casimir energy has an ambiguity proportional to C2. Our 
hoi
e of renormalizations
heme is to adopt the minimal subtra
tion s
heme whi
h is equivalent to simply removing thepole from equation (3.2). We de�neECasimir � lim�!0 12fEreg(+�) +Ereg(��)g� 12�h
� � lim�!0 12f�3(�12 + �) + �3(�12 � �)g� 12�h
� � PP [�3(�12 + �)℄; (3.3)where the symbol PP stands for taking the prin
ipal part. (This te
hnique yields the \�nitepart" of any meromorphi
 fun
tion that possesses at worst simple poles.)The Casimir energy de�ned in equation (3.3) depends, in general, on the normalization s
ale.We keep this s
ale dependen
e to remind us that the that the renormalization programme, whi
hremoves any � dependen
e from the total energy, may introdu
e a se
ond �nite ambiguity in theCasimir energy. In se
tion 4 we shall study how the Casimir energy varies with this normalizations
ale. In se
tion 5 we shall relate the Casimir energy to the one-loop e�e
tive energy, whi
h alsodepends on the normalization s
ale. The di�eren
e between the two is �nite, � independent,and proportional to the geometri
 term C2. In parti
ular, the Casimir and one-loop e�e
tiveenergies agree when C2 vanishes. The total energy, in the 
ontext of bag models, is 
onsideredin se
tion 6, and we shall verify that it is independent of �.6



4 The role of the normalization s
aleThe renormalized Casimir energy de�ned by equation (3.3) generi
ally will depend on the nor-malization s
ale �. This should not, in fa
t, be surprising. As we shall soon see, the Casimirenergy is intimately related to one{loop physi
s, and the o

urren
e of anomalous s
ale depen-den
e in one{loop �eld theory 
al
ulations is by now a well understood phenomenon [20, 21℄.This anomalous s
aling behaviour manifests itself in two ways: (i) the Casimir energy may de-pend on the normalization s
ale �; (ii) for 
onformally 
oupled �elds, the Casimir energy mayfail to s
ale as the inverse of the radius of the system. This e�e
t is related to the existen
e of the
onformal anomaly (tra
e anomaly). Note however, that the Casimir energy, in isolation, 
annotbe measured. What is measurable is the total energy whi
h in
ludes (renormalized) zero-loop
ontributions along with the Casimir energy. If one knew the Lagrangian for the entire systemunder study (e.g., see the dis
ussion of bag models later in this paper) then one would expressthe total energy in terms of running 
oupling 
onstant sand the normalization s
ale �. The totalenergy is independent of �. If the total Lagrangian is unknown, the Casimir energy still givesthe proper geometri
 dependen
e for the oder �h part of the total energy. In parti
ular, naives
aling behaviour of the total energy is violated. The s
ale � should be interpreted as a s
alethat summarizes the (unknown) physi
s asso
iated with the boundaries, 
urvature, and masses;it must be determined experimentally.Consider the e�e
t of a 
hange in the normalization s
ale �! �0. From the de�nition of thezeta fun
tion it is easy to see that this indu
es a 
hange �3(s; �0) = (�0=�)2s � �3(s; �), so thatEreg(�; �0) = (�0=�)2� �Ereg(�; �). Now for any analyti
 fun
tion f(s) it is easy to see thatPP [f(s)�(s)℄ = f(s) � PP [�(s)℄ + f 0(s) � Res[�(s)℄: (4.1)This has the immediate 
onsequen
e thatECasimir(�0) = ECasimir(�)� �h
� � C2(�)(4�)2 � ln ��0� � : (4.2)The dependen
e on the normalization s
ale is logarithmi
, with a 
oeÆ
ient given by the se
ondSeeley-De Witt 
oeÆ
ient. (The 
ombination �C2 is, despite appearan
es, independent of thes
ale �.) As is to be expe
ted, this dependen
e on normalization s
ale leads to a breakdownof s
ale 
ovarian
e. (It should be noted that C2 depends on R a2, and that a2 
ontains a pie
eproportional to the 
onformal anomaly [19℄, in fa
t T �� / a2, and, for a 
onformally 
oupledtheory, a2 is the 
onformal anomaly.)Now 
onsider the e�e
t of res
aling the metri
 and masses: g3 ! �2 � g3, m! ��1 �m. Thishas a simple e�e
t on the eigenvalues of D3, namely: �n ! ��2 � �n. So for the zeta fun
tion�3(�2g3;��1m; s) = �2s � �3(g3;m; s): (4.3)Using the properties of the prin
ipal part pres
ription we �ndECasimir(�2 � g3;��1 �m) = ECasimir(g3;m)� � �h
� � C2(g3;m)(4�)2 � ln�� : (4.4)This is the generalization, allowing for massive parti
les, of equation (1.2). It is easy to see thatif � ! 1 then ECasimir ! 0, thus the approa
h to massless parti
les in Minkowski spa
e doesin fa
t lead to zero Casimir energy.To derive equation (1.2) of the introdu
tion, we note that the radius of the manifold �2 g3is given by R(�2g3) = � R(g3). Then equation (4.4) may be written asECasimir(R) = �h
R � f�0 � �1 � ln(�R)g; (4.5)7



where �1 = C2(g3; � = R(g3)�1)(4�)2�h
 ;�0 = �ECasimir(g3; �) �R(g3)�h
 �+ [�1 ln(�R(g3))℄: (4.6)Note that �0 and �1 are independent of the normalization s
ale �. A little thought will show onethat �1 depends only on the shape of the manifold, and are in fa
t independent of the radius ofthe manifold. The total energy must 
ontain a term with the same geometri
 stru
ture as theCasimir energy Etot = �h
R f�0(�)� �1 ln(�R)g+ : : : ; (4.7)where now �0(�) depends on � logarithmi
ally so that Etot is independent of the normalizations
ale. One might set the s
ale � arbitrarily, and determine the \running 
oupling 
onstant"�0 as a fun
tion of �. In the 
ontext of Casimir energy 
al
ulations it is natural to use analternative pro
edure: �x �0(�) to have the value determined by equation (4.6), and determine� experimentally. (This is 
ompletely analogous to the experimental determination of �QCD.)From (4.5) we see that if C2(g3) > 0, then the Casimir energy has an absolute minimumat Rmin = ��1 � exp(1 + j�0=�1j), with Emin = ��h
j�1j=Rmin. If C2(g3) < 0 then the Casimirenergy is unbounded from below, approa
hing E ! �1 as R ! 0. (There is now an absolutemaximum at Rmax = ��1 � exp(1 + j�0=�1j) and Emax = +�h
j�1j=Rmax. The sign of C2 is thusthe determining fa
tor in de
iding whether the Casimir e�e
t is repulsive or attra
tive for smallsizes. If C2(g3) = 0 then an absolute extremum o

urs at R =1 and E = 0.The appearan
e of the logarithmi
 dependen
e on the radius in (1.2), (4.4), and (4.5) isvery striking. One may quite justi�ably ask, would this term not have been seen in someof the many Casimir energy 
al
ulations in the literature? The answer is that in very manysituations en
ountered in the literature C2 vanishes. Spe
i�
ally, in 
at 3-spa
e, with masslessparti
les, and any 
olle
tion of in�nitely thin boundaries one has C2 = 0 (for either Diri
hlet orNeumann boundary 
onditions). In parti
ular, 
onsidering the 
ase of the ele
tromagneti
 �eld,any 
olle
tion of in�nitely thin perfe
t 
ondu
tors has C2 = 0. To see this, re
all C2 = A2+B2.Now A2 = 0 sin
e we are in 
at spa
e. Further b2(y) 
ontains only odd powers of the se
ondfundamental form. In�nitely thin boundaries means that all boundaries 
onsist of two oppositelyoriented fa
es separated by an in�nitesimal distan
e. Thus the se
ond fundamental forms areequal and opposite on the two fa
es of ea
h boundary, and 
onsequently the net value of b2summed over the two fa
es of ea
h boundary vanishes. Thus B2 = 0, as required.The 
ase of Robin boundary 
onditions requires extra 
are. For Robin boundary 
onditions��=��(y) + (y)�(y) = 0 on the boundary. In this 
ase one still has C2 = 0 for thin boundaries,provided one makes the additional assumption that  (y+) = � (y�). That is, provided  isequal and opposite on the two fa
es of ea
h thin boundary layer.Some 
ases where C2 does not vanish have also been dis
ussed in the literature. Thesesituations have o

asioned some rather puzzled 
omments whi
h we shall dis
uss more fullybelow.
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5 The one{loop e�e
tive a
tion.We now 
onsider the relationship between the Casimir energy de�ned by (3.3) and the one{loop e�e
tive energy. As in the previous se
tion, we 
onsider an ultrastati
 spa
etime withg4 = �(dx0)2+g3. To pro
eed we Wi
k rotate to imaginary time so that the Eu
lidean Lapla
ianis D4 = +�02+D3. The heat kernel then fa
torizes, e�D4��2t = e��02��2t � e�D3��2t, so that forthe diagonal part of the heat kernel one has:K4(x; x; t) = 1p4���2 t �K3(x; x; t): (5.1)Now, de�ning T = R dx0=
 = \age of the universe", and applying the Mellin transform (2.2)one sees �4(s) = �
Tp4� � �(s� 12 )�(s) � �3(s� 12): (5.2)Using Ee� � T = Se� = +12 ln detD = �12� 04(0), and the known analyti
ity properties of the zetafun
tion yields: Ee� = ECasimir + 12�h
� � [ (1) �  (�12)℄ � C2(4�)2 : (5.3)Where  (s) = d ln�(s)=ds is the digamma fun
tion. The e�e
tive energy and Casimir energydi�er, but the di�eren
e re
e
ts the inherent renormalization-s
heme ambiguity introdu
ed inthe Casimir energy by removing the pole in equation (3.2). The unambiguous parts of thee�e
tive and Casimir energies agree, illustrating a remarkably 
lose 
onne
tion between zero-point energies and one-loop quantum e�e
ts. Note that when C2 = 0, so that the zeta-fun
tionregulated Casimir energy is unambiguous and �nite, Ee� = ECasimir.There are several variations on the 
on
ept of \va
uum energy" in 
ommon 
ir
ulation. Oneof these is the va
uum{expe
tation{value of the integral of the 00 
omponent of stress energy:EVa
uum = R < 0jT00j0 >. This version of the va
uum energy is, in general, not equal to eitherone of ECasimir or Ee� . However, if one were to swit
h o� all intera
tions, so that T00 ! TFree00 ,then an argument, (Presented, e.g., in the review arti
le [2℄), shows that under rather general
onditions ECasimir = R < 0jTFree00 j0 >. Yet another version of va
uum energy is obtained by
onsidering the full e�e
tive a
tion in pla
e of the one{loop e�e
tive a
tion and its 
orrespondinge�e
tive energy E1e� = �e�=T . Again this e�e
tive energy is quite distin
t from the other versionsof the va
uum energy dis
ussed above. These at least four subtly di�erent versions of the va
uumenergy has unfortunate 
onsequen
es insofar as many papers in the literature do not take theappropriate 
are to make these distin
tions.
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6 Comparison with standard results.In this se
tion we shall make 
onne
tions between our formalism and some of the expli
it 
al
u-lations already available in the literature. While agreeing with many of those 
al
ulations, wereport some subtle di�eren
es when 
onsidering solid 
ondu
tors and 
losely related aspe
t ofbag models.6.1 Parallel Plates:Consider a massless s
alar �eld satisfying Diri
hlet boundary 
onditions 
on�ned between twoparallel plates of surfa
e area S held a distan
e L apart. The three dimensional heat kernelis easily seen to be K3(x; x; t) = K1(x; x; t)=(4���2t), whi
h upon integration over the volumebetween the plates yields K3(t) = �2S4�t �K1(t): (6.1)But K1(t) is expli
itly known in terms of the eigenvalues of the redu
ed one dimensional problem�n = n2=L2. Evaluation of the three-dimensional zeta fun
tion pro
eeds in a straightforwardmanner �3(s) = �2S�(s) Z 10 dt � ts�1 � 14�t � 1X0 exp(�tn2=�2L2)= �2S4� � (�L)2s�2 � 1s� 1 � �R(2s� 2): (6.2)Here �R is the ordinary Riemann zeta fun
tion. In taking the limit s ! �12 one does noten
ounter a pole, so the Casimir energy is simplyECasimir(L; S) = � 112� � 12 � �h
2�SL3 � �R(�3): (6.3)It is a standard zeta fun
tion result that zR(�3) = 1120 , whi
h �nally leads to the well-knownstandard result [2℄. This 
al
ulation, though trivial, has expressed some important ideas. Theabsen
e of a pole in the s ! �12 limit 
an be tra
ed ba
k to the fa
t that the plates are 
at.Be
ause the plates are 
at the se
ond fundamental form vanishes (
 = 0), 
onsequently b2 = 0,and �nally C2 = 0. This has the additional interesting e�e
t that the 
at{plate Casimir energyis insensitive to the thi
kness of the plates.6.2 Cylindri
al Shells and Spheri
al Shells:For 
ylindri
al and spheri
al shells b2(outside) = �b2(inside), thus C2(net) = 0, and we maysafely use simple dimensional arguments to dedu
eE
ylinder / LR2 ;Esphere / 1R: (6.4)Note that these dimensional analysis results are merely assumed, not proved, in the standardanalyses of these problems [11, 12, 13℄. It was by no means 
lear, in the days before 
onformalanomalies be
ame a well understood part of �eld theory, that there is anything to prove inderiving (6.4). Fortunately, the naive result works for thin shells, but as we shall soon see, leadsto 
onfusion when applied to solid 
ondu
tors. It should be emphasized that the 
an
ellationof b2 between the inner and outer fa
es is the underlying 
ause of the \deli
ate 
an
ellationsbetween internal and external modes" noted by many authors [2℄.10



6.3 Solid Cylinders and Solid Spheres:For solid 
ondu
tors the \deli
ate 
an
ellations" alluded to previously no longer o

ur. Indeedit is easy to see that C2(�;L;R)solid 
ylinder / L�R2C2(�;R)solid sphere / 1�R (6.5)Consequently the Casimir energy possesses a logarithmi
 dependen
e on the radius of thesesystems. The Casimir energy also depends on the normalization s
ale. In regularization s
hemessu
h as proper-time regularization or a mode-sum 
ut-o� the pole asso
iated with C2 manifestsitself as an divergent term that depends logarithmi
ally on the 
ut{o� [8, 22℄. Su
h logarithmi
divergen
es have in fa
t been en
ountered in some expli
it 
al
ulations [15℄. Any term of theform ln(R�) may be re{
ast as ln(R�) + ln(�=�); the ln(�=�) may then be absorbed into arenormalization of some appropriate pie
e of the energy, but a term of form ln(R�) alwaysremains in the renormalized energy (with the � dependen
e 
ompensated by some other term).6.4 Membranes:We now turn to a very di�erent physi
al system, that of a membrane. Membrane theory, asa generalization of string theory, has enjoyed some re
ent popularity [23, 24, 25℄. Consider aphysi
al �eld that is 
onstrained to propagate on the surfa
e of a 
losed stati
 membrane. As faras the Casimir e�e
t is 
on
erned, this is equivalent to 
onsidering a 2+1 dimensional spa
etime.The analysis of this paper 
ontinue to hold, with the sole ex
eption that the pole of the zetafun
tion at s = �12 is now proportional to C 32 . Sin
e a 32 is automati
ally zero, this meansthat a 
losed (i.e., boundary-less) membrane automati
ally has C2 = 0. Consequently, zeta-fun
tion 
al
ulations of the Casimir e�e
t on any 
losed membrane are always guaranteed to noten
ounter a pole. This explains the otherwise quite mira
ulous 
an
ellation of poles en
ounteredin expli
it 
omputations performed by Sawhill [26℄. Open membranes, on the other hand, maypossess poles in the zeta fun
tion as s ! �12 . The residues of su
h poles are, however, tightly
onstrained.These above 
omments are also relevant to other physi
al systems: 
onsider any �eld theorythat gives rise to domain walls. It is very easy in su
h theories to arrange for massless parti
lesto be
ome trapped on the domain wall. This suggests the interesting possibility that for suitable
hoi
es of parameters and parti
le 
ontent, one may use the Casimir energy to stabilize smallspheri
al domain walls against 
ollapse. Preliminary 
al
ulations seem en
ouraging.At a more general level, the 
omments of this se
tion imply that the behaviour of the Casimire�e
t depends 
ru
ially on whether the total number of spa
etime dimensions is even or odd.This will be dis
ussed more fully when we make some 
omments on Kaluza{Klein models.6.5 Bag Models:Another physi
al situation where the Casimir e�e
t has been of great importan
e is in thebag models of QCD [14, 15, 16℄. As a �rst approximation, the idea is to treat quarks andgluons as massless parti
les 
on�ned to the interior of some (3+1)-dimensional bounded regionof spa
etime 
alled the bag. The free quark-gluon Lagrangian is then augmented by a \bagLagrangian" responsible for 
on�ning the quarks and gluons.The points we wish to make are twofold. First, generi
ally C2 6= 0 for these bag models(barring fortuitous 
an
ellations between the e�e
ts of quark and gluon boundary 
onditions). In11




ut-o� regularizations of the mode sum this would 
orrespond to the appearan
e of a logarithmi
divergen
e, as has indeed been reported by Milton [15℄. In our zeta-fun
tion approa
h theCasimir energy of the bag in
ludes a ln(�R)=R term. Sin
e we are working with a model thatis supposed to be an approximation to QCD, and sin
e we have argued that the Casimir energyis related to one{loop e�e
ts, it is natural for the bag models to expe
t � to be related to �QCD(�h
� � �QCD).The se
ond point we wish to make 
on
erns the (renormalized) bag energy. The total bagenergy depends on the zero-loop bag energy, plus the Casimir energy (i.e., one{loop physi
s), plushigher loop e�e
ts (presumably small). One of the great virtues of the zeta fun
tion approa
his that it yields an e�e
tive way of 
al
ulating the Casimir energy without requiring a detailedanalysis of the renormalization properties of the bag energy. To extra
t the stru
ture of the(renormalizable) Bag Lagrangian the proper time 
uto� is more appropriate. In the proper timeformalism Ereg(�) = �h
�p4� Z 1� dt t�3=2 tr0(e�tD3��2): (6.6)The resulting divergen
es in the Casimir energy are des
ribed byEreg(�) � C0�2 + C 12�3=2 + C1� + C3=2�1=2 + C2 ln �+ �nite pie
es: (6.7)Thus the requirement of renormalizability of the energy implies that the zero-loop bag energy
ontains (at a minimum) the following termsE0 = Z
 2X0 gn an + Z�
 2X0 hn bn: (6.8)In 
at spa
etime this simpli�es 
onsiderablyE0 = p � V + � � S + Z�
 �h1 b1 + h3=2 b3=2 + h2b2� : (6.9)Here p is the bag pressure, � is its surfa
e tension, the parameters h1, h3=2 and h2 do not appearto have standard names.If we approximate the bag as spheri
al, we 
an easily extra
t the dependen
e of these termson bag radius h1 Z b1 = FR; (6.10)h3=2 Z b3=2 = k; (6.11)h2 Z b2 = h=R: (6.12)Whi
h allows us to write the zero-loop renormalized bag energy asE0 = p � V + � � S + FR+ k + h=R (6.13)It is to be emphasized that these parameters are to be determined by experiment; they 
annotbe 
al
ulated within the 
on�nes of the bag model. In prin
iple they would be 
al
ulable fromthe full theory of QCD. Adding the one-loop e�e
ts (Casimir energy) and de�ning Z = h + �0�nally yields Ebag = p � V + � � S + FR+ k + Z=R � �1 ln(�R)=R: (6.14)12



The only one of these parameters that is 
al
ulable using Casimir energy te
hniques is �1. Inparti
ular, the parameter Z is not 
al
ulable, but rather is to be experimentally determined.The terms involving p and � are standard. The term involving F has previously been dis
ussedin the work of Milton [15℄. The o�set term k has (to the best of our knowledge) not previouslybeen dis
ussed. We note in passing that the o�set pie
e k 
ontains a purely topologi
al pie
eproportional to the Euler 
hara
teristi
 of the bag.
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7 Appli
ations to Kaluza{Klein theories.In this se
tion we seek to extra
t some information 
on
erning the one-loop 
ontributions to thee�e
tive four-dimensional 
osmologi
al and Newton 
onstants within the framework of Kaluza{Klein theory. Cal
ulations along these lines have been 
arried out, for some spe
i�
 simple
hoi
es of the internal geometry, in referen
es [27, 28, 29, 30℄. We shall pro
eed with a bareminimum of assumptions. Consider a 4+d dimensional universe with d 
ompa
ti�ed dimensions,M4+d =M4

. Assume the theory to possess multidimensional 
osmologi
al (�) and Newton(G) 
onstants. That isS4+d = � � Z pg4+d d4+dx+G�1 � Z R4+dpg4+d d4+dx+ � � � (7.1)Using the produ
t de
omposition of spa
etime one infers R4+d = R4 + Rd, so that for thetree{level four dimensional e�e
tive Cosmologi
al and Newton 
onstants one dedu
es:�e� = � � vol(
) +G�1 � Z
pgdRd;G�1e� = G�1 � vol(
): (7.2)To evaluate the one{loop 
ontributions to �e� and Ge� one uses the produ
t de
ompositionof spa
etime to dedu
e a produ
t de
omposition for the diagonal part of the heat kernelK(t) = K4(t) �Kd(t): (7.3)The asymptoti
 expansion of the four-dimensional heat kernel may now be used to obtain anexpansion for the zeta fun
tion�4+d(s) = 1X0 Cn(g4)(4�)2 � �(s� 2 + n)�(s) � �d(s� 2 + n): (7.4)This expansion is a formal one in the \size" of the 
ompa
ti�ed dimensions. To justify the aboveexpansion 
onsider a \long wavelength" approximation implemented by res
aling the externaldimensions: g4+d;� = g4;� � gd = (�2g4) � gd. In this situation the heat kernel enjoys theproperty that K4+d;�(t) = K4;�(t) �Kd(t) = K4(��2t) �Kd(t). Thus the limit �!1 allows oneto employ the asymptoti
 expansion of the heat kernel to obtain an asymptoti
 expansion forthe multi-dimensional zeta fun
tion�4+d;�(s) = NX0 Cn(g4)(4�)2 �4�2n �(s� 2 + n)�(s) �d(s� 2 + n) + o(�4�2n): (7.5)By abuse of notation we have rewritten this asymptoti
 expansion as the physi
ally more rea-sonable (7.4). Now, re
all that C0 = �4 R pg4 d4x and C1 = k � R R4pg4 d4x, (k is a 
onstantdepending on the statisti
s and spins of the elementary parti
les present in the theory). Thismay be used to extra
t the one-loop 
orre
tions to �e� and Ge��e� = � � vol(
) +G�1 � Z
pgRd � �42(4�)2 n12� 0d(�2)� 34�d(�2)o :G�1e� = G�1 � vol(
)� k � �22(4�)2 �� 0d(�1)� �d(�1)	 : (7.6)Observe that the zeta fun
tions appearing in the above are guaranteed to be analyti
 at all non-positive integers, so that these expressions are �nite as they stand. Further, the value of the zeta14



fun
tion at non-positive integers is (in prin
iple) known; for example �d(�2) = 2C2+(d=2)=(4�)d=2,and �d(�1) = �C1+(d=2)=(4�)d=2.Without evaluating equation (7.6) in full detail, we may pro�tably inquire as to the depen-den
e of �e� and Ge� on the \radius" of the internal dimensions. The major point to be made isthat the 
ase of an odd number of internal dimensions behaves in a qualitatively di�erent man-ner form an even number of internal dimensions. Introdu
ing appropriate 
onstants permits usto write �e� = ard + brd�2 + f�0 � �1 ln(�r)g r�4;G�1e� = a0rd + ��00 � �01 ln(�r)	 r�2: (7.7)The dimensionless 
onstants �1 and �01 are proportional to �d(�2) and �d(�1) respe
tively. Inany odd number of dimensions (provided the internal manifold has no boundary) these areguaranteed to vanish. Thus in an odd number of dimensions, �e� and Ge� have a simple power-law dependen
e on the radius of the 
ompa
t dimensions. This breaks down however, for anyeven number of dimensions where one observes the appearan
e of logarithmi
 dependen
es onthe radius. We expe
t these logarithms to have signi�
ant e�e
ts, but shall postpone further
omments to another paper.
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8 Con
lusionThe Casimir energy is a very useful 
on
ept, it may be viewed as the \zero point energy" ofthe va
uum, and, from a slightly di�erent viewpoint, is also intimately related to one{loopphysi
s in the form of the one{loop E�e
tive energy. In this paper we have exhibited a uni�edframework that allows us to regularize and renormalize the zero point mode sum in a way thatis extremely general. Our de�nition yields a well behaved �nite quantity in many interestingphysi
al situations: e.g. in the presen
e of a ba
kground gravitational �eld, with massive ormassless parti
les, and in the presen
e or absen
e of boundaries of the spa
e{time manifold.It is hoped that with this framework in pla
e, it will be possible to perform extensive expli
it
al
ulations.Note added in proofAfter submittal of this paper we were made aware of additional work by the Man
hestergroup [32, 33, 34℄. For additional work on the relevan
e of the Casimir e�e
t to the stabil-ity of Kaluza{Klein models see referen
es [35, 36, 37, 38℄. In addition we wish to thank EmilMottola for useful dis
ussions.

16



Appendix A The Seeley{de Witt 
oeÆ
ients.The Seeley{de Witt 
oeÆ
ients an(x) are independent of the applied boundary 
onditions, butthe 
oeÆ
ients do depend on the spin of the �eld in question.a0(x) = 1: (A.1)a1(x) = k � R: (A.2)a2(x) = A(Weyl)2 + B[(Ri

i)2 � 13R2℄ + Cr2R+ DR2: (A.3)The boundary 
oeÆ
ients bn(y) depend on the nature of the boundary 
onditions imposed.For Diri
hlet or Neumann boundary 
onditionsb0(y) = 0: (A.4)b1=2(y) = �p�2 : (A.5)b1(y) = 13tr
: (A.6)b3=2(y) = a(tr
)2 + btr(
2) + 
R (A.7)b2(y) = ~a(tr
)3 +~b(tr
2)(tr
) + ~
(tr
3) + ~d(tr
)R + ~e
ijRij + ~fr2(tr
): (A.8)Where 
 is the se
ond fundamental form of �
, the boundary of 
. The 
urvatures appearingin bn are intrinsi
 
urvatures 
omputed from the indu
ed metri
 on the boundary. If one adoptsRobin boundary 
onditions ���� +  (y)�(y) = 0, then additional terms appear in bn for n � 1.Sin
e  has the same dimensions as 
, these extra terms are of the type exhibited above with
 7!  .
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Appendix B Gamma Fun
tion Identities.We 
olle
t some useful Gamma Fun
tion identities, see for instan
e [31℄. Take n 2 f0; 1; 2; � � �g:Res[�(�n+ �)℄ = (�)nn! : (B.1)PP [�(�n+ �)℄ = (�)n �  (n+ 1)�(n+ 1) =  (n+ 1) �Res[�(�n+ �)℄: (B.2)�(12 ) = p� (B.3)�(�12) = �p4�: (B.4) (1) = �
: (B.5) (n) = �
 + n�1Xk=1 1k : (B.6) (12 ) = �
 � 2 ln 2: (B.7) (12 � n) = �
 � 2 ln 2 + 2Pnk=1 1(2k�1) : (B.8) (�12 ) = �
 � 2 ln 2 + 2: (B.9)
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