
Gauge Theories in a BagA. WipfInstitute for Theoretial Physis, ETH-H�onggerberg,CH-8093 Z�urih, SwitzerlandS. DuerrInstitute for Theoretial Physis, University of Z�urih, Winter-thurerstr. 190, CH-8057 Z�urih, SwitzerlandZU-TH 30/94 and ETH-TH/94-3615.11.1994AbstratWe investigate multi-avour gauge theories on�ned in d = 2n-dimensional Eulidean bags. The boundary onditions for the 'quarks'break the axial avour symmetry and depend on a parameter �. Wedetermine the �-dependene of the fermioni orrelators and determi-nants and �nd that a CP -breaking �-term is generated dynamially.As an appliation we alulate the hiral ondensate in multi-avourQED2 and the abelian projetion of QCD2. In the seond model aondensate is generated in the limit where the number of olours, N,tends to in�nity. We prove that the ondensate in QCD2 dereaseswith inreasing bag radius R at least as � R�1=NNf . Finally we de-termine the orrelators of mesoni urrents in QCD2.1 IntrodutionPossible mehanisms for the spontaneous breaking of the hiral symmetryin QCD have repeatedly been disussed in the literature [1℄, but a deriva-tion from �rst priniples remains to be found. The broken phases an beprobed by oupling the �elds to a symmetry breaking trigger soure whihis removed after the in�nite volume limit has been taken. Alternatively onemay put the system in a �nite box, imposes symmetry breaking boundaryonditions and then performs the thermodynami limit V ! 1. This is1



wellknown from spin models [2℄. For example, when oupling the Ising spinsto a onstant magneti �eld a mean magnetization remains at low tempera-ture even when the trigger has been swithed o�. Suh a magnetization anonly arise if the ground state is Z2-asymmetri or in other words if the Z2-symmetry is spontaneously broken. Instead of swithing on a magneti �eldone may impose Z2-breaking, say spin-up, boundary onditions and again amagnetization remains after the in�nite volume limit has been taken.In QCD a great deal of e�orts have been undertaken to study the quarkondensates in the limit of vanishing urrent quark masses [1℄. These on-densates would signal a spontaneous breaking of the axial avour symmetrySUA(Nf ) as it is required by the low energy phenomenology. Here one runsinto the following paradox: In the hiral limit the generating funtional forthe fermioni Green's funtions on a ompat spaetime without boundary,Z[�; ��℄ = Z D(A; ) e�SY M+R � iD= +R �� + � �= XN Z DAN e�SYM NYk=1(��;  k)( � k; �)det0iD= eR ��S0�; (1)where the gauge �elds AN support N zero modes  1; : : : ;  N of iD= , getsontributions from setors with non-zero instanton numbers [3℄q = 132�2 Z d4xF a�� �F a�� : (2)The primes in (1) indiate the suppression of zero modes. If we only allowfor smooth on�gurations on S4 or S3 � R then q is an integer [4℄ and thenumber of zero modes [5℄N = ( Nfq for Nf -avour QCDNq for supersymmetri QCD (3)is an integer multiple of Nf or N. Thus neither the topologially trivialsetor ontributes to the hiral ondensateh �  i = 1Z Æ2Æ�Æ��Zj�=��=0; (4)sine S0 in (1) is hirality onserving, nor the nontrivial setors sine there2



are too many zero modes. Hene the ondensate vanishes1. This onlusionis ertainly in onit with low energy strong interation phenomenology orWard-identities whih predit a nonvanishing ondensate for susy QCD [6℄.Possible ways out (whih work if the enter of the gauge group is bigenough) have been suggested by t'Hooft [7℄, who introdued twisted instan-tons, soalled torons, on the 4-dimensional torus, and by Zhitnitsky [8℄,who onsidered singular gauge �elds on S4. Both onstrutions produeon�gurations with frational instanton numbers and may resolve the abovementioned paradox. However, for O(N > 4) susy-YM-theories, whih giverise to a nonvanishing hiral ondensate [9℄, the enter is too small and theseonstrutions do not work. Reently Shifman and Smilga have introduedanother type of on�guration, they alled them fratons, whih may gen-erate a hiral ondensate [10℄. By allowing for avour-dependent twistedboundary onditions they ould introdue frationally harged instantonsand those generated a non-vanishing ondensate in multi-avour QED2. Itremains to be seen whether these fratons solve the puzzle posed by thehiral ondensate in O(N)-susy theories.Instead of quantizing gauge theories on a sphere or on a torus we proposeto quantize them in an even-dimensional (d=2n) Eulidean bagM [11℄ andto impose SUA(Nf )-breaking boundary onditions to trigger a hiral sym-metry breaking. In a bag the instanton number is not quantized and thesystem itself is allowed to deide whih are the dominant on�gurations. Weinvestigate how the various orrelators depend on the parameter � hara-terizing the boundary onditions and shall see that in the models we studiedthe bag boundary onditions are a substitute for small quark masses andalso reprodue the fraton results.In the hiral limit of massless 'quarks' in the fundamental representationof SU(N) the Eulidean ationS[A; ℄ = SYM [A℄ + SD[A; ℄; whereSYM = 14g2 ZM trF��F �� ; SD = NfXp=1 ZM  ypiD= p; (5)is invariant under global SUV (Nf ) � SUA(Nf ) rotations2 of the fermionssine the Dira operator1When swithing on a small quark mass one arrives at the same onlusion on a ompatspaetime without boundary, sine det(iD= +m) � mN .2Atually, for N=2 the symmetry group is SU(2Nf ) [12℄.3



D= = �D� = �(�� � iA�) (6)is the same for all Nf avours. We shall impose the following boundaryonditions, whih relate the di�erent spin omponents on the bag boundary,(B(�)� If � I) =  on �M: (7)They break the SUA(Nf )-symmetry but are vetor-avour and olour neu-tral so that the gauge invariant fermioni determinant is the same for allavours. This approah has various advantages. First, the on�gurationspae of gauge potentials in a bag is topologially trivial and hene thereare no disonneted instanton setors. Related to that is the absene offermioni zero modes whih would ompliate the quantization of gauge the-ories onsiderably [13, 14, 15℄. Seond, the �-dependene of the fermionideterminant, whih appears in the measure of funtional integration overthe gauge �eld on�gurations after the fermions have been integrated out,hOi = Z d��(A) hOiA , d��(A) = 1Z e�SYM [A℄det�(iD= ) DA (8)an be alulated expliitly, ontrary to its mass dependene. Here hOiAdenotes the expetation value of O in a �xed bakground gauge �eld A,hOiA = 1det� iD= Z D yD O eR  yiD= : (9)In writing (8) we antiipated that in a bag D= possesses no zero modes andabsorbed the gauge �xing fator with orresponding Fadeev-Popov determi-nant in DA.The results of our investigations are presented as follows: In setion 2we introdue the bag boundary onditions for the 'quarks'. Some simpleonsequenes for the spetrum of the Dira operator are then disussed insetion 3. We show that D= possesses no zero modes, disuss the (modi�ed)parity transformation and derive a boundary Hellmann-Feynman formula.In setion 4 we determine the �-depenene of the fermioni Green's fun-tions in a (spherial) bag and �nd their expliit forms when the gauge �eldis swithed o�. In the following setion we derive the �-dependene of thefermioni determinants for arbitrary 2n-dimensional bags. We shall provethat through the interation of the 'quarks' with the boundary an e�e-4



tive CP-breaking �-term is generated. In the remaining part of the paperwe investigate 2-dimensional gauge theories in the hiral limit. We startin setion 6 with applying the deformation tehnique to evaluate the exatfermioni determinant in a bag. We prove that for U(N)-theories the mea-sure of funtional integration d��(A) fatorizes into the U(1) and SU(N)measures. Then we gain further insight into the spetrum of these modelsby alulating all mesoni urrent orrelators in setion 7. For U(N) gaugetheories with Nf avours we �nd that the spetrum ontains 1 massive andN2f � 1 massless bosons, similarly as in the multi-avour Shwinger model,and that they deouple from the remaining degrees of freedom. In the lastsetion we investigate the hiral symmetry breaking in 2-dimensional gaugetheories. First we derive the exat form of the hiral ondensate for multi-avour QED2 in a spherial bag. A omparison with the perturbation bysmall 'quark'-masses [16℄ shows that the bag-boundary onditions serve astrigger similarly as small 'quark'-masses do. However, in a bag we neednot worry about instantons, torons or fratons. Then we derive an upperbound on the hiral ondensate in nonabelian gauge theories as a funtion ofthe bag-radius. As a partiular appliation we prove that for 2-dimensionalSU(N) gauge theories with arbitrary N < 1 the ondensate vanishes inthe thermodynami limit. Finally we alulate the ondensate in the abelianprojeted gauge theories and disuss the large N-limit. We shall see thatfor 1 avour and N ! 1 a ondensate is generated. In the disussion weshow that for multi-avour QED2, on�ned in a spatial bag and at �nitetemperature, the hiral ondensate agrees with that generated by fratonson the torus [10℄. In the appendix we derive the boundary-Seeley-deWittoeÆient whih is needed in the main body of the paper.2 Bag Boundary ConditionsFor Dira fermions propagating in an Eulidean bag iD= should be selfadjoint(or at least normal) for the partition funtion Z to be real. A neessaryondition for selfadjointness is that(�; iD= ) � (iD=�;  ) � ZM �yiD= � ZM (iD=�)y = i I�M �yn (10)vanishes. Here n=n�� is the projetion of the hermitean -matries onthe outward oriented normal vetor�eld n�(x) on the bag-boundary �M.5



We will impose loal linear boundary onditions (x) = B(x) (x) on �M; (11)sine nonloal spetral boundary ondition, as introdued and disussed in[17℄, respet the axial avour symmetry and probably would lead to a van-ishing ondensate in the multiavour ase. The loal boundary onditionsmust be ompatible with both gauge- and vetor-avour symmetry whihmeans that B must be a singlett under the orresponding transformations.Hene it ought to be in the enter of these transformations.The surfae integral in (10) vanishes ifBynB = �n and we may assume B2 = Id: (12)We shall hoose the following one-parametri solution3 [19℄ = B� on �M with B� = i�e��n � If � I: (13)Here � = (�i)n01 � � � d�1 is the generalization of 5 whih always existsin even dimensions. We shall hoose � = diag(1n;�1n), i.e. a hiral repre-sentations in whih the hermitean � are o�-diagonal. In the following weshall not spell out the trivial ation of B� in avour and olour spae as wedid in (13).When the 'quarks' are reeted from the bag boundary they may hangetheir hirality [18℄ whih means that the boundary onditions break theaxial-avour symmetry �! e�A ; where eiA 2 SU(Nf ):We shall see that � in (13) plays a similar role as the �-parameter in QCD.Let us now derive some properties of the Dira operator in an arbitraryexternal gauge �eld. The results will be used later on.3Expanding B in a basis of the Cli�ord algebra the general solution in even d=2n isfound to be B�;� = i�n exp�� ��ei�n� exp �� i�n�� Cf � C;with enter elements C, and depends on two real parameters � and �.
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3 On the Spetrum of the Dira Operator in a BagThe Dira equation for fermions on�ned to a bag and subjet to the bagboundary onditions,iD= m(�) = �m(�) m(�); B� m(�) =  m(�)j�M; (14)possesses a disrete spetrum f�ng. Unlike the non-zero eigenvalues on asphere or torus the eigenvalues do not ome in pairs �n;��n. The reason isthat  n and 5 n an not both obey the bag boundary onditions. Belowwe prove that iD= possesses no zero modes, display how the eigenvaluesand -modes transform under the parity operation and derive a boundaryHellmann-Feynman formula for the �-variation of the eigenvalues.3.1 Absene of fermioni zero modes.By expliit mode-analysis Balog and Hrasko have shown [19℄ that in a 2-dimensional spherial bag iD= possesses no zero modes whih obey the bagboundary onditions (13). Here we shall extend their result to arbitrarilyshaped even-dimensional bags. Indeed, if there would be a zero mode  then we would arrive at the ontradition0 = (� ; iD= ) � (iD= � ;  ) = i I  y�n = I  ye��� > 0:Here we used that as elements of the Cli�ord algebra � andD= antiommute4,the identity (10) and the boundary onditions (13) whih a possible zeromode would have to obey.3.2 Parity transformations.Here we study how the eigenvalues �m(A; �) in (14) hange under paritytransformations of the gauge �eldA0(x) �! ~A0(x) = A0(~x) , ~x = (x0;�xi)Ai(x) �! ~Ai(x) = �Ai(~x): (15)First we notie that the transformed modes4This is not true on the Hilbertspae de�ned by (13) sine � does not ommute withthe boundary onditions. But this is not needed to arrive at the ontradition.7



~ m(x) = �0 m(~x) (16)solve the Dira equation with potential ~A and eigenvalues ��m. Seond, if m obeys the boundary ondition (13) then ~ m does, but with � replaedby ��. In other words�m( ~A; �) = ��m(A;��) (17)and this property will onstrain the fermioni determinants and Green'sfuntions.3.3 A boundary Hellmann-Feynman formula.The Hellmann-Feynman theorem [20℄ relates the in�nitesimal variation ofan eigenvalue with the expetation value of the in�nitesimal variation ofthe operator in the orresponding normalized eigenstate. Here we derive asimilar formula for the variation of the eigenvalues �m when the parameter� entering the boundary onditions is varied.To ontinue we hoose the eigenfuntions  m(�) in (14) to be orthornor-mal for all values of �. The �-variation of the eigenvalues is then simplydd��m � �0m = ( 0m; iD= m) + ( m; iD= 0m) = i I�M  ymn 0m; (18)where we made use of (10). The last expression depends only on the eigen-modes restrited to the bag boundary and there the boundary onditions(13) imply  0m = � m + B 0m. Using the boundary onditions one more,together with the �rst formula in (12), we arrive ati ymn 0m = i ymn� m + i ymnB� 0m = i ymn� m � i ymn 0mand this an be solved for i ymn 0m. Inserting the resulting expression into(18) �nally yieldsdd��m = i2 I  ymn� m = ��m( m; � m); (19)where one again we made use of (10). Eq. (19) is the analog of theHellmann-Feynman formula and exhibits how �m hanges if the boundaryonditions are varied. 8



4 The Fermioni Green's FuntionsWhen alulating orrelators of 'quark' �elds in a bag one needs in an inter-mediate step the Green's funtion S� of the Dira operator in an arbitrarybakground �eld. This Green's funtion must obeyiD=S�(x; y;A) = Æ(x; y) , B�(x)S�(x; y;A) = S�(x; y;A)jx2�M; (20)and the adjoint relations with respet to y. SineD=e 12 �� = e� 12 ��D= and B�e 12 �� = e 12 ��B0its �-dependene is easily found to beS� = e 12 �� S0 e 12 �� = � e�S0++ S0+�S0�+ e��S0�� � ; (21)where the subsripts indiate the hiral projetions, for example S++ =P+SP+; P� = 12(1��). Note that the �-dependent diagonal entries S�� leadto hirality violating amplitudes and may therefore trigger a hiral symmetrybreaking. Also note that when we parity-transform the eigenvalues andeigenmodes of the Dira operator in the spetral resolution of the Green'sfuntion aording to (15-17) we onlude thatS�(x; y;A) = �0�S��(~x; ~y; ~A)�0: (22)This property will relate di�erent orrelators in the fully quantized theories.Next we derive some expliit expressions for S� in spherial bags whenthe gauge �eld is swithed o�. These free Green's funtions are needed inperturbative expansions for small ouplings and/or small bags. For the ex-pliit alulation it is useful to observe that in a spherial bag B� ommuteswith the total angular momentum,J�� = 1i (x����x���) + 14i [�; � ℄ �M�� +��� ;so that the free Green's funtions are rotationally invariant,US�(Rx;Ry; 0)U�1 = S�(x; y; 0); where U�U�1 = R(U)��� ;and only depend on the rotationally invariant quantities (; x); (; y); x2; y2,(x; y) and the bag-radius R. If we ontinue to Minkowski spaetime then9



M beomes the interior of a hyperboloid and all non-vanishing orrelatorswould be Lorentz invariant.We may ompute the free Green's funtions either by angular-momentumdeomposition or by applying the mirror harge method. We found thattheir hirality onserving o�-diagonal terms are just those on the in�nitespaetime5 but also that they ontain hirality violating diagonal terms.The �nal result in d=2n dimensions readsS�(x; y; 0) = S0(x; y) + �(n)2R�n � e�� R2 � (x; )(y; )(R2 � 2xy + x2y2R2 )n ; (23)where S0(x; y) = �(n)2i�n (x� y; )jx�yjd (24)is the free Green's funtion in d-dimendional Eulidean spaetime. Beeingthe Green's funtions of a selfadjoint operator they ful�ll the reality ondi-tion S�y(x; y) = S�(y; x). In 2 dimensions (23) has been derived earlier in[19℄.Note that the �-dependent hirality violating entries S��� are regular atall interior points and vanish if the bag size tends to in�nity. For example,at the enter of the bagS���(0; 0; 0) = � e��2�n�(n)R1�d �! 0 for R!1: (25)They beome singular only if x and y both approah the boundary and eahother sine then the mirror harge omes lose to �M,S���(jxj=R; y=(1��)x; 0) � �1�d: (26)The Green's funtions of the squared Dira operator,G�(x; y;A) = hxj 1�D= 2 jyi (27)obey the same boundary onditions as S� and in addition5This is a partiular property of the spherial geometry. For instane, on the torus theo�-diagonal terms are modi�ed. 10



iD=G�(x; y;A) = S�(x; y;A): (28)They transform under the parity operation asG�(x; y;A) = 0�G��(~x; ~y; ~A)�0: (29)After some manipulations we arrived at the following expliit formulae:G�(x; y; 0) = GD(x; y)� C�(x)F (x; y)Cy� (y); (30)where the Dirihlet Green's funtions GD are onstruted from the in�nitespaetime Green's funtionsG0(x; y) = � 12� log�jx� yj resp. G0(x; y) = �(n� 1)4�n jx� yj2�d (31)in 2 and more than 2 dimensions, respetively, by the mirror harge methodand are found to beGD(x; y) = G0(x; y)� (R2x2 )n�1G0(x0; y) for d > 2 (32)GD(x; y) = � 12� log � Rjxj jx� yjjx0 � yj� for d = 2: (33)Here x0 =R2x=x2 denotes the mirror point of x. We have introdued thefuntions C�(x) = 1 + iR�e�� (; x)x2 :andF (x; y) = i(; x)R I�MS0(x; z)G0(z; y)d
(z) = I�MG0(x; z)S0(z; y)d
(z)(; y)iR ;where the z-integration extends over the bag-boundary. That G� in (30)obeys the boundary onditions is easily veri�ed. To hek (28) one needs touse the identityI S0(x; z)S0(z; y)d!(z) = �(n)2R�n R2 � (; x)(; y)�R2 � 2(x; y) + x2y2R2 �n :11



We have alulated F (x; y) in 2 and 4 dimensions expliitly. In 2 dimensionsit reads F (x; y) = 14� log �1� xyR2 �; (34)and in 4 dimensionsF (x; y) = 18�2(x2y2 � (x; y)(; x)(; y)�3=2 artan p�R2 � (x; y)� 1� [R2 � (x; y)℄x2y2 � [R2(x; y)� x2y2℄(; x)(; y)R4 � 2R2(x; y) + x2y2 ); (35)where �=x2y2 � (x; y)2.5 The Fermioni Determinant in a BagIn this setion we shall ompute the �-dependene of the fermioni deter-minants. We shall see that the interation of the fermions with the bag-boundary indues a CP -violating � term in the e�etive ation for the gaugebosons.The Dira operator and boundary onditions are both avour neutraland hene the determinants are the same for all avours and is suÆes tostudy the 1-avour models. For the expliit alulations we employ thegauge invariant �-funtion de�nition of the determinants [21℄log det�(iD= ) � 12 log det�(�D= 2) = �12 dds��(s)js=0 (36)and alulate their �-dependene with the help of the boundary Hellmann-Feynman formula (19). Denoting the eigenvalues of �D= 2 by �m, the �-funtion is de�ned by��(s) =Xm ��sm (�) = 1�(s) 1Z0 dt ts�1tr � etD= 2 , <(s) > d2 (37)and its analyti ontinuation to <(s) � d=2. Using (19) and the fat thatiD= possesses no zero modes, so that a partial integration with respet to tis justi�ed, the �-variation of �� is found to be12



dd� ��(s) = 2s�(s) Z ts�1tr � etD= 2�: (38)Now we an insert the asymptoti small-t expansion of the heat kernel of�D= 2 [25℄ to arrive at the general result [22, 23, 24℄dd� log det�(iD= ) = � 1(4�)n ZM tr an(�)� 1(4�)n I�M tr bn(�) (39)whih holds in an arbitrary 2n-dimensional bag. Here the n'th (n = d=2)Seeley-deWitt oeÆients in the small t-expansion of the heat kernel,tr �etD= 2� � 1(4�t)n Xm tm=2 trn Z am=2(�) + I bm=2(�)o (40)showed up. Unlike the an the oeÆients bn depend on the boundary on-ditions and thus on �.For the squared Dira operator, D= 2 = D2 + ���F�� , that part of the(�-independent) an whih leads to a non-vanishing �-trae is known in anydimension [25℄ and inserting it we obtainlog det�iD=det0iD= = ��n!(4�)n ZM ��1:::�dF�1�2 : : : F�d�1�d � �Z0 d�0 I�M tr bn(�); (41)and this formulae are the main results of this setion. We see that the �variation is proportional to the parity-odd instanton number q whih is notquantized in a bag. Our result is in agreement withdet iD= (A; �) = det iD= ( ~A;��) (42)whih immediately follows from (17) and the fat that the determinant ofiD= is de�ned via the spetrum of �D= 2. This relation means that parity odd(even) fators in the determinant are multiplied by funtions that are odd(even) in � so that the last surfae integral in (41) must be parity odd. Sinethe Yang-Mills ation is parity even we immediately see that the measure offuntional integration (8) satis�esd��(A) = d���( ~A) (43)13



whih implies that expetation values of parity even (odd) operators areeven (odd) funtions of �.In partiular in 2-dimensions we havelog det�iD=det0iD= = � �2� Z trF01; (44)where we have already antiipated that H tr b1(�)=0, a fat that is provenby the heat kernel method in the appendix. In 4 dimensions we �ndlog det�iD=det0iD= = � �2(4�)2 Z ����� trF��F�� + I f4(�;A): (45)An expliit alulation of surfae oeÆients like b2 (whih leads to the lastsurfae integral) is not an easy task [22℄. Contrary to b1 we did not omputeit expliitly. However, there seems to exist no loal polynomial whih isparity odd, gauge invariant and has dimension �3 and thus may ontributeto b2. Thus we believe that this surfae term is absent as it is in 2 dimensions.Sine the Dira operator in a bag is hermitean its determinant is real andpositive. Thus, to make ontat with the �-worlds in QCD [26℄ we wouldhave to ontinue � in (45) to i�. However, when doing this replaementnaively in (44,45) then then one runs into the following apparant paradox:the boundary onditions and thus the eigenvalues and Green's funtion ofiD= are unhanged if we replae � by � + 2�in; n 2 Z. On the other hand,the determinant seems not to be periodi sine the instanton number is notquantized. The solution of this apparant paradox is simply that � in (44,45)should read log(e�) as is shown in the appendix.6 E�etive Ation in 2-dimensional BagsIt has been realized by Polyakov and Wiegmann [28℄ and Alvarez [29℄ thatthe fermioni determinant on the 2-dimensional plane may be omputed ex-atly using the hiral anomaly. Here we shall extend their result to fermionson�ned in a 2-dimensional bag.We shall employ the deformation tehnique developped in [13, 22, 24℄to �nd the various ontributions to the fermioni determinant. For that wereall that an arbitrary gauge potential in a two-dimensional bag (withoutholes) an always be written as [24, 27℄14



Az � A0 � iA1 = ig�1(�0 � i�1)g � ig�1�zg (46)with g from the omplexi�ed gauge group G, e.g. g 2 GL(n;C) for U(n)-gauge theories6. Now it is easy to see thatD= = Gy�=G; where G = � g�1y 00 g � , �= = � 0 �z��z 0 � (47)and we made the matrix-forms in spinor spae expliit. Note that if wereplae g by gU , where U lies in the gauge group G, thenG �! GU and D= �! U�1D=U (48)and hene the orresponding gauge potential is just the gauge-transformedone. The �eld strength isF01 = �12gy ��(J�1�J)g�1y = �12g�1�(��JJ�1)g; (49)where the gauge invariant �eldJ = ggy (50)with values in the oset spae G=G appeared. J will play an important rolesine all gauge invariant Green's funtions depend on the gauge �eld onlyvia this gauge invariant �eld. The Yang-Mills ation readsSYM = 18g2 Z tr ��(J�1�J)��(J�1�J): (51)Let us now introdue a � -dependent family g(x; �) whih interpolatesbetween the identity and the �eld g(x) asg(x; 0) = I , g(x; 1) = g and dd� g(�) � _g(�) = �g(�)a(�): (52)With (47) it follows at one that6On ompat spaetimes without boundaries (46) needs some modi�ations, see [24℄.
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_�m = �m( m; (A+Ay) m) + i I  ymnA m; A = � ay 00 �a� : (53)To get rid of the annoying surfae term we observe that the gauge potentialin (46) is una�eted by the replaementg �! ��1(�z)g (54)and we an use this freedom to get rid of this term. Indeed, we an al-ways �nd a unique � suh that �(�z)�(z)y= ggy on the bag-boundary. Theequivalent g obeys thenggyj�M � J j�M = I () G�1B�G = B� on �M: (55)Imposing the �rst ondition for all � implies that on the bag boundarya + ay=0 or that A is the identity in spinor spae. Then the surfae termin (53) vanishes on aount of the bag boundary onditions. The seondondition is just the statement that the G-transformation (47) is ompatiblewith the bag boundary onditions so that the Green's funtion is related tothe free one7, (23), asS�(x; y;A) = G�1(x)S�(x; y; 0)G�1y(y): (56)In the following we assume (55) to hold for all � so that the whole deforma-tion (52) is ompatible with the boundary onditions.Now we an apply the wellknown deformation tehniques for the �-funtion de�ned determinant [22, 24℄ and obtaindd� log det iD= = 14� ZM tr a1(A+Ay) + 14� I�M tr b1(A+Ay): (57)Here A and the Seeley-deWitt oeÆients a1; b1 of the � -deformed Diraoperator are to be inserted. The volume oeÆient a1 is wellknown [25℄,Z a1(�) = Z F01�� (58)7we use the same symbol S�(x; y; 0) independently on whether the free Green's funtion(23) is tensored with the identities in avour- and/or olour spae or not. The loalmeanings should be lear from the ontext.16



ontrary to the surfae oeÆient b1. We have alulated b1 via the heat-kernel in the appendix and up to purely geometri terms, whih anel inexpetation values, the result isI b1(�) = 12 I n1� log e�sinh(�) � e� �1�1 e�� �o�n�: (59)Note that for a onstant funtion � the surfae Seeley-deWitt oeÆientb1(�) vanishes, and we have used this fat earlier in deriving (44). Note,however, that although A+ Ay=0 on �M the last surfae integral in (57)does not vanish, sine tr b1(�) ontains the normal derivatives of � at theboundary.Inserting (59) into (57) we end up with the exat formulalog det�iD=det�i�= = 12� 1Z0 d�n ZM trF01(a+ ay)� �2 I�M tr �n(a+ ay)o: (60)To ontinue we express a and F01 in terms of g and its derivatives and �ndlog det�iD=det�i�= = � 14� 1Z0 d�n ZM tr �J�1�J ��(J�1 _J)�� � I�M tr �n(J�1 _J)o:The � -integral of the volume term an be alulated in the same way as onthe in�nite plane8 and leads to the Wess-Zumino ation [24, 30℄. That ofthe surfae term is easily found sine �� tr ��(J�1�J) = 4(J�1 _J). Hene wearrive at the following expliit answer for the fermioni determinant in abag:log det�iD=det�i�= = � 18� ZM tr�J�1�JJ�1 ��J�+ i12� ZZ tr (J�1d3J)3+ �4� ZM tr ��(J�1�J): (61)In the Wess-Zumino term in the middle on the right hand side J =J(x; �)and thus Z =M� [0; 1℄ is the �nite ylinder over the bag. We reall thatthe deformation is subjet to the boundary-, initial- and �nal onditions8the various partial integrations needed to arrive at the result are allowed if one takesinto aount that J is the identity on the bag-boundary17



J(x 2 �M; �) = I , J(x; 0) = I and J(x; 1) = J(x): (62)As for the last surfae term in (61) we see immediately that for semisimplegauge groups it vanishes, sine J�1�J lies in the omplexi�ed gauge algebra.Also note that this term is equal to ��=2� R trF01 so that our result is indeedompatible with (44). Also, for J=J1J2 it beomes the sum of suh terms forthe individual �elds Ji. This means that the wellknown Polyakov-Wiegmanidentity [28℄, whih relates the determinant belonging to J=J1J2 with thoseof J1 and J2,log det�iD= (J1J2)det�i�= = log det�iD= (J1)det�i�= + log det�iD= (J2)det�i�=� 14� ZM tr �J�11 �J1 ��J2J�12 �: (63)still holds in a bag.Let us now suppose that G = U(1) � SU(N). The results for this par-tiular ase will be important when we alulate mesoni urrent orrelatorsand hiral ondensates. We represent the gauge potential A= ~A + Â as in(46) and fatorize the U(1) �eld, that is we set g=~gĝ. We parametrize theU(1)-part as ~g = e�e'�ie�, where e is the eletri harge, and thenA� = ~A� + Â� = �e�����'+ e���+ Â� and F01 = e4'+ F̂01: (64)Repeating the above analysis for the deformationJ(x; �) = e�2e'(x)� Ĵ(x; �) with 'j�M = 0 and Ĵ(�)j�M = I;or equivalently applying the Polyakov-Wiegman identity to J = e�2e'Ĵ ,shows that the determinant (61) fatorizes,det�iD= = e�N2� [e2 R �'��'+�e H �n'℄ det iD̂= ; (65)where the last determinant is �-independent. The same happens then forthe funtional measure for the Eulidean gauge �eldsd��(A) = d��( ~A) d�(Â) = e���['℄~Z� D ~A e��[Â℄Ẑ DÂ: (66)Here we introdued the �-dependent e�etive ation for the U(1)-gauge po-18



tential ~A and the �-independent one for the Ĝ-gauge potential Â. For theNf -avour model with avour-independent U(1)-harge e and Ĝ-ouplingonstant g they read��['℄ = N2 (Z (4')2 �m2� Z '4'+ e�Nf� I �n')�[Â℄ = SYM [Â℄ + Nf8� ZM tr (Ĵ�1�Ĵ Ĵ�1 ��Ĵ)� iNf12� ZZ tr (Ĵ�1d3Ĵ)3: (67)Note that due to the wellknown Shwinger mehanism the massm2� = Nf e2� ; (68)whih is the analog of the �0-mass in QCD, has been indued in the abeliansubsetor of the theory.7 Correlation Funtions of Mesoni CurrentsFermioni orrelation funtions are gotten from the generating funtional(1), whih in a bag simpli�es toZ[�; ��℄ = Z d��(A) eR �y(x)S�(x;y;A)�(y); (69)by funtional di�erentiation with respet to the grassmann valued soures.Here d�� is the measure of funtional integration (8) and we reall thatthe fermioni Green's funtion S� is the identity in avour spae. Let C =S 
 F 
 I be a numerial matrix whih ats trivial in olour spae. Thenwe obtain for the gauge invariant onneted two- and four-point funtionsin a �xed bakground �eldh y(x)C (x)iA = �trF trS S�(x; x;A)h y(x)C1 (x) y(y)C2 (y)iA;= �trF1F2 tr [S1S�(x; y;A)S2S�(y; x;A)℄; (70)where it is understood that the �rst traes are in avour spae and theseond ones in spinor- and olour spae.19



Vetor urrents The 2-point funtions of the mesoni vetor- and pseu-dovetor urrentsj�F =  y�F  and j5�F =  y ��F  = i���j�F (71)will already shed some light on the partile spetrum of 2-dimensional gaugetheories. We obtain the following formal expressions for the onneted 1 and2-point funtionshj�F (x)iA = �trF tr �S�(x; x;A)hj�F1(x)j�F2(y)iA; = �trF1F2 tr �S�(x; y;A)�S�(y; x;A): (72)In 2 spaetime dimensions the Green funtion S� is given by (56) and (23).When inserting the expliit form (56,23) of S� one noties that the gauge�eld and �-parameter both drop in these expetation values. In priniple onewould have to regularize the urrents, e.g. by a gauge invariant point split-ting presription and this may reintrodue a gauge �eld and �-dependene.However, by notiing that the mesoni urrents ouple to the abelian gaugepotential ~A� in (64) we an alulate the regularized onneted orrelatorsin a �xed bakground ashj�F (x)iA = trFe Æ log det iD=Æ ~A�(x) = NtrF� ����e��'+ �2Æ(r�R)n��;hj�F (x)j�F (y)iA; = trF2e2 Æ2 log det iD=Æ ~A�(x)Æ ~A�(y) = �NtrF2� P��(x; y): (73)All higher onneted orrelators vanish. In deriving (73) we have fatorizedthe avour dependene by diagonalizing F so that the determinants arethose of the one-avour model. The last equalities follow from the expliitdependene of det iD= in (65) on the �eld ' and the deomposition of ~A� in(64). P�� projets onto the transversal degrees of freedom and is onsistentwith the boundary onditions,P��(x; y) = �tr �S�(x; y; 0)�S�(y; x; 0) = �������x��y�GD(x; y): (74)Here GD(x; y) is the Dirihlet Green's funtion of �4, see (33). Sine '=0on �M the urrent normal to �M vanishes and no U(1)-harge is leakingthrough the boundary as required by the boundary onditions on the 'quark'�elds. Furthermore, our result is ompatible with vetor avour symmetry20



and the axial vetor anomaly,��hj�F iA = 0 and ��hj5�F iA = trFi� tr neF01 + �2Æ0(r �R)o: (75)Note that the nonabelian part Â of the gauge potential has ompletely disap-peared in the above formulae. Sine we know all orrelators in an arbitrarygauge �eld and sine those only depend on the abelian part of the gaugepotential the averaging over the gauge �elds redues to that in the multi-avour Shwinger model. Here we may use the results in [31℄, up to somemodi�ation due to the presene of the bag boundary. Let us hoose a trae-orthonormal basis Ta; a = 2; 3; : : : ; N2f of SU(Nf ), together with the identityin avour spae whih we denote by T1. The orrelators of the assoiatedurrents j�a = � �Ta are reprodued by the generating funtionalhexp� Z j�a ba��i = exp(� N2 hm2� Z b1�(x)P��m� (x; y)b1�(y)+m2�Nf N2fX2 ba�(x)P��(x; y)ba�(y) + e�Nf� Z Ie(r;R)�����b1�i); (76)where we introdued the funtionIe(r;R) = I0(m�r)I0(m�R) : (77)The projetor P��m onto the transverse massive vetor-partiles is derivedfrom the massive Green funtion GDm in (83) in the same way as P�� wasderived from GD in (74). Atually, the generating funtional for the urrentsin the Cartan subalgebra an be alulated diretly sine the assoiatedfermioni determinant is alulable. The identities needed to prove that thegenerating funtional (76) yields the orret urrent orrelators are derivedin the next setion, see for example (84).Now it is easy to bosonize the mesoni urrents, sine the bosonization isidential to that of the multi-avour Shwinger model [31℄, up to boundaryterms. One �nds that the generating funtional for all urrents an berewritten as hexp � Z j�a ba��i = hexp �i Z ����� 'aba��iB ; (78)21



where the Gaussian measure for the N2f -bonsoni �elds 'a has the ationB['℄ = 12Nm2� h Z '1(�4+m2�)'1 �Nf N2fX2 Z 'a4'ai+ i�e I �n'1:We reovered the wellknown bosonization rule j�a ! i�����'a, where the�eld '1 belonging to the U(1)-urrent � � has massm� and the remainingN2f � 1 pseudo-salar �elds are massless. What we have shown is that 2-dimensional multi-avour U(N) gauge theories ontain one massive andN2f �1 massless pseudosalar 'mesons'. For G=SU(N) the massive 'meson'is absent.8 Chiral Symmetry Breaking in 2d-Gauge Theo-riesWe begin with alulating the hiral ondensate of the Nf -avour Shwingermodel [32, 31℄ enlosed in a spherial bag. As an appliation we derive anupper bound for the ondensate in SU(N) gauge theories and prove thatfor N <1 it vanishes in the thermodynami limit. On the other hand, forthe abelian projeted non-abelian theories we alulate the R-dependeneof the ondensate expliitly and show that in the limit N ! 1 a 'quark'ondensate is generated whih remains when R!1.The u =  1-'quark' ondensate is the partiular 2-point-funtion (70)with S = P+ and Fab = Æa1Æb1. Inserting the expliit form of the Greenfuntion S� we arrive ath�uP+ui(x) = � e�2�R 11� r2=R2 Z d��(A) trJ(x) (79)and it remains to alulate the average of the olour trae of the gaugeinvariant �eld J . For 2-dimensional SU(N)-gauge theories the measure d�does not depend on � and the ondensate is proportional to e�. On the otherhand, we shall see that for U(N)-theories the 'quark' ondensates beome�-independent, up to exponentially small (in R) �nite size orretions.8.1 Multi-avour QED2When one quantizes multi-avour QED2 with massless fermions on S2 [15℄or the torus [13, 33℄ or some other Riemann surfae one �nds h�uP+ui =22



0. The same result is found in the geometri Shwinger model [14℄ whihis equivalent to QED2 with 2-avours. The ondensate vanishes for thesame reason as it does in QCD if one only allows for gauge �elds withinteger instanton number. Only for nonzero 'quark'-masses or if one allowsfor avour dependent twisted boundary onditions does one �nd a nonzeroondensate in �nite volumes. Here we shall show that the UA(Nf )-breakingbag-boundary onditions also trigger a hiral ondensate. No fermioni zeromodes are needed to generate it and atually there are none of them. Theondensate dereases with inreasing bag-radius unlessNf =1 or the numberof olours is in�nite.As earlier we hoose the parametrization g=e�e'�ie� (we skip the tildein this subsetion) for the abelian �eld so that the funtional integral rep-resentation for the u-'quark' ondensate readsh�uP+ui = � e�2�R 11� r2=R2 R DA� e�2e'(x)��� ['℄R DA� e��� ['℄ ; (80)where ��['℄ is the e�etive ation (67) for one olour. The Jaobian of thetransformation (64) from the potential A� (there it was denoted by ~A�) tothe new �elds �; ' is �eld independent and we an replae DA� by D' inexpetation values of gauge invariant operators. Also reall that we integrateover those �elds ' whih vanish on the bag-boundary.The integral (80) is Gaussian with sourej(y) = �2eÆ(x � y) + e�Nf2� 1ry �ry�ryÆ(ry �R)�and thus is found to beh�uP+ui = �e�2�R 11� r2=R2 expn 2�NfK(x; x) + �Z d2y4yK(x; y)o: (81)Here we introduedK(x; y) = hxj 1�4jyi � hxj 1�4+m2� jyi � GD(x; y)�GDm� (x; y); (82)i.e. the di�erene between the massless and massive Green's funtions withrespet to Dirihlet boundary onditions. In a spherial bag with radius RGD has been given in (33) and 23



GDm(x; y) = 12�nK0(mjx� yj)� 1X0 �nKn(mR)In(mR) In(mrx)In(mry) osn('x � 'y)o; (83)where �0=1, �n>0 = 2 and In;Kn are the modi�ed Bessel funtions. Usingthe expliit form of the Green's funtions one alulatesZM d2y4yGD(x; y) = �1 and ZM d2y4yGDm(x; y) = � I0(mr)I0(mR) ; (84)so thath�uP+ui = � 12�R 11� r2=R2 expn�Ie(r;R) + 2�NfK(x; x)o:The funtion Ie in the exponent has been de�ned in (77). Inserting theexpansion of K0 for small arguments we obtain2�K(x; x) =  + log �m�R2 [1� r2R2 ℄�+ Fe(r;R);where =0:577 : : : is Euler's onstant and we have introdued the funtionFe(r;R) =X �nKn(m�R)In(m�R) I2n(m�r); (85)Inserting all that we get the following exat formula for the hiral ondensatein multi-avour QED2 on�ned in a bag with radius R:h�uP+ui(x) = �m�e4� �m�Re2 [1� r2R2 ℄��1+1=Nf e�Ie+Fe=Nf : (86)The funtion Fe has the asymptoti expansionsFe(r;R) � ( e�m�R for 1� m�R� m�r� log 12m�Re [1� r2R2 ℄ for m�R� 1: (87)Thus for large and small bags or equivalently for strong and weak ouplingonstant e the ondensate simpli�es to24



h�uP+ui � 8<: �m�e4� �12m�Re��1+1=Nf for 1� m�R� m�r� e�2�R (1� r2=R2)�1 for m�R� 1: (88)As expeted, for weak ouplings and/or small bags the ondensate tends tothe hirality violating entry �S�++(x; x; 0) of the free Green's funtion (23).For one avour and large bags we reover the wellknown value for theondensate in the Shwinger model [34℄h�uP+ui = �m�4� e : (89)We stress that this result has been obtained without doing any instantonphysis. The alulations in a bag are atually muh simpler as omparedwith those on a torus [13, 14, 33℄ or sphere [15℄, where a areful treatmentof the di�erent instanton setors is required to �nd the result (89).For several avours the ondensate inside the bag, e.g. at the enter ofa large bag, h�uP+ui(0) = � 12�R�m�Re2 �1=Nf (90)dereases with inreasing bag radius and vanishes in the thermodynamilimit.The luster property holds sine the 4-point funtionh�u(x)P+u(x)�u(y)P�u(y)i= hS�++(x; x;A)S���(y; y;A) � S��+(x; y;A)S�+�(y; x;A)i�! �(m�4� )2�m�2 jx� yj��2+2=Nf e2=Nf for R!1 (91)tends to the produt of the left- and righthanded ondensates for large sep-arations jx� yj.Let us �nally prove that in the thermodynami limit all fermioni orre-lators in multi-avour QED2 beome �-independent. This follows from theexpliit form of the fermioni Green's funtion (for �=0)S�(x; y;A) = e��[e'(x)� 12 �℄S0(x; y; 0)e�� [e'(y)� 12 �℄;whih implies that all orrelators are proportional toe��P�i he2eP�i'(xi)i;25



and from the formulahe2eP�i'(xi)i = e�P�i[1�I�(ri;R)℄ e2�=NfP�iK(xi;xj)�j :Thus, up to exponentially small �nite size orretions � exp(�I�) the �-dependene anels in all fermioni orrelators.Let us ompare our result with that of Smilga [16℄ who alulated theondensate in multiavour QED2 for small 'quark' masses. Using bosoniza-tion tehniques he found that the mass � of the lightest partile and the'quark' ondensate depend on the eletri harge e and small urrent quarkmasses m as� � (m�mNf ) 1Nf+1 and h �  i � (m2��Nf�1) 1Nf+1so that h �  i � ��m�� �1=Nf : (92)Comparing with (90) we see that the bag- and small quark mass alulationsyield the same result if we identify the mass of the lightest partile in thespetrum with the inverse radius of the bag. In other words, small quarkmasses and bag boundary onditions both trigger the same ondensate if �is identi�ed with 1=R.In passing we note that the left- and right-handed ondensates are relatedas h�uP�ui� = �h�uP+ui��: (93)This follows from the transformations (43) and (22) under the parity oper-ation. Sine the funtion Ie in (86) vanishes exponentially with inreasingbag radius R (assuming that r�R) we onlude thath�uui = h�uP+ui+ h�uP�ui = O� sinh(�e�m�R)� (94)for large bags or in the strong oupling limit.To summarize, up to a phase the thermodynami limits of the left- andright-handed ondensates in a bag are idential to the instanton induedondensates in the 1-avour model on the torus or sphere and to the on-densates in the multi-avour models obtained via perturbative expansion inthe small quark masses. The same is true for the ondensate h�uui only forpartiular values of the parameter � in the �-world.26



8.2 Multi-avour nonabelian gauge theories.Due to the fatorization of the measure for the gauge bosons, (66), the hiralondensate (79) in U(N) gauge theories fatorizes ash�uP+uiU(N) = � e�2�R 11� r2=R2 Z d��( ~A)e�2e' Z d�(Â) tr Ĵ= �2�Re� (1� r2R2 ) h�uP+uiU(1) h�uP+uiSU(N); (95)and thus is proportional to the Shwinger model result times the SU(N)ondensate. When alulating the U(1)-ondensate one should rememberthat ��['℄ in (66,67) is N times that of the multi-avour Shwinger model,so that (86) is modi�ed toh�uP+uiU(1) = � e�Ie2�R 11� r2=R2�m�Re+Fe2 [1� r2R2 ℄�1=NNf ; (96)where the funtions Ie and Fe have been de�ned in (77) and (85), respe-tively. Inserting all that into (95) we �nd the following exat relation be-tween the U(N) and SU(N) ondensates:h�uP+uiU(N) = e�(Ie�1) �m�Re+Fe2 [1� r2R2 ℄�1=NNf h�uP+uiSU(N): (97)Using the asymptoti expansion of Fe for small arguments, (87), we see thatfor e! 0 the U(N) result redues to the SU(N) one, as expeted.For the ondensates at the enter of large bags (97) simpli�es toh�uP+uiU(N) = e��[m�Re2 ℄1=NNf h�uP+uiSU(N): (98)Assuming that the U(N) ondensate has a smooth thermodynami limit weonlude at one that for a �nite number of olours the quark ondensate inSU(N) gauge theories tends to zero as the bag inreases at least ash�uP+uiSU(N) � onst �R�1=NNf : (99)Only when we take the limit in whih the number of olours tends to in�nitybefore we perform the thermodynami limit R!1 an a quark ondensatesurvive. 27



It would be interesting to see how (99) is modi�ed for two-dimensionalQCD with adjoint Majorana fermions. Arguments based on the bosonizedrepresentation of the theory imply that a nonvanishing ondensate is gen-erated, even for N � 3 in whih ase the instantons fail to generate aondensate [10, 35℄.8.3 Baby-QCD2For doing expliit alulations it is useful to parametrize the g-�eld in (46).We take a parametrization for whih the fermioni determinant beomesloal and simple. The prie we pay for the loality is that the Yang-Millsation is not quadrati as it would be in a gauge like Ar=0. For simpliitywe assume that G = SU(2), that is we onsider the baby-version of QCD2[36℄. For baby-QCD the �eld g lies in SL(2; C) and in a bag without holesany suh g an globally be deomposed as [37℄g = hU; where h = � e 12' ve 12'0 e� 12' � and U 2 SU(2): (100)Here U ontains the pure gauge part of the potential and anels in expe-tation values of gauge invariant operators9. The ondition (55) means that' and v both vanish on the bag boundary.Now we an apply the Polyakov-Wiegman identity (63) with J = hhyand this yields log det iD=i�= = � 14� Z �(r';r') + ����: (101)The 3-dimensional integral in (61) onverted into an ordinary 2-dimensionalspaetime integral beause we have hosen a triangular h in the deompo-sition (100). The property that the Wess-Zumino term beomes loal for atriangular h has been exploited in a di�erent ontext in [38℄.At this point we wish to omment on the �-independene of the fermionideterminant. For v=0 this fat is easily understood as follows:In this ase A� = 12�����'�3 and iD= is just the tensor produt of two U(1)Dira operators, one with ' ! 12' and the other with ' ! �12'. Thismeans that the log det is just the sum of the two abelian results with theorresponding replaements and in this sum the �-dependent terms anel.9The gauge �eld measure is disussed below28



In setion 6 we have shown that this anellation between the various olourdegrees of freedom takes atually plae for arbitrary gauge potentials andsemi-simple gauge groups.With the parametrization (100) there is atually a muh quiker way toarrive at (101). When we replae '; v in (100) and inF01 = �12 � 4'+ ��� ���� ���'� ��� ���' �4'� ���� ; where � = �v + v�'by the deformed �elds �'; �v, then F01 anda+ ay = �� ' v(1 + �')�v(1 + �') �' �in (60) both beome polynomial in � and the � -integral an easily be per-formed.Similar as the fermioni determinant the Yang-Mills ationSYM = 12g2 ZM trF 201 = 14g2 Z n(� ��'+ ���)2 + j���� ���'j2o (102)depends on v only via the �-�eld and this suggests that we should hangevariables Aa� ! ('; �; ��;U). To �nd the Jaobian of this transformation wenote that, up to a gauge transformation,Az = i� 12�' �0 �12�'�+ i�UU�1and parametrize the gauge transformations asU = U(�)) ��UU�1 = Nab�a���b; where Nab = 2tr ��U��bU�1�a�and the �a are half of the Pauli-Matries. Then the transformation to thenew variables is given by�Aa0Aa1 � = 0BBBBBBB� 0 0 �10 �1 0 N�0�1 0 00 �1 00 0 1 N�1��0 0 0
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and we onlude that the Jaobian of this transformation depends only onU , DA = J(U)D'D�D��DU , J(U)DU � det4d�(U): (103)When alulating expetation values of gauge invariant operators the fatordet4 und the integrations over the Haar measure d�(U) in the numeratorand denominator anel.In partiular for the hiral ondensate (79) in Nf -avour baby-QCD we�ndh�uP+ui(x) = �S�++(x; x; 0)R D('; �; ��) tr J e�SYMdetNf (iD= )R D('; �; ��) e�SYMdetNf (iD= ) (104)or after inserting the expliit expressions we are left with the non-Gaussianfuntional integralh�uP+ui = � e�2�R 11� r2=R2 R D(:)ne'(1 + v�v) + e�'o e��R D(:) e��; (105)with e�etive ation� = SYM + Nf4� Z n(r';r') + ���o: (106)Thus we have redued the task of alulating the 'quark' ondensate toomputing the funtional integral (105) over the gauge invariant variables 'and �. For an evaluation of the integral it maybe relevant to deide on theboundary onditions for the gauge �elds. For the abelian models it makesno di�erene whether we take free boundary onditions or impose the gaugeinvariant bag boundary onditions [11℄n�F�� j�M = 0;but for the non-abelian theories this hoie may a�et the �nal results fororrelators.The formula (106) immediately leads to a gauge invariant perturbationexpansion for the ondensate and similarly for other expetation values.Note that if we perturb about the quadrati part of the e�etive ation thenwe obtain an in�nite resummation of the ordinary perturbative expansionin the gauge oupling onstant. We hope to report on the orresponding30



results elsewhere. Here we shall trunate the nonabelian theories and shallinvestigate their abelian projetions.8.4 Abelian projetion of SU(N) gauge theories.Here we alulate the ondensate in the approximation where the 'gluons'are on�ned to the Cartan subalgebra of SU(N). Hene only N�1 gluonspropagate around a 'gluon' loop and there are no 3 or 4-gluon verties inthis approximation. In other words, we assume that g in Az = ig�1�zg liesin the maximal abelian subgroup of SL(N), i.e.g = N�1Yi=1 e�g('i+i�i)Hi (107)with trae-orthonormal Hi in the Cartan subalgebra of SU(N). The Ja-obian of the transformation (A�) ! ('i; �i), where A lies in the Cartansubalgebra, is �eld independent and anels in expetation values of gaugeinvariant observables. Thus in the abelian projeted theory the 'quark' on-densate (79) simpli�es toh�uP+uiSU(N) = � e�2�R 11� r2=R2 tr N�1Yi=1 R D'i e�2g'iHi e��0['i℄R D'i e��0['i℄ ; (108)where �0 is the e�etive ation �� in (67) without boundary term (�=0),with e replaed by g and with N=1. The N�1 funtional integrals anbe alulated by using thatR D'e�2g'He��0R D'e��0 = � ~mRe+Fg2 [1� r2R2 ℄�H2=Nf ;where now ~m2=Nfg2=� and Fg is the funtion (85) with the eletri harge ereplaed by the gauge oupling g or equivalentlym� by ~m. Sine NPH2i =(N�1)I we arrive at the following expression for the hiral ondensate inthe projeted theoriesh�uP+uiSU(N) = � e�2�R N1� r2=R2� ~mRe+Fg2 [1� r2R2 ℄�(N�1)=NNf :(109)In the one-avour model the ondensate depends on the bag-radius as �R�1=N and therefore saturates the upper bound (99).31



The U(N)-ondensate is related to the one in SU(N) gauge theories asin (97) and thus is found to beh�uP+uiU(N) = � e�Ie2�R N1� r2=R2 (eg�1=NNf e(Fe�Fg)=NNf�� ~mRe+Fg2 [1� r2R2 ℄�1=Nf : (110)Let us now disuss the various limiting ases in turn.Large N limit. The large N limits of the ablian projeted theories aredi�erent from the same limits in the full theories sine there is no suppressionof fermioni loops relative to the bosoni ones. But as in the full theories aondensate remains in the thermodynami limit in the one-avour models.Indeed, when N !1 the ondensates at the enter of a large bag simplifyto h�uP+uiSU(N) = e�h�uP+uiU(N) = �e�N2�R � ~mRe2 �1=Nf : (111)For Nf =1 a ondensate remains for in�nite volume and its limiting valueis just 1N h�uP+uiSU(N) = e�N h�uP+uiU(N) = �e�+g4�3=2 : (112)Weak ouplings. For a small eletri harge e the funtion Ie in the �rstfator in (110) tends to 1 and inserting the asymptoti expansion (87) forsmall mR we see that for e ! 0 the U(N)-ondensate onverges to theSU(N) one, as expeted.When the gauge oupling g is weak the SU(N)-ondensate beomes equalto �N times the hirality violating entry S�++ of the free Green's funtion(23) and thus vanishes in the thermodynami limit. The U(N)-ondensatesimpli�es to N times the U(1) ondensate (96).Strong ouplings. When both ouplings e and g beome strong, or equiv-alently the bag very large, then the ondensates at the bag enter are just
32



h�uP+uiSU(N) = �e�N2�R � ~mRe2 �(N�1)=NNfh�uP+uiU(N) = � N2�R ( eg )1=NNf� ~mRe2 �1=Nf : (113)9 DisussionIn this paper we have investigated Eulidean gauge theories with masslessDira fermions enlosed in a bag. We have imposed UA(Nf )-breaking bound-ary onditions to trigger a breaking of the hiral symmetry. In the �rst partof the paper we onsidered gauge theories in arbitrary 2n-dimensional bags.We found the expliit �-dependene of the fermioni Green's funtions anddeterminants in arbitrary bakground gauge �elds. In ontrast to the situ-ation on a sphere or torus the Dira operator possesses no zero modes in abag and this property simpli�es the quantization onsiderably. In the seondpart of the paper we investigated 2-dimensional gauge theories. We foundthe mesoni urrent orrelators and alulated the hiral ondensates bothfor abelian and non-abelian gauge theories. Our results are in full agree-ment with earlier instanton-type or small 'quark'-mass alulations. Weonlude that the bag boundary onditions are a substitute for introdu-ing small quark masses to drive the breaking of the hiral symmetry. Ofourse, for several avours the ondensate dissappears when the volume ofthe bag tends to in�nity, in aordane with general theorems. Only whenthe number of olours is sent to in�nity before the thermodynami limit isperformed there remains a 'quark'-ondensate.On a sphere or torus one �nds that in the hiral limit only on�gurationswith vanishing topologial hargeq = e2� Z d2xF01 resp. q = g232�2 Z d4x �����trF��F��ontribute to the partition funtions in 2 resp. 4-dimensions [39℄. For U(N)gauge theories on�ned in a 2-dimensional bag we an �nd the expetationvalues of arbitrary powers of the topologial harge by di�erentiating thepartition funtion suÆiently often with respet to �. The orrelators arereprodued by the following Gaussian distribution for the topologial harge:33



d�(q) = sNNf�� e�NNf�[q+�=2�℄2 dq , � = I0(m�R)m�RI1(m�R) : (114)The expetation value of the instanton number vanishes for vanishing �, butits utuation does not. Only for very small volumes and/or weak oupling(for whih the semilassial approximation makes sense) is the instantonnumber distribution sharply peaked about q=0 as an be seen by inspetionfrom (114) or fromhjqji = ( 0 for m�R! 0q eR�N (�Nf )�1=4 for m�R!1: (115)For big volumes and/or strong oupling, whih would orrespond to smallquark masses, on�gurations with q2 � 1=pNf dominate the funtionalintegral.In this paper we have regarded the bags as mathematial onstrutsrather than real objets in spaetime. For example, to be a model for ahadron at �nite temperature,M must be a bag in spae and hene [0; �℄�Ma subspae of the Eulidean spaetime. The gluon (quark) �elds must thenbe periodi (antiperiodi) in the Eulidean time with period � = 1=T . In[40℄ we have studied multi-avour QED2 at �nite temperature enlosed ina spatial bag [0; L℄. Besides the �nite temperature boundary onditionswe imposed the bag boundary onditions B� =  at x1 = 0 and x1 = L.By applying the methods developped in this paper we found for the hiralondensate in the low temperature limit T � 1=L� m� [40℄h�uP+ui = � 14L e=Nf�m�L� �1=Nf (116)In partiular, for 2 avours this readsh�uP+ui = ��em�16�L�1=2 (117)and this result is idential to that of Shifman and Smilga [10℄ when theyallowed for fraton on�gurations.The ondensate in an d-dimensional Eulidean bag obeys the salingrelation [41℄ 34



h � P+ i(�R; �x; g) = �1�d Z(�)h � P+ i(R; x; �2�d=2g(�)); (118)where Z(�) and g(�) are the wave-funtion renormalization of the on-densate and running gauge oupling onstant, respetively10. The rela-tive size � of the two bags plays the role of the inverse energy sale inthe Callan-Symanzik equation. For example, the ondensates in the multi-avour Shwinger models, (86), obey this saling relation with g(�)=g andZ(�)=1 and this agrees with the wellknown fat that the �-funtion vanishesand that there is no wave funtion renormalization in these theories. In 4-dimensions g(�) beomes weak in small bags beause of asymptoti freedomand the hiral ondensate should again tend to the hirality violating entryS�++ of the free Green's funtion. The hange of the ondensate at x= 0,when the size of the bag is inreased, is then determined by the nonpertur-bative beta-funtion and anomalous dimension of the ondensate. Thus weould extrapolate the QCD-ondensate to large volumes if we would knowits anomalous dimension and the QCD beta-funtion. Conversely, we mayput bounds on the funtions g(�); Z(�) sine a ondensate must remain inthe in�nite volume limit.Aknowledgements: The reported work was partially supported by theSwiss National Siene Foundation. We are indebted to A. Abrikosov jr.,S.I. Azakov, I. Sahs and C. Wiesendanger for valuable disussions and toJ. Fr�ohlih for pointing our attention to Ref. [2℄.A AppendixIn this appendix we �ll the gaps in the alulation of the fermioni de-terminants on�ned in 2-dimensional bags in setion 6. What remains isto alulate the surfae Seeley deWitt oeÆent b1 in (59) whih enters in(41,57).First we note that H tr bn(�) has the expansionI tr bn(�) = d�1X0 I tr p(F�� ;R; �) �pn�; (119)where p is a gauge- and Lorentz-invariant loal polynomial in the �eld-10up to possible runnings of the surfae oupling onstants35



strength and its ovariant derivatives, the extrinsi and intrinsi urva-tures of the bag boundary and their ovariant derivatives and has length-dimension 1 � d + p. Here �pn is the p'th derivative normal to the bagboundary. In partiular in two dimensions we need b1 whih is the sum oftwo terms (again negleting purely geometri ontributions)I tr b1(�) = I tr f1(�)��+ I tr f2(�) �n�: (120)Here we are not interested in the term ontaining f1. In (57) it would notontribute sine A+Ay vanishes on the bag boundary and in (41) it wouldyield an uninteresting onstant whih anels in expetation values11 Theinvariane of the fermioni determinant under parity, (�;A; x)! (��; ~A; ~x),restrits the form of the free funtion f2. To determine this funtion itsuÆes to alulate the heat kernel expansion for free fermions on�ned tothe halfplaneM = fx0; x1jx1 � 0g and subjet to bag boundary onditionsat x1=0.Besided the wellknown properties the heat kernel must obey the bound-ary onditions B�K(t; x; y)jx1=0 = K(t; x; y)jx1=0B��= xK(t; x; y)jx1=0 = �= xK(t; x; y)jx1=0: (121)After some algebra we have found the following expliit formulaK(t; x; y) = 14�te�(�20+�21)=4t+ 14�t � e� sinh � � osh �� osh � �e�� sinh �� e�(�20+�2)=4t+ iP sinh �8tp�t � e� �1�1 e�� � e�P2=4t"1 + erf�i�0 sinh � � � osh �2pt �#;(122)where ��=x� � y�; �=x1 + y1 and P = �0 osh � + i� sinh �. To determinethe relevant Seeley-deWitt oeÆient we need to alulateZM K(t; x; x)f(x) �ZM K(t; x; x)�f(x0; 0)� x1�1f(x0; 0) + ::�; (123)11It would ontribute to the free energy or to the Casimir e�et [42℄.36



where we antiipated that the integrand is sharply peaked at x1 = 0 andthus expanded the test funtion f about x1=0. On the diagonal (x=y) wehave �=0 and �=2x1 and we are left with alulating the integralsZx1�0 dx1 e�x21=t�f(x0; 0) + x1�1f(x0; 0) + ::�Zx1�0 dx1 x1 ex21 sinh2 �=th1� erf(x1 osh �pt )i�f(x0; 0) + x1�1f(x0; 0) + ::):(124)The �rst integral is easily evaluated by using thatZx�0 dx e�x2=t = 12p�t ; Zx�0 dxxe�x2=t = t2 :For evaluating the seond integral we need the formulae1Z0 dx [1� erf(�x)℄ e�x2 x = � 12��1� �p�2 � ��1Z0 dx [1� erf(�x)℄ e�x2 x2 = 12�p�� ��2 � � + 12p� log � �p�� +p�� (125)whih apply if � > 0 and <(�) < <(�2). Using these results one �nds thefollowing small-t expansion for the integral (123)Z d2xK(t; x; x)f(x) = 14�t ZM d2xf(x)+ 18p�t Z dx0(� e� �1�1 e�� �� I) f(x0; 0)+ 18� Z dx0( log e�sinh � � e� �1�1 e�� �� I) �1f(x0; 0) +O(t1=2): (126)
The �rst term on the right yields the wellknown a0 oeÆient, the seondterm b1=2 and the third one is the b1-oeÆient (59) (after noting that �1=��n) we have been aiming at. We see that the small t-expansion of K isinvariant under �! � + i2�n; n 2 Z, as required.37
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