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In a recent work [3] we studied the phase structure of the Gross-Neveu (GN) model in 1 + 1
dimensions at finite number of fermion flavors Nf = 2, 8, 16, finite temperature and finite chemical
potential using lattice field theory. Most importantly, we found an inhomogeneous phase at low
temperature and large chemical potential, quite similar to the analytically solvable Nf →∞ limit.
In the present work we continue our lattice field theory investigation of the finite-Nf GN model
by studying the formation of baryons, their spatial distribution and their relation to the chiral
condensate. As a preparatory step we also discuss a linear coupling of lattice fermions to the chemical
potential.

I. INTRODUCTION

In recent years experiments provided many interesting
insights concerning strongly interacting matter at high
density (see e.g. Ref. [4] for a comprehensive review).
On the theoretical side our present understanding of the
QCD phase diagram at non-zero chemical potential µ is
to a large extent based on conjectures relying on physical
intuition, on model calculations and on effective low en-
ergy descriptions [5, 6], while reliable ab-initio results are
still missing, mostly due to the infamous sign problem in
lattice-QCD. Even though there are a number of inter-
esting approaches, which led to considerable progress to
mitigate or solve the sign problem, such as using complex
Langevin algorithms [7–10] or thimble methods [11–13],
finding more suitable variables [14–16] or refining the den-
sity of states approach [17–21], a better understanding
of lattice-QCD at finite baryon density is certainly an
urgent problem. Urgent, for example, since our colleagues
from gravitational wave astronomy and astrophysics are
in need of more reliable equations of state of strongly
interacting matter at baryon density nB up to several
times the nuclear density n0 ≈ 0.17 fm−3.

It has been conjectured that in QCD at low tempera-
ture and large baryon density there is an inhomogeneous
crystalline phase. This conjecture is based on mean field
calculations in various effective four Fermi theories in-
dicating the existence of such an inhomogeneous phase
[22–26]. The underlying mean-field (or Hartree-Fock like)
approximation becomes exact in the limit of an infinite

∗ julian.johannes.lenz@uni-jena.de
† bjoern.wellegehausen@uni-jena.de
‡ wipf@tpi.uni-jena.de
§ pannullo@itp.uni-frankfurt.de
¶ mwagner@itp.uni-frankfurt.de

number of fermion flavors Nf, since in this limit quantum
fluctuations are negligible.

Mean field approximations are also common in con-
densed matter physics. For example, for the GN model
considered in the present work, the mean field phase dia-
gram with homogeneous and inhomogeneous phases has
been known in the condensed matter community [27, 28]
long before it has been rediscovered in particle physics
[22, 29].

More recently, interesting models implementing the
breaking of translational invariance – for example by
charge density waves, dynamical defects or by magnetic
fields – have been proposed and studied within the holo-
graphic framework [30, 31].

At present it is largely unknown, whether crystalline
phases exist in effective four Fermi theories at finite num-
ber of fermion flavors, or whether quantum fluctuations
lead to a qualitatively different phase structure. In a re-
cent work [3] we performed lattice field theory simulations
of the GN model in 1 + 1 dimensions with Nf = 2, 8, 16
and found clear evidence for the existence of an inhom-
geneous phase, qualitatively similar to that in the limit
Nf → ∞. In the present work we continue our investi-
gation of the GN model in 1 + 1 dimensions at a finite
number of fermion flavors and focus on baryonic excita-
tions at low temperature and large chemical potential.
We investigate their spatial distribution as well as their
relation to the chiral condensate

II. CHEMICAL POTENTIAL FOR LATTICE
FERMIONS

The continuum Lagrangian density of the (Euclidean)
GN model with vanishing bare mass is given by

Lψ = ψ̄i
(
/∂ + µγ0

)
ψ +

g2

2Nf
(ψ̄ψ)2 , (1)
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where µ denotes the chemical potential for the conserved
baryon number. To be able to perform the fermion inte-
gration one follows Hubbard and Stratonovich by intro-
ducing a fluctuating auxiliary scalar field σ to linearize
the operator ψ̄ψ in the interaction term

Lσ = ψ̄iDψ +
Nf

2g2
σ2 , D =

(
/∂ + σ + µγ0

)
. (2)

The four Fermi term in Eq. (1) is recovered after elim-
inating σ by its equation of motion or equivalently by
integrating over σ in the functional integral. Translation
invariance of dσx in the (well-defined) functional integral∏

dσx for the lattice model implies the Ward identity

Nf

g2
〈σx〉 =

〈 (
ψ̄ψ
)
x

〉
. (3)

Keeping as many global symmetries of the continuum
model as possible in a discretization can be crucial to
obtain a lattice model with the correct continuum limit.
Thus we shall discretize the operator D using the chiral
and doubler-free SLAC derivative [32, 33]. While non-
local SLAC fermions must not be used to discretize a field
theory with local gauge symmetries [34–36], they have
been used successfully in various scalar-field theories and
fermionic theories with global symmetries only [37–42].
In addition to using SLAC fermions to simulate the GN
model at finite Nf, we have cross-checked our results with
a discretization based on naive fermions. This fermion
species is chiral as well but describes 2d doublers in d
dimensions. More details can be found in Ref. [3].

Besides our preceding paper [3], we are not aware of any
work, in which SLAC fermions have been used to study
fermion systems at finite density. Thus, we begin with
comparing the thermodynamics of a gas of free massive
fermions in a spatial box of size L in the continuum
and on the lattice with different fermion discretiztations.
A straightforward calculation yields the grand partition
function at inverse temperature β and chemical potential
µ in the continuum

lnZc =
∑
k

(
βEk + ln

(
1 + e−β(Ek−µ)

)
+ µ→ −µ

)
(4)

with single-particle energies E2
k = k2 +m2 depending on

the spatial wave number k = 2πn/L, n ∈ Z and mass m.
The corresponding baryon density is

nB,c =
d lnZc

dµ

=
1

L

∑
k

(
1

1 + eβ(Ek−µ)
− 1

1 + eβ(Ek+µ)

)
.

(5)

Note that the sum over all Matsubara frequencies has
already been performed, i.e. the continuum limit in (imag-
inary) time direction is already implied, while truncating
the sum over k is conceptually similar to a finite lattice
spacing in spatial direction. Since the SLAC derivative

discretizes the continuum dispersion relation up to the
maximal momentum given by the inverse lattice spac-
ing, the finite (truncated) sum is also the result for free,
massive SLAC fermions discretized in spatial direction
only.

This is not what is implemented in lattice Monte Carlo
simulations where also the (imaginary) time is discretized.
Asymptotically, the error in truncating the Matsubara
sum after Nt terms (with Matsubara frequencies symmet-
rically about the origin) is ∼ β (Ek ± µ) /π2Nt. Letting
the lattice constant in time direction β/Nt → 0 at fixed k,
we can neglect this error. However, Ek will eventually be-
come large in the sum over k and higher order corrections
will contribute, if the temporal “cutoff” Nt/β is not sent
to infinity before taking the limit L/Ns → 0. In the partic-
ular case of a uniform continuum limit Nt = Ns →∞, we
pick up the following correction terms in 1+1 dimensions:

lim
Ns=Nt→∞

lnZ = lnZc −
µ2

4π
(6)

lim
Ns=Nt→∞

nB = nB,c −
µ

2π
. (7)

As argued above, the expressions on the left correspond
to the continuum limit of free massive SLAC fermions,1

for which the chemical potential enters the Lagrangian
linearly via iµψ̄γ0ψ as it does in the continuum, see e.g.
Eq. (1). We conclude that introducing the chemical poten-
tial linearly as in the continuum theory yields the correct
partition function up to a (µ-dependent) constant and can
thus be used in Monte Carlo simulations. In fact, since
SLAC fermions couple fermion fields at well-separated
lattice sites it would be difficult to introduce an exponen-
tially coupled µ for all hopping terms in the Lagrangian.
In appendix A we show Eq. (7), i.e. that the baryon den-
sity computed from a lattice action with linearly coupled
µ has to be corrected by the constant +µ/2π. This is
actually not a defect of SLAC fermions but just expresses
the fact that conventionally one first performs the contin-
uum limit in time direction and afterwards in the spatial
directions to arrive at the well-known expression for the
thermodynamic potentials at finite temperature and den-
sity. A comparison of free massive baryon densities for
various commonly used lattice discretizations is depicted
in Fig. 1. The (properly corrected) SLAC result is almost
indistinguishable from the continuum result. In passing,
we note the following:

• A similar analysis for naive fermions reveals that
introducing a chemical potential as additive lin-
ear term requires the same correction as for SLAC
fermions (when β/Nt and L/Ns approach zero si-
multaneously) and thus could also be used.

1 When letting Nt = Ns → ∞ at fixed box size. A detailed
calculation of the correction term at finite lattice spacing, possi-
bly different in temporal and spatial direction, can be found in
appendix A.
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Figure 1: Baryon density nB as a function of µ for free
massive fermions discretized on an Nt ×Ns = 64× 10

lattice of extent Lm = 10, βm = 64. For SLAC fermions
the additive linear coupling according to Eq. (7) has

been used, for Wilson fermions and for staggered
fermions only exponential coupling and for naive

fermions we distinguish between conventional
exponential coupling (exp) and additive linear coupling
(lin). Note that staggered fermions and naive fermions

with exponential coupling lead to identical results.

• For d > 2 space-time dimensions the known cor-
rection term diverges in the continuum limit. In 4
spacetime dimensions it diverges quadratically [43].
A practical renormalization scheme on the lattice
could then be to determine the constant c via

0 =
d (nB − 2cµ)

dµ

∣∣∣∣
µ=0

(8)

(c is finite at finite lattice spacing a) and subtracting
cµ2 from the partition function. It has been demon-
strated in Ref. [44] that this method of divergence
removal works in (quenched) QCD. This is different
from earlier attempts to eliminate the divergencies
by suitably modifying the lattice action [45–47].

• The standard exponential coupling of the chemical
potential for naive fermions has significantly larger
discretization errors than the linear coupling (if
corrected properly). In particular, a linearly cou-
pled chemical potential yields quite accurately the
position of the first step, i.e. the fermion mass.

• In appendix A we explicitly calculate the correction
term for Nt ≈ Ns � 1 for non-interacting fermions.
We have observed that this correction is insensi-
tive to the interaction and hence it is sufficient to
subtract the same term in the GN model [3]. It
seems that this statement holds true in higher di-
mensions as well, where the correction terms are
UV-divergent. This has been observed in numerical
simulations [44], but a general proof of this interest-
ing observation in QCD and interacting GN models
appears to be still missing.

We emphasize once more, that the µ-dependent correction
terms are not lattice artifacts – they may also appear in
continuum theories, depending on how divergent integrals
are treated (cf. the detailed discussion below Eq. (7)).
We have crosschecked results obtained within this project
using naive fermions with a conventional exponentially
coupled chemical potential (see Ref. [3]) as this is the
established method of introducing a chemical potential
in lattice field theory. Since the exponentially coupled µ
couples to the exactly conserved charge on the lattice, no
correction terms are needed [45].

III. BARYONIC MATTER

In a recent paper [3] we studied the phase structure
of the GN model in 1 + 1 dimensions for Nf = 8 using
lattice field theory and SLAC fermions with exact chiral
symmetry. The resulting phase diagram is shown in Fig. 2
in units of

σ0 = lim
L→∞

〈|σ|〉
∣∣∣
µ=0,T=0

(9)

with

σ =
1

NtNs

∑
t,x

σ(t, x) . (10)

As expected, we identified a homogeneously broken phase
with non-zero constant chiral condensate at small chemical
potential and low temperature and a symmetric phase at
high temperature.2 Most interestingly, however, we also
found a phase, where the spatial correlator

C(x) =
〈
c(x)

〉
, c(x) =

1

NtNs

∑
t,y

σ(t, y + x)σ(t, y)

(11)

is an oscillating function (see e.g. Fig. 4b, bottom). As a
simple observable to distinguish the three phases we used

Cmin = min
x

C(x) , (12)

where

Cmin


� 0 inside the homogeneously broken phase

≈ 0 inside the symmetric phase

< 0 inside the inhomogeneous phase

(13)

(see Fig. 2).

2 Note that our numerical results did not allow to decide whether
these regions in the µ-T plane are phases in a strict thermody-
namical sense or rather regimes, which strongly resemble phases.
In any case, throughout this paper we denote these regions as
“phases”.
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Figure 2: Phase diagram of the 1 + 1-dimensional GN
model for Nf = 8 (SLAC fermions, a ≈ 0.410/σ0,

Ns = 63; figure taken from Ref. [3]). The homogeneously
broken phase, the symmetric phase and the

inhomogeneous phase are colored in red, green and blue,
respectively. For comparison also the Nf →∞ phase

boundaries are shown as gray lines.

The GN model can be solved analytically in the semi-
classical approximation or, equivalently, in the limit
Nf →∞ (see e.g. Refs. [22, 29, 48, 49]) and it is known
that extrema of the effective action

Seff =
1

2g2

∫
d2x σ2 − ln detD , (14)

which one obtains by using Lσ from Eq. (2) and integrat-
ing over the fermions in the partition function, are not
only given by σ = const. For example in Ref. [22] it was
shown that at large chemical potential and small temper-
ature a spatially oscillating function σ(x) minimizes the
free energy. For each cycle of the oscillation Nf fermions
or antifermions, which can be interpreted as baryons,
are located in the region of minimal σ2, i.e. where the
sign of σ changes. This implies breaking of translational
symmetry and a crystal of baryons (as shown in Fig. 3).

In the present work we investigate, whether traces
of such a baryonic crystal are also present in the GN
model with a finite number of fermion flavors. For all
plots shown in the following we performed computations
with Nf = 8 flavors of SLAC fermions, lattice spacing
a ≈ 0.410/σ0 and Ns = 63 lattice sites in spatial direction,
corresponding to a periodic spatial direction of extent
L = Nsa ≈ 25.8/σ0. We use the same lattice setup and
rational HMC algorithm as in our preceding paper and
refer for technical details to Ref. [3] and to Appendix C in
Ref. [50], where the same setup was used. Not addressed in
these references is the issue of possibly existing exceptional
configurations with zero modes of the Dirac operator,
which cannot be ruled out. We note, however, that we are
not considering a gauge theory, where such zero modes are
protected by topology. Indeed we did not encounter any
problems in our simulations, which indicate the presence
of exceptional configurations in our ensembles. Note that
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n B
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/
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Figure 3: Nf →∞ results from Ref. [49] for the
condensate σ(x) and the baryon density nB(x) at

(µ/σ0, T/σ0) = (0.700, 0), i.e. inside the inhomogeneous
phase (see Ref. [49], Eqs. (54) and (80)).

there is also no sign problem, even for µ 6= 0, because
the determinant of the Dirac operator D in Eq. (2) for
Nf = 8 is always real and non-negative (see Ref. [3] for
details).

From the extensive set of simulations we carried out
in Ref. [3] for different a and L, we expect that both
lattice discretization errors and finite volume corrections
are small. In particular we observed that the size and
shape of the inhomogeneous phase is stable, even when
varying the lattice spacing by a factor of ≈ 2 and the
spatial volume by a factor of ≈ 4 (see Fig. 8 in Ref. [3]).
This clearly indicates that the inhomogeneous phase is not
an artifact of either the finite lattice spacing or the finite
spatial volume. Note that in Ref. [3] we also performed
computations with Nf = 8 flavors of naive fermions, to
check and to confirm our numerical results.

A. Correlation of the baryon density and the
condensate

We start by investigating the location of the fermions
relative to the spatially oscillating condensate inside the
inhomogeneous phase. It is important to note that the
effective action (14) is invariant under spatial transla-
tions. Therefore, field configurations, which are spatially
shifted relative to each other, i.e. σ(t, x) and σ(t, x+ δx),
contribute with the same weight e−Seff to the partition
function and, thus, should be generated with the same
probability by the HMC algorithm. Consequently, simple
observables like 〈σ(x)〉 or 〈nB(x)〉, where

nB =
iψ̄γ0ψ

Nf
, (15)

are not suited to detect an inhomogeneous condensate
or baryon density in a lattice simulation, because de-
structive interference should lead to 〈σ(x)〉 = 0 and
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〈nB(x)〉 = const, even in cases, where all field config-
urations exhibit spatial oscillations with the same wave-
length. An observable, which does not suffer from de-
structive interference and is able to exhibit information
about possibly present inhomogeneous structures, is the
spatial correlation function of σ(x), as defined in Eq. (11)
(for a more detailed discussion see section 4.3 of Ref. [3]).
Similarly, the spatial correlation function of the baryon
density and the squared condensate,

CnBσ2(x) =

〈
1

NtNs

∑
t,y

nB(t, y + x)σ2(t, y)

〉
, (16)

can provide insights on the location of the fermions
relative to the extrema of the condensate inside an in-
homogeneous phase. For Nf → ∞ the maxima of σ2(x)
coincide with the minima of nB(x) and vice versa, as
one can read off from Fig. 3. Thus, for Nf → ∞ the
correlator CnBσ2(x) has minima at nλ/2 and maxima at
(n+1/2)λ/2, where λ is the wavelength of both σ2(x) and
nB(x) (see Fig. 4a, where CnBσ2(x) and C(x) are shown
for (µ/σ0, T/σ0) = (0.700, 0.038)). Our corresponding
lattice results for Nf = 8 at the same chemical potential
and temperature exhibit an almost identical behavior (see
Fig. 4b). We interpret this as clear signal that baryons
are centered at the roots of the condensate σ, where σ is
a periodically oscillating function (we have investigated
the latter in detail in our preceding work [3]). Thus
separations between neighboring baryons should all be
similar, which is reminiscent to the baryonic crystal found
at Nf →∞.

B. Baryon number and its relation to the
condensate

In this section we study the baryon number

B =

〈∫
dx nB

〉
(17)

with the baryon density nB as defined in Eq. (15) and
investigate its relation to the average number of cycles
of the oscillating condensate σ. Inside the finite periodic
lattice with extent L we have defined and computed

νmax =
L〈|kmax|〉

2π
. (18)

By kmax we denote the dominant momentum of c(x) (see
Eq. (11)), i.e. that k, which maximizes the absolute value
of the Fourier transform c̃(k).

The central result of this subsection is that B and νmax

are almost identical on each field configuration, i.e. even
when omitting the average 〈. . .〉 over all generated field
configurations in the definitions (17) and (18). In partic-
ular at small T there is almost perfect agreement. This is
illustrated in Fig. 5, where we show Monte Carlo histories
of B and of νmax at (µ/σ0, T/σ0) = (1.10, 0.038) after

thermalization. We interpret this as strong indication
that the GN model with Nf = 8 behaves very similar to
the GN model in the limit Nf →∞, where B = νmax.

In the following we elaborate on this further by present-
ing and discussing results obtained at two different values
for the temperature, T/σ0 ≈ 0.076 and T/σ0 ≈ 0.038.

1. Temperature T/σ0 ≈ 0.076

For temperature T/σ0 ≈ 0.076 we show both B and

Σ2 =
〈σ2〉
σ2

0

(19)

with σ0 and σ as defined in Eq. (9) and Eq. (10) as func-
tions of the chemical potential µ in Fig. 6. At µ/σ0 ≈ 0.51
both quantities indicate in a consistent way the phase
transition between the homogeneously broken and the in-
homogeneous phase. While B ≈ 0 for small µ, B suddenly
starts to increase at µ/σ0 ≈ 0.51. At roughly the same
µ value Σ2 rapidly drops from around 1 to 0. Note that
B is quite similar to nB |Nf,L→∞L (the green solid line in
Fig. 6), where nB |Nf,L→∞ is the analytical infinite volume
result for the Nf →∞ baryon density according to Ref.
[22]. However, the phase transition for Nf = 8 takes place
at smaller µ/σ0 ≈ 0.51 compared to µ/σ0 ≈ 2/π ≈ 0.64
for Nf →∞, where (at T = 0) a baryon corresponds to
a kink-antikink field configuration σ with energy 2σ0/π
per fermion (see e.g. Refs. [48, 52]). This can also be seen
in the phase diagram shown in Fig. 2 and implies that
the baryon mass (per fermion flavor) is somewhat smaller
compared to Nf → ∞. Note that at finite Nf a smaller
homogeneously broken phase is expected, because of fluc-
tuations in σ, which increase disorder (see the detailed
discussion in our preceding work [3]).

The careful reader might already note the remnants of
the stair-like low temperature behavior discussed later on
in section III B 2. Moreover, at large µ the Nf = 8 result
and the Nf →∞ result for the baryon number B are very
similar, where the latter approaches the corresponding
result for free fermions, as noted in Ref. [29].

In Fig. 7 we show B and νmax as functions of the chem-
ical potential µ. The two curves are quite similar, which
is a strong indication that the finite-Nf theory is qualita-
tively well-described by the semi-classical Nf →∞ picture.
Note that νmax is slightly below B for µ/σ0

>∼ 0.51. The
reason can be seen in Fig. 8, where thermalized Monte
Carlo histories of B and νmax are shown for µ/σ0 = 1.20
(analogous plots for other values of µ/σ0

>∼ 0.51 are simi-
lar). On the majority of generated field configurations B
and νmax agree rather well. However, B is an extremely
stable quantity, while νmax exhibits sizable fluctuations on
around 25% of the generated field configurations, mostly
fluctuations towards small values, significantly below the
median of νmax. Such fluctuations are more common for
larger values of µ. This is expected from the Fourier trans-
formed spatial correlation function, which we investigated
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Figure 4: The spatial correlation functions CnBσ2(x) (top) and C(x) (bottom) as defined in Eqs. (16) and (11). The
vertical gray lines indicate the roots of C(x).
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Figure 5: Monte Carlo histories of B and of νmax at
(µ/σ0, T/σ0) = (1.10, 0.038) after thermalization.

in Ref. [3] in detail, and also reflected by the correspond-
ing histogram for νmax shown in the right part of Fig. 8.
To summarize, Fig. 7 indicates that the baryon number
B is quite similar to the number of cycles of the spatial
oscillation of the condensate σ, as for Nf → ∞. This
observation supports our conclusions above that, also at
finite Nf, baryons are the relevant excitations of the GN
model and that their number is closely related to the
shape of the condensate σ.

2. Temperature T/σ0 ≈ 0.038

Autocorrelatios at T/σ0 ≈ 0.038 turned out to be rather
large in our simulations, in particular near the boundary of
the homogeneously broken phase and the inhomogeneous
phase, in the region 0.40<∼µ/σ0

<∼ 0.65. This is illustrated
in Fig. 9, where we compare Monte Carlo histories of B at
µ/σ0 = 0.65 for a cold start (each field variable σ(t, x) =

0.00 0.25 0.50 0.75 1.00 1.25
/ 0

0.0

0.2

0.4

0.6

0.8

1.0

2

0

2

4

6

8

10

B

B
2

nB|Nf, L L
free fermions

Figure 6: Baryon number B and Σ2 as functions of the
chemical potential µ at temperature T/σ0 ≈ 0.076. The
green curve represents nB |Nf,L→∞L. The dashed vertical

line indicates the phase transition at µ/σ0 ≈ 0.51.

1) and a hot start (each field variable drawn randomly
from a Gaussian distribution with mean 0). After around
1500 Monte Carlo sweeps the two Monte Carlo histories
eventually converge and the simulations seem to have
thermalized. Nevertheless the autocorrelation time is
quite large, of the order of the average number of Monte
Carlo sweeps needed to create or annihilate a baryon, i.e.
>∼ 500. This is sizable compared to the typical number
of Monte Carlo sweeps, between 2000 and 10000, we are
able to carry out for each simulation with our available
HPC resources. Thus, for µ/σ0 ≈ 0.65 the errors we show
for our results might be somewhat underestimated.

For larger µ/σ0, i.e. farther away from the phase bound-
ary, autocorrelation times become smaller. For example,
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Figure 9: Monte Carlo histories of B at
(µ/σ0, T/σ0) = (0.65, 0.038) for a cold start and a hot

start. For the sake of readability, only every 50th

measurement is shown.

in Fig. 5 we show the Monte Carlo histories of B and
of νmax at µ/σ0 = 1.10 after thermalization. For almost
all field configurations B ≈ νmax and their values are
either close to 8 or close to 9. Even though we only
show 150 Monte Carlo sweeps, there are many transtions
between B ≈ νmax = 8 and B ≈ νmax = 9, indicating
that the HMC algorithm is able to frequently increase
or decrease the number of cycles of the spatial oscilla-
tion of the condensate σ. In Fig. 10 we show B and
νmax as functions of µ in the range 0.80 ≤ µ/σ0 ≤ 1.20.
Both quantities exhibit a very clear stair-like behavior
with the steps corresponding to integers. The steps of
νmax (which are more pronounced at low temperature due
to less thermal fluctuations) are explained by the semi-
classical commensurability constraint, namely that the
wave length of the periodic condensate must divide the
box length L. In the limit Nf →∞ the baryon number
is equal to the cycles of the condensate. Thus, a second
baryon appears at chemical potential µ2 > µc ≈ (2/π)σ0,
a third baryon at µ3 > µ2, etc. Hence, with increasing µ
the mean separations of baryons decreases which leads to
more interaction. That the semi-classical picture explains
the simulations so well is a further indication that the
GN model at Nf = 8 is quite similar to the GN model for
Nf →∞, i.e. quantum fluctuations at Nf = 8 seem to be
rather weak.

We note that the stair-like behavior is a consequence of
the finite spatial extent L. To support this we minimized
the SLAC regularized GN action with a specific ansatz
for the chiral condensate,

σ(x) = A cos

(
2π

L
qx

)
, q ∈ N , (20)

in the variables A and q. This ansatz is a reasonable
approximation for the considered values of µ as the ana-
lytically known chiral condensate in the Nf, L→∞ case
rapidly reduces to a cos-shape for increasing chemical
potential. This enables us to calculate B for Nf → ∞
and finite L. The result for a ≈ 0.410/σ0 and Ns = 63
corresponding to L = Nsa ≈ 25.8/σ0 (i.e. the same lattice
spacing and extent used in our simulations) exhibits clear
steps as shown in Fig. 10. The steps disappear for L→∞
as shown by nB |Nf,L→∞L, which is also plotted in Fig. 10.

For µ/σ0
<∼ 0.65 autocorrelation times are extremely

large and we were not able to reach thermal equilibrium
in our simulations. This is shown in Fig. 11, where we
present results for B obtained from cold starts and from
hot starts. For 0.4<∼µ/σ0

<∼ 0.65 the cold and the hot
curves differ and the largest discrepancy is observed close
to the phase transition around µ/σ0 ≈ 0.51. We expect
the true result for B(µ) to be somewhere between the
two curves, i.e. the cold and the hot results represent
lower and upper bounds for B(µ). This is also supported
by our simulation results for B(µ) at T/σ0 ≈ 0.076 (see
section III B 1), which is bounded by the cold and the hot
curves obtained at T/σ0 ≈ 0.038 in this range. Fig. 11
as well as the exceedingly long autocorrelation times re-
mind us of hysteresis effects near a first order transition.
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Figure 10: B and νmax as functions of the chemical
potential µ at temperature T/σ0 ≈ 0.038. The green

curve represents the corresponding Nf →∞ lattice field
theory result for B at spatial lattice extent L ≈ 25.8/σ0

(the same extent used in our simulations), while the
purple curve is the analytically known Nf →∞

continuum result for nB |Nf,L→∞L.

From the good agreement with the semi-classical picture,
one could conjecture that in a finite volume the prob-
ability distribution e−Seff/Z has two peaks (due to the
commensurability constraint) which leads to the observed
hysteresis effects. The problem will probably go away for
very large volumes, but for high-precision simulations on
finite lattices near the transition improved algorithms are
needed, which support the creation and annihilation of
extended baryons.

We remark that consequences of the large autocorrela-
tions are also visible in the phase diagram shown in Fig. 2.
In the problematic region, i.e. for 0.40<∼µ/σ0

<∼ 0.65 and
T/σ0

<∼ 0.05, the boundary between the homogeneously
broken phase and the inhomogeneous phase suddenly
turns towards the origin, which amounts to an inhomo-
geneous phase larger than expected and qualitatively
different from the Nf →∞ boundary. Knowing that all
simulations for this phase diagram were started with hot
field configurations, this behavior can now be understood
as a thermalization problem (see Fig. 11, where the result
for B(µ) obtained with a hot start incorrectly indicates
the phase boundary at a rather small value for µ.

IV. CONCLUSIONS

In this work we investigated the distribution of the
baryon density nB in the Nf = 8 GN model enclosed in
a finite box of size L at finite chemical potential µ. The
simulations were performed with chiral SLAC fermions.
We compared with recent results on the spatial inhomo-
geneities in the 1 + 1-dimensional GN model [3], which
is interpreted as modulation of baryonic matter density
as observed in the Nf → ∞ limit of the model [22] and
which is well-known in solid state physics [27, 28]. Since

0.4 0.5 0.6 0.7 0.8
/ 0

0

1

2

3

4

5

6

B

T/ 0 0.038 (hot start)
T/ 0 0.038 (cold start)
T/ 0 0.076

Figure 11: B as a function of µ for T/σ0 ≈ 0.038
obtained from cold starts and from hot starts. For

comparison we also show the corresponding result at
T/σ0 ≈ 0.076, where thermalization and large

autocorrelations do not cause problems.

translation symmetry is inherent to Monte Carlo simu-
lations on finite lattices (the phase of a quasi-periodic
configuration is a collective parameter) we could not mea-
sure the baryon density nB(x) directly. Instead we found
a strong correlation between the dominant wave number
of the spatial inhomogeneities and the baryon number.
This is clear evidence for a region in the phase diagram
corresponding to a regime of modulated baryonic matter.
Via this detour we explicitly circumvented the question
about the breaking of translation symmetry. The delicate
question whether we found a rigid baryon crystal (as seen
in the large-Nf limit) or rather a baryonic liquid [53],
where the baryons have a preferred separation locally,
but are disordered on large scales, has been addressed in
Ref. [3] and needs further investigations with improved
algorithms.

Our results shed further light on what can happen
in quantum field theories at large fermion densities. In
particular, it shows that mean-field and large-Nf approxi-
mations may contain more (hidden) information on the
physics at finite Nf than one would expect. This is re-
assuring, since in particle physics and even more so in
solid state physics we often rely on these approximations.
Our results may also be of relevance in condensed matter
systems, e.g. for large, almost 1-dimensional polymers
[54].

However, it is still unclear if the above results are rele-
vant for QCD. On the one hand, we established that the
interpretation as baryonic matter is not spoiled by taking
quantum fluctuations into account. On the other hand,
although recent numerical lattice-studies of the GN model
in 2 + 1 dimensions and for Nf →∞ spotted inhomoge-
nous condensates, the spatial modulation is related to the
cutoff scale and disappears in the continuum limit [55, 56].
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Clearly, if this happens in the limit Nf → ∞, then we
cannot expect a breaking of translation invariance for a
finite number of flavours. Thus, extending our numeri-
cal studies and simulations to fermion systems in higher
dimensions is an important task. Interesting candidates
are for example the Nambu-Jona-Lasinio model or the
quark-meson model in 3 + 1 dimensions.
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Sternbeck from the Universitätsrechenzentrum Jena for
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Appendix A: Continuum limit for free fermions with
linearly coupled chemical potential µ

In this appendix we calculate the correction term, which
must be added to the baryon density, when using a linearly
coupled chemical potential and removing the lattice cutoff
as it is typically done in lattice field theory.

We consider non-interacting fermions linearly coupled
to µ enclosed in a (d−1)-dimensional spatial box of linear
extent L subject to periodic boundary conditions. The
allowed wave numbers of the corresponding fermion field

at finite temperature T = 1/β are

k ∈ {(k0, k)} =

{(
ωn,

2π

L
n
)}

, (n,n) ∈ Zd (A1)

with Matsubara frequencies

ωn =
2π

β

(
n+

1

2

)
. (A2)

The corresponding eigenvalues of the free Dirac operator
with chemical potential are

λ±k = m±
√

(µ+ ik0)2 − k2 , (A3)

such that

λ+
k λ
−
k = (k0 − iµ)2 + E2

k , E2
k = k2 +m2 . (A4)

Because of spin, the degeneracy of the eigenvalues is
C = 2[d/2]−1, where [x] denotes the greatest integer less
than or equal to x.

The logarithm of the grand partition function Z(µ)
divided by βV is the pressure p. The µ-derivative of p is
the baryon density,

nB =
∂p

∂µ
=

∂

∂µ

lnZ(µ)

βV
=
C
βV

∑
k

v(Ek ) , (A5)

with

v(Ek ) =
∂

∂µ

∑
ωn

lnλ+
k λ
−
k . (A6)

The sum defining v(Ek ) is convergent for any fixed k .
But when we sum over the spatial momenta, Ek (which is
the positive square root of E2

k ) becomes arbitrarily large
and we will show that removing the cutoffs in frequency
space and momentum space does not commute.

To this end, we regularize the sum over the Matsubara
frequencies (A6) by only admitting Nt frequencies. It is
convenient to choose these frequencies symmetric to the
origin (which is only possible for even Nt), i.e. we restrict
ωn according to

|ωn| ≤
2πN ′t
β

, N ′t =
Nt − 1

2
. (A7)

To calculate the truncated series over the ωn, denoted by
v(Ek , Nt), we combine terms with ±ωn and obtain

v(Ek , Nt) =
∑

|n+ 1
2 |≤N

′
t

µ− Ek

ω2
n + (µ− Ek )2

+
(
Ek → −Ek

)
.

(A8)
where (Ek → −Ek ) represents the previous term with
opposite sign of the energy. v(Ek , Nt) is finite for Nt →∞
and can be calculated,

v(Ek ) = v(Ek ,∞) =
β

eβ(Ek−µ) + 1
−
(
µ→ −µ

)
. (A9)
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Inserting (A9) into (A5) yields the baryon density

nB =
C
V

∑
k

(
1

1 + eβ(Ek−µ)
− 1

1 + eβ(Ek+µ)

)
. (A10)

An integration with respect to the chemical potential gives
the pressure of the Fermi gas. The integration constant
is the divergent contribution of the quantum fluctuations
at zero temperature and zero chemical potential,

pV

C
=
∑
k

(
Ek +

1

β
ln
(
1 + e−β(Ek−µ)

)
+ (µ→ −µ)

)
.

(A11)

To summarize: if we first perform the continuum limit in
Euclidean time direction, which means sum over all n ∈ Z
in Eq. (A6), then we get the sum

∑
Ek at µ = T = 0

plus the finite sum known from quantum statistics.
Since the sum over the Matsubara frequencies is only

conditionally convergent and the sum over the k is di-
vergent, we get a different result, when we remove the
cutoff in the Matsubara frequencies together with the
cutoff in the spatial momenta, as one does in lattice field
theory. To show that, we consider the difference between
the series (A9) and the finite sum (A8),

∆v(Ek , Nt) = v(Ek ,∞)− v(Ek , Nt)

=
β

π
FNt+1

2

(
β(µ− Ek )

2π

)
− β

π
FNt+1

2

(
β(µ+ Ek )

2π

)
,

(A12)

where we introduced the function

Fκ(z) =

∞∑
n=0

z

z2 + (n+ κ)2
=

∞∑
n,m=0

(−1)mz2m+1

(n+ κ)2m+2

(A13)

with κ = (Nt + 1)/2. For large κ the sum over n is
approximately given by

∞∑
n=0

1

(n+ κ)s+1
=

1

sκs
− 1

2κs+1
+ . . . (A14)

In the following we focus on free fermions in 1 + 1 dimen-
sions, where only the first term gives a finite contribution
to the error. The other terms are suppressed by inverse
powers of Nt. Thus, keeping the relevant term we arrive
at

Fκ(z) =

∞∑
m=0

(−1)m

2m+ 1

(
z

κ

)2m+1

. (A15)

For large spatial momenta we have µ� Ek and

(µ+Ek )2m+1 +(µ−Ek )2m+1 ∼ 2(2m+1)µE2m
k , (A16)

such that

∆v(Ek , Nt) =
2βµ

π

∞∑
m=0

(−1)m
(

β

2πκ

)2m+1

E2m
k . (A17)

To study the error for the baryon density

∆nB =
1

βL

∑
k

∆v(Ek , Nt) (A18)

(in 2 spacetime dimensions C = 1) as a function of the tem-
poral and spatial cutoffs, we cut off the spatial momenta
as

|k1| ≤
2πN ′s
L

, N ′s =
Ns − 1

2
. (A19)

For convenience we choose the spatial momenta symmetric
to the origin. Inserting Eq. (A17) into the regularized
sum (A18) we can calculate the leading term with the
help of

N ′
s∑

n=−N ′
s

E2m
k ∼ 2

2m+ 1

(
2π

L

)2m(
Ns
2

)2m+1

. (A20)

This way we end up with

∆nB =
2µ

π2

∞∑
m=0

(−1)m

2m+ 1

(
Nsβ

NtL

)2m+1

=
2µ

π2
atan

(
Nsβ

NtL

)
.

(A21)

If we regularize the system on a lattice with the same
lattice constant a in temporal and spatial direction then
the argument of atan is equal to 1 and we obtain

∆nB =
µ

2π
. (A22)

To summarize: If we use a linearly coupled chemical poten-
tial for free fermions on the lattice, then we must subtract
from the resulting baryon density nB a term linear in µ,
in order to recover the result obtained in a conventional
continuum calculation. In spacetime dimensions d > 2
the correction term actually is UV-divergent, since an
analogous estimate reveals that the suppression by inverse
powers of κ ∝ Nt does not anymore balance the sum over
the spatial momenta.

Finally, we note that higher order terms in this cor-
rection (vanishing for Nt →∞) are now straightforward
to compute. For future reference, we just show the O(a)
correction on a hypercubic lattice with lattice spacing a
(β = aNt, L = aNs):

∆nB =
µ

2π

(
1− 4a

πβ

)
+O

(
a2
)
. (A23)

In higher orders in a, also terms ∼ µ2n+1, n ∈ N, appear.
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