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Abstract

We study the Polyakov loop dynamics originating from finite-temperature Yang-Mills theory. The

effective actions contain center-symmetric terms involving powers of the Polyakov loop, each with its own

coupling. For a subclass with two couplings we perform a detailed analysis of the statistical mechanics

involved. To this end we employ a modified mean field approximation and Monte Carlo simulations

based on a novel cluster algorithm. We find excellent agreement of both approaches. The phase diagram

exhibits both first and second order transitions between symmetric, ferromagnetic and anti-ferromagnetic

phases with phase boundaries merging at three tricritical points. The critical exponents ν and γ at

the continuous transition between symmetric and anti-ferromagnetic phases are the same as for the 3-

state spin Potts model Keywords: Gauge theories, Potts models, Polyakov loop dynamics, mean field

approximation, Monte-Carlo simulations

1 Introduction

Symmetry constraints and strong coupling expansion for the effective action describing the Polyakov

loop dynamics of gauge theories lead to effective field theories with rich phase structures. The fields

are the fundamental characters of the gauge group with the fundamental domain as target space. The

center symmetry of pure gauge theory remains a symmetry of the effective models. If one further

freezes the Polyakov loop to the center Z of the gauge group one obtains the well known vector Potts

spin-models, sometimes called clock models. Hence we call the effective theories for the Polyakov loop

dynamics generalized Z-Potts models. We review our recent results on generalized Z3-Potts models [1].

These results were obtained with the help of an improved mean field approximation and Monte-Carlo

simulations. The mean field approximation turns out to be much better as expected. Probably this is

due to the existence of tricritical points in the effective theories. There exist four distinct phases and

transitions of first and second order. The critical exponents ν and γ at the second order transition

from the symmetric to anti-ferromagnetic phase for the generalized Potts model are the same as for the

corresponding Potts spin model.

Earlier on it had been conjectured that the effective Polyakov loop dynamics for finite temperature

SU(N) gauge theories near the phase transition point is very well modelled by 3-dimensional ZN spin

systems [2]. For SU(2) this conjecture is supported by universality arguments and numerical simulations.

The status of the conjecture for SU(3) gauge theories is unclear, since the phase transition is first order

such that universality arguments apparently are not applicable.
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2 Recall of Potts Models

The q-state Potts model [3] is a natural extension of the Ising model. On every lattice site x there is a

planar vector with unit length which may point in q different directions with angles

2π/q

b

⊗

r

θx ∈

{

2π

q
,
4π

q
, . . . , 2π

}

= Zq .

Only nearest neighbors interact and their contribution

to the energy is proportional to the scalar product of the

vectors, such that

H = −J
∑

〈xy〉

cos (θx − θy) . (1)

The Hamiltonian H is invariant under simultaneous ro-

tations of all vectors by a multiple of 2π/q. These Zq

symmetries map a configuration w = {θx|x ∈ Λ} into

w′ = {θx + 2πn/q}, n ∈ {1, . . . , q}.

In two and higher dimensions the spin model shows a phase transition at a critical coupling Kc = βJc > 0

from the symmetric to the ferromagnetic phase. In two dimensions this transition is second order for

q ≤ 4 and first order for q > 4. In three dimensions it is second order for q ≤ 2 and first order for q > 2.
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There is another phase transition at negative critical cou-

pling K′
c from the symmetric to the anti-ferromagnetic

phase. For q ≥ 3 and negative K the number of ground

states of (1) increases rapidly with the number of lat-

tice sites. It equals the number of ways one can color

the vertices with q colors such that two neighboring sites

have different colors. In the antiferromagnetic case the

degenerate ground states contribute considerably to the

entropy [4]

SB(p) = −
∑

P (w) log P (w), (2)

where one sums over all spin configurations and P is the probability of w. We use the well known

variational characterization of the free energy,

βF = inf
P

(β〈H〉P − SB) , 〈H〉P =
∑

w

P (w)H(w), (3)

where the minimum is to be taken on the space of all probability measures. The unique minimizing

probability measure is the Gibbs state

PGibbs ∼ e−βH (4)

belonging to the canonical ensemble. In the variational definition of the convex effective action one

minimizes on the convex subspace of probability measures with fixed mean field,

Γ[m] = inf
P

(

β〈H〉P − S(P )
∣

∣〈eiθx〉P = m(x)
)

. (5)

The field m(x) which minimizes the effective action is by construction the expectation value of the field

eiθx in the thermodynamic equilibrium state (4).

In the mean field approximation to the effective action one further assumes that the measure is a

product measure [5],

P (w) = P ({θx}) =
∏

x

px(θx), (6)
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where the single site probabilities are maps px : Zq → [0, 1]. The approximate effective action is denoted

by Γmf [m].

The symmetric and ferromagnetic phases are both translationally invariant. In the mean field ap-

proximation all single site probabilities are the same, px = p, and the mean field is constant, m(x) = m.

The effective potential is the effective action for constant mean field, divided by the number of sites. Its

mean field approximation is

umf(m) = inf
p

(

−Kmm∗ +
∑

θ

p(θ) log p(θ)
∣

∣

∣

∑

θ

p(θ) eiθ = m

)

, K = dJ. (7)

It agrees with the mean field approximation to the constraint effective potential, introduced by O’Raifertaigh

et.al [6, 7]. In the antiferromagnetic phase there is no translational invariance on the whole lattice Λ but

on each of two sublattices in the decomposition Λ = Λ1 ∪ Λ2. The sublattices are such that two nearest

neighbors always belong to different sublattices. Thus the single site distributions px in (6) are not equal

on the whole lattice, but only on the sublattices,

px = p1 on Λ1 and px = p2 on Λ2. (8)

The minimization of the effective action on such product states is subject to the constraints
∑

θ∈Zq

p1(θ)e
iθ = m1 and

∑

θ∈Zq

p2(θ)e
iθ = m2 (9)

and yields the following mean field effective potential

umf (m1, m2) =
1

2

(

K|m1 − m2|
2 +
∑

i

umf(mi)

)

, (10)

where umf is the effective potential (7). For K > 0 the minimum is attained for m1 = m2 and translational

invariance is restored. In the symmetric and ferromagnetic phases the single site probabilities p1 = p2 = p.

In the symmetric phase p = 1/q for every orientation and in the ferromagnetic phase p is peaked at one

orientation. Hence there exist q different ferromagnetic equilibrium states related by Zq symmetry

transformations. In the antiferromagnetic phase the probabilities p1 and p2 are different.

For the 3-state Potts model one can calculate the single site probabilities explicitly. On one sublattice

it is peaked at one orientation and on the other sublattice it is equally distributed over the remaining 2

orientations.

Λ

symmetric

Λ

ferromagnetic

Λ1 Λ2

antiferromagnetic

Hence there are 6 different antiferromagnetic equilibrium states related by Z3 symmetries and an ex-

change of the sublattices. The results for single site distributions of the 3-state Potts model are depicted

in the figure above.

3 Polyakov-Loop Dynamics

We consider pure Euclidean gauge theories with group valued link variables Ux;µ on a lattice with Nt

sites in the temporal direction. The fields are periodic in this direction, Ut+Nt,x ;µ = Ut,x ;µ. We are
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interested in the distribution and expectation values of the traced Polyakov loop variable

Lx = trPx , Px =

Nt
∏

t=1

Ut,x ;0, (11)

since 〈Lx 〉 is an order parameter for finite temperature gluodynamics (see [8] for a review). In the low-

temperature confined phase 〈Lx 〉 = 0 and in the high-temperature deconfined phase 〈Lx 〉 6= 0. The

effective action for the Polyakov loop dynamics is

e−Seff [P] =

∫

DUδ

(

Px ,

Nt
∏

t=1

Ut,x ;0

)

e−Sw[U], DU =
∏

links

dµHaar(Ux;µ), (12)

with gauge field action Sw. In this formula the group valued field Px is prescribed and the delta-

distribution enforces the constraints (11). In the simulations we used the Wilson action for the gauge

fields. Gauge invariance of the action Sw[U ] and measure DU implies Seff [P ] = Seff [L]. In addition there

is the global center symmetry, under which all Px are multiplied by the same

b

3

r 3z

⊗ 3z2

b

r

⊗

L

center element of the group. For SU(N) the center con-

sists of the N roots of unity, multiplied by the identity

matrix. Hence for SU(N) theories we have

Seff [L] = Seff [z · L], zN = 1. (13)

In the figure on the left we plotted the domain of the

traced Polyakov loop variable for SU(3). The values of

L at the three center elements are 3, 3z and 3z2 with

z = e2πi/3. They form the edges of the triangle. What

is needed is a good ansatz for the effective action Seff in

(12).

To this aim we calculated the leading terms in the strong coupling expansion for Seff in gluodynamics

[1, 9]. As expected one finds a character expansion with nearest neighbor interactions,

Seff = λ10S10 + λ20S20 + λ11S11 + λ21S21 + ρ1V1 + O(β3Nt ) , (14)

where Spq depends on the character χpq belonging to the representation (p, q) of SU(3). Expressing the

characters as function of the fundamental characters χ10 = L and χ01 = L∗ the different center-symmetric

contributions have the form

S10 =
∑

〈xy〉 (LxL∗y + h.c.
)

,

S20 =
∑

〈xy〉 (L2xL∗2y − L2xLy − L∗xL∗2y + L∗xLy + h.c.
)

,

S11 =
∑

〈xy〉 (|Lx |2|Ly |2 − |Lx |2 − |Ly |2 + 1
)

,

S21 =
∑

〈xy〉 (L2xLy − L∗xLy + L2yLx − LxL∗y + h.c.
)

,

V1 =
∑x (

|Lx |2 − 1
)

.

The target space for L is the fundamental domain inside the triangle depicted above. The functional

measure is not the product of Lebesgue measures but the product of reduced Haar measures on the

lattice sites.
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In the following we consider the two-coupling model

Seff = (λ10 − λ21)
∑

(

LxL∗y + h.c.
)

+ λ21

∑

(

L2xLy + L2yLx + h.c.
)

(15)

which contains the leading order contribution in the strong coupling expansion. For vanishing λ21 it

reduces to the Polonyi model [13].

4 Gluodynamics and Potts-Model

There is a direct relation between the effective Polyakov loop dynamics and the 3-state Potts model: If

we freeze the Polyakov loops to the center of the group,

Px −→ zx1 ∈ center
(

SU(3)
)

⇐⇒ θx ∈
{

0,
2π

3
,
4π

3

}

(16)

then the effective action (15) reduces to the Potts-Hamiltonian (1) with J = 18(λ10 + 4λ21). The same

reduction happens for all center-symmetric effective actions with nearest neighbor interactions. Only the

relation between the couplings λpq and J is modified.

For the gauge group SU(2) the finite temperature phase transition is second order and the critical

exponents agree with those of the 2-state Potts spin model which is just the ubiquitous Ising model. The

following numbers are due to Engels et.al [10]

β/ν γ/ν ν

4d SU(2) 0.525 1.944 0.630

3d Ising 0.518 1.970 0.629

and support the celebrated Svetitsky-Yaffe conjecture [2]1. For the gauge group SU(3) the finite tem-

perature phase transition is first order and we cannot compare critical exponents. But the effective

theory (15) shows a second order transition from the symmetric to a anti-ferromagnetic phase and we

can compare critical exponents at this transition with those of the same transition in the 3-state Potts

spin model.

In a first step we study the ’classical phases’ of the Polyakov loop model with action (15). The classical

analysis, where one minimizes the ’classical action’ Seff , shows a ferromagnetic, anti-ferromagnetic and

anticenter phase. The classical phase diagram is depicted below.

symmetricferromagnetic

antiferromagnetic

anticenter

λ10

λ21

−4 −3 −2 −1 0 1

1.0

0.6

0.2

−0.2

For small couplings the quantum fluctuations will disorder the system and entropy will dominate energy.

Thus we expect a symmetric phase near the origin in the (λ10, λ21)-plane and such a phase was inserted

by hand in the diagram. There exists one unexpected phase which cannot exist for Potts spin models. It

1For the relations between 3-dimensional gauge theories at the deconfining point and 2-dimensional Potts-models, the socalled

gauge-CFT correspondence, I refer to the recent paper [11].
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is an ordered phase for which the order parameter is near to the points opposite to the center elements,

hence we call it anticenter phase. They are marked in the fundamental domain on page 4. We shall see

that the classical analysis yields the qualitatively correct phase diagram.

4.1 Modified Mean Field Approximation

In a second step we calculate the effective potential for the Polyakov loop model with action (15) in

the mean field approximation. Here we are not concerned with the relevance of this model for finite

temperature gluodynamics and just consider (15) as the classical action of a field theoretical extension of

the Potts spin models. We use the variational characterization (5) for the effective action where we must

minimize with respect to probability measures on the space of field configuration {Px |x ∈ Λ} with fixed

expectation values 〈χpq〉 of all characters χpq(Px ) showing up in the Polyakov loop action. As outlined

in section 2, in the mean field approximation we assume the measures to have product form,

DP −→
∏x dµred(Px ) px (Px ) . (17)

For further details the reader is referred to our earlier paper [12]. Here µred is the reduced Haar measure

of SU(3). Since we expect an anti-ferromagnetic phase we only assume translational invariance on the

sublattices in the decomposition (8). This way one arrives at a non-trivial variational problem on two

sites.

We illustrate the procedure with the simple Polyakov loop model studied by Polonyi [13],

Seff = λS10 = λ
∑

(

LxL∗y + h.c
)

. (18)

To enforce the two constraints 〈Lx 〉 = Li for x ∈ Λi one introduces two Lagrangean multipliers. For the

minimal model (18) one arrives at the following mean field effective potential

2umf(L1, L
∗
1, L2, L

∗
2) = −dλ|L1 − L2|

2 +
∑

vmf(Li, L
∗
i ) (19)

with vmf(L, L∗) = dλ|L|2 + γ0(L, L∗) (20)

Here γ0 is the Legendre transform of

w0(j, j
∗) = log z0(j, j

∗), z0(j, j
∗) =

∫

dµred exp (jL + j∗L∗) . (21)

The last integral has an expansion in terms of modified Bessel functions [14, 15],

z0(j, j
∗) =

∑

n∈Z

einNα det





In In+1 In+2

In−1 In In−1

In−2 In−1 In



 (2|j|) , j = |j|eiα. (22)

As order parameters discriminating the symmetric, ferromagnetic and anti-ferromagnetic phases we take

[16]

L =
1

2
(L1 + L2), M =

1

2
(L1 − L2), ℓ = |L|, m = |M |. (23)

The following two figures show the value of the order parameter ℓ as function of the coupling λ10 near

the phase transition point from the symmetric to the ferromagnetic phase. The value of the critical

coupling and the jump ∆ℓ of the order parameter in the mean field approximation and simulations agree

astonishingly well.
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λ10

ℓ

−0.1350 −0.1345 −0.1340 −0.1335

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

λ10

ℓ
ρ(ℓ)

−0.1378 −0.1374 −0.1370

0.05

0.10

0.15

0.20

0.25

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

λ10,c = −0.13433(1)

∆ℓ = 1.46(2)

λ10,c = −0.13721(5)

∆ℓ = 1.33(2)

mean field

Monte Carlomulticanonical

In the second figure the order parameter ℓ for the ferromagnetic phase is plotted against its probability

distribution given by the area shaded in grey. In the vicinity of the first order transition we used a

multicanonical algorithm on a 163 lattice to calculate the critical coupling to very high precision. For

further details on algorithmic aspects I refer to our recent paper [1].

Both the classical and mean field analysis show, that the model should have a second order transition

from the symmetric to the antiferromagnetic phase. To study this transition we calculated the order

parameter m in (23) in the modified mean field approximation and with Monte Carlo simulations. The
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order parameter m is sensitive to the transition in question.

λ10

m

0.1658 0.1662 0.1666 0.1670 0.1674

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

λ10

m

ρ(m)

0.188 0.192 0.196 0.200 0.204

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

λ10,c = 1.66667(1)

λ10,c = 1.19875(5)

mean field

Monte Carlo

Again the expectation value and probability distribution of m near the transition is plotted. To get a

clear signal we have chosen a large lattice with 283 sites and evaluated 5 × 105 sweeps. The mean field

approximation and Monte-Carlo simulations both show that the transition to the anti-ferromagnetic

phase is second order

With the cumulant method we have calculated the critical exponents γ and ν and compared our

results with the same exponents for the 3-state Potts model at the second order transition from the

symmetric to the anti-ferromagnetic phase [16]. Within error bars the critical exponents are the same.
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exponent 3-state Potts minimal Seff

ν 0.664(4) 0.68(2)

γ/ν 1.973(9) 1.96(2)

This is how the conjecture relating finite temperature gluodynamics with spin models is at work: The

Polyakov loop dynamics is effectively described by generalized Potts models with the fundamental domain

as target space, for SU(3) it is the triangularly shaped region on page 3. The first order transition

of gluodynamics is modelled by the transition from the symmetric to the ferromagnetic phase in the

generalized Potts models. These generalized Potts models are in the same universality class as the

ordinary Potts spin models; they have the same critical exponents at the ’unphysical’ second order

transition from the symmetric to the anti-ferromagnetic phase.

It is astonishing how good the mean field approximation is. The reason is probably, that the upper

critical dimension of the (generalized) 3-state Potts model is 3 and not 4 as one might expect. This is

explained by the fact, that the models are embedded in systems with tricritical points, see below, and

for such systems the upper critical dimension is reduced [17].

5 Simulating the Effective Theories

We have undertaken an extensive and expensive scan to calculate histograms in the coupling constant

plane (λ10, λ21) of the model (15). Away from the transition lines we used a standard Metropolis

algorithm giving results within 5 percent accuracy. Near first order transitions we simulated with a

multicanonical algorithm on lattices with up to 203 lattice cites. Most demanding have been the simula-

tions near second order transitions. For that we developed a new cluster algorithm which improved the

auto-correlation times by two orders of magnitude on larger lattices. We found a rich phase structure

with 4 different phases with second and first order transitions and tricritical points. As for the minimal

model the Monte Carlo simulations are in good and sometimes very good agreement with the mean field

analysis.

The following two figures show the phase structure in the generalized MF approximations and the

corresponding results of our extended MC simulations.

λ10

λ21 ℓr

−0.2 −0.1 0.0 0.1 0.2 0.3

−0.5

0.0

0.5

1.0

1.5

2.0
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−0.15

−0.10

−0.05

0.00

0.05

0.10
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−0.2 −0.1 0.0 0.1 0.2 0.3
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0.00

0.05

0.10
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symmetric

antiferrom.

mean field
ferromagnetic
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symmetric

antiferrom.

Monte Carlo
ferromagnetic
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ℓr

λ10 λ10

λ21

−.2 −.1 0 0.1 0.2 0.3 −.2 −.1 0 0.1 0.2 0.3

0.1

0.0

−0.1

−0.2

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

The results of the simulations are summarized in the following phase portrait, in which we have indicated

the order of the various transitions. The calculations were done on our Linux cluster with the powerful

jenLaTT package. In 3000 CPU hours we calculated 8000 histograms in coupling constant space.
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S

AF
AC

F

λ10

λ21

1. order

2. order

−0.2 −0.1 0.0 0.1 0.2 0.3

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

1

2

3

4

Histograms for the transitions marked with arrows 1, 2, 3 and 4 are shown in the following figures. For

each transition 6 histograms are displayed. The first 6 histograms for L belong to the first order transition

from the symmetric to the ferromagnetic phase marked with arrow 1 in the phase portrait.

λ10 = −0.13958
λ21 = 0.0020833

λ10 = −0.13971
λ21 = 0.0019583

λ10 = −0.13983
λ21 = 0.0018333

λ10 = −0.13996
λ21 = 0.0017083

λ10 = −0.14008
λ21 = 0.0015833

λ10 = −0.14021
λ21 = 0.0014583

−1 0 1−1 0 1−1 0 1

−1 0 1−1 0 1−1 0 1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

The following 6 histograms for L belong to the second order transition from the symmetric to the

ferromagnetic phase, marked with arrow 2 in the phase portrait.
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λ10 = −0.18333
λ21 = 0.062500

λ10 = −0.18417
λ21 = 0.062083

λ10 = −0.18542
λ21 = 0.061458

λ10 = −0.18667
λ21 = 0.060833

λ10 = −0.18750
λ21 = 0.060417

λ10 = −0.18958
λ21 = 0.059375
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The next 6 histograms for L belong to the second order transition from the symmetric to the anti-center

phase marked with arrow 3 in the phase portrait.

λ10 = −0.18250
λ21 = 0.065833

λ10 = −0.18333
λ21 = 0.066667

λ10 = −0.18458
λ21 = 0.067917

λ10 = −0.18583
λ21 = 0.069167

λ10 = −0.18667
λ21 = 0.070000

λ10 = −0.18875
λ21 = 0.072083

−0.5 0.0 0.5−0.5 0.0 0.5−0.5 0.0 0.5

−0.5 0.0 0.5−0.5 0.0 0.5−0.5 0.0 0.5

−0.5

0.0

0.5

−0.5

0.0

0.5

−0.5

0.0

0.5

−0.5

0.0

0.5

−0.5

0.0

0.5

−0.5

0.0

0.5
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The last 6 histogram for M belong to the second order transition from the symmetric to the anti-

ferromagnetic phase marked with arrow 4 in the phase portrait.

λ10 = 0.19000
λ21 = 0

λ10 = 0.19125
λ21 = 0

λ10 = 0.19312
λ21 = 0

λ10 = 0.19500
λ21 = 0

λ10 = 0.19625
λ21 = 0

λ10 = 0.19937
λ21 = 0

−0.5 0.0 0.5−0.5 0.0 0.5−0.5 0.0 0.5

−0.5 0.0 0.5−0.5 0.0 0.5−0.5 0.0 0.5
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0.5

−0.5

0.0

0.5

−0.5

0.0

0.5

−0.5

0.0

0.5

−0.5

0.0

0.5

These histograms (and many others, see [1]) have been used to localize the phase transition lines and

to investigate the nature of the transitions. The results are summarized in the phase portrait on page

10. The critical exponents ν and γ given above have been determined at the second order transition

indicated with arrow 4 in the portrait.

6 Conclusion

The strong coupling expansion results in a character expansion for the Polyakov-loop dynamics. The

leading terms are center symmetric nearest neighbor interactions containing the characters of the smallest

representations of the gauge group. We have performed an extensive modified mean field analysis which

includes anti-ferromagnetic states without translational invariance on the whole lattice. A new and

efficient cluster algorithm has been developed and applied to study the second order transitions from

the symmetric to the anti-ferromagnetic phase. The autocorrelation times were improved by 2 orders of

magnitude. We discovered an unexpectedly rich phase structure of the simple 2-coupling Polyakov loop

model (15). This model is in the same universality class as the 3-state Potts spin model. The mean

field results are surprisingly accurate which seems to indicate that the upper critical dimension of the

generalized Potts models is 3. This is attributed to the existence of tricritical points [17].

To relate our results to gluodynamics we must calculate the couplings λpq in the Polyakov-loop

dynamics as functions of the Wilson coupling β in gluodynamics. We have done this successfully for

SU(2) gauge theory with inverse Monte Carlo techniques [12, 18] and plan to publish our results for

SU(3) very soon [19]. For the inverse Monte Carlo simulations to work one needs simple geometric

Schwinger Dyson equations for the Polyakov loop dynamics. Such equations have been derived very

recently in [15]. It would be interesting to see whether the anti-ferromagnetic phase of the Polyakov loop
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models plays any role at all for gluodynamics. In the present paper it was needed to show that certain

critical exponents of the Polyakov loop models are the same as of the q = 3 Potts spin model. Finally

one would like to include heavy fermions in the effective Polyakov-loop dynamics. To that end one needs

to add center symmetry breaking terms to the effective actions studied in the present paper. This will

lead to a proliferation of additional terms in the effective action which renders a systematic study more

difficult as compared to pure gluodynamics.
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