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to provide an elegant regularization method [2℄ for the evaluation of obje
ts as one-loope�e
tive a
tions and Casimir energies, as dis
ussed, for instan
e, in the reviews [3℄.In the 
ase of operators with a non positive-de�nite prin
ipal symbol, another spe
tralfun
tion has been studied, known as �-fun
tion [4℄, whi
h 
hara
terizes the spe
tral asym-metry of the operator. This spe
tral fun
tion was originally introdu
ed in [5℄, where anindex theorem for manifolds with boundary was derived. In fa
t, the �-fun
tion of theDira
 operator, suitably restri
ted to the boundary, is proportional to the di�eren
e be-tween the anomaly and the index of the Dira
 operator, a
ting on fun
tions satisfyingnonlo
al Atiyah-Patodi-Singer (APS) boundary 
onditions. Some examples of appli
ationwere dis
ussed in [6, 7℄.Su
h nonlo
al boundary 
onditions were introdu
ed mainly for mathemati
al reasons,although several appli
ations of this type of boundary value problems to physi
al systemshave emerged, ranging from one-loop quantum 
osmology [8℄, fermions propagating inexternal magneti
 �elds [9℄ or so-
alled S�branes, whi
h are mapped into themselves underT�duality [10℄. So far, �-fun
tions have found their most interesting physi
al appli
ationsin the dis
ussion of fermion number fra
tionization [11℄: The fra
tional part of the va
uum
harge is proportional to �(0). The ��fun
tion also appears as a 
ontribution to thephase of the fermioni
 determinants and, thus, to e�e
tive a
tions [12℄. Furthermore,both the index and the �-invariant of the Dira
 operator are related to s
attering datavia a generalization of the well-known Levinson theorem [13℄. A thorough dis
ussion ofthe index, �� and ��fun
tions in terms of boundary spe
tral fun
tions for APS boundaryproblems 
an be found in [14, 15℄.Alternatively, one may 
onsider the boundary value problem for the Dira
 operator a
tingon fun
tions that satisfy lo
al, bag-like, boundary 
onditions. These 
onditions are 
loselyrelated to those appearing in the e�e
tive models of quark 
on�nement known as MIT bagmodels [16℄, or their generalizations, the 
hiral bag models [17℄. The physi
al motivationfor studying these lo
al boundary 
onditions is thus 
lear.In this paper, we will study the Eu
lidean Dira
 operator in two dimensions, a
ting onfun
tions satisfying lo
al bag-boundary 
onditions [18, 19℄. Su
h boundary 
onditions are2



de�ned through the proje
tor in equation (3) of the next se
tion. They 
ontain a realparameter �, whi
h is to be interpreted as analyti
 
ontinuation of the well known �-parameter in gauge theories. Indeed, for � 6= 0, the e�e
tive a
tions for the Dira
 fermions
ontain a CP -breaking term proportional to � and proportional to the instanton number[19℄; for example 2 dimensions: �e� � � Z d2xF01 + : : :4 dimensions: �e� � � Z d4x�����F��F�� + : : :For � 6= 0 we will refer to the bag boundary 
onditions as 
hiral while, in the parti
ular
ase � = 0, we will 
all them non-
hiral or pure MIT 
onditions. In both 
ases, the Dira
operator is self-adjoint. Moreover, in two dimensions, not only the �rst order boundaryvalue problem is ellipti
, but also the asso
iated se
ond order problem is so.One of the main 
hara
teristi
s of bag boundary 
onditions is that they lead to an asym-metry in the non-zero spe
trum. Thus, in this paper we will study the boundary 
ontribu-tion to the spe
tral asymmetry for bag boundary 
onditions in two-dimensional Eu
lideanspa
e. The pure MIT 
ase was studied, for any even dimension, in [20℄. We will 
ompareour results to those in this referen
e whenever adequate.Note that, as in any even dimension, there is no volume 
ontribution to the asymmetry(for a proof see, for instan
e, [4℄; qualitatively, this is due to the existen
e of 
5, whi
hanti
ommutes with the Dira
 operator). So, the boundary 
ontribution is also the totalasymmetry. In se
tion 3, the asymmetry will be expressed in terms of spe
tral fun
tionsof the boundary operator A. Throughout our 
al
ulation in that se
tion, we will assumethe manifold to be of produ
t type near the boundary, and A to be independent of thenormal variable.As an example of a produ
t manifold we will evaluate, in se
tion 4, the asymmetry in a�nite 
ylinder with twisted boundary 
onditions along the 
ir
le dire
tion, imposing APS-boundary 
onditions on one end of the 
ylinder and 
hiral bag 
onditions on the otherend. The result will be shown to be 
onsistent with our general predi
tion in se
tion 3.In se
tion 5, we will 
ompute the spe
tral asymmetry in the 
ase of a disk (two-dimensional3



bag), for 
hiral bag boundary 
onditions. Note this is a non-produ
t 
ase; however, wewill suggest that the out
ome of this 
al
ulation might be understood from our generalresult in se
tion 3.Finally, se
tion 6 
ontains the generalization to the 
ase in whi
h 
ertain gauge potentialsare present, as well as some 
omments 
on
erning the extension of our results to higherdimensions.2 The heat kernel in terms of boundary eigenvaluesIn this se
tion we rewrite the known heat kernel for the free Eu
lidean Dira
 operatoron the semi-in�nite 
ylinder subje
t to bag-boundary 
onditions, su
h that the spe
tralresolution with respe
t to the boundary operator be
omes transparent. To this end, it is
onvenient to 
hoose a 
hiral representation for the Eu
lidean 
-matri
es in 2-dimensions,
0 = �1; 
1 = �2 and 
5 = �i
0
1 = �3: (1)Then, the free Dira
 operator takes the formP = i(
0�0 + 
1�1) = � 0 �1 +A��1 +A 0 � ; (2)where A is the boundary operator A = i�0;whi
h will play an important role in what follows. The eu
lidean \time"-
oordinate 0 �x0 < � is tangential to the boundary at x1 = 0. The \spatial" variable x1 � 0 is normalto the boundary and grows toward the interior of the semi-in�nite 
ylinder. The proje
torde�ning the lo
al bag boundary 
onditionB ��x1=0 = 0at the boundary x1 = 0 reads 4



B = 12(1� i
5e
5�n=) = 12(1 + i
5e
5�
1) = 12 � 1 e�e�� 1 � ; (3)where n� is the outward oriented normal, n� = (0;�1).For 
onvenien
e we introdu
e the variables �� = x� � y� and � = x1 + y1. Then, the heatkernel of the asso
iated se
ond order operator reads, in terms of the eigenvalues an of theboundary operator A,K(t; x; y) = 1�p4�tXn eian�0e�a2ntne��21=4t1l + e��2=4tM�N tanh �e��2=4th1� p4�tsinh 2� an eun(�;t)2erf
�un(�; t)�io ; (4)where we introdu
ed the abbreviationun(�; t) = �p4t � anpt tanh �and the 
omplementary error fun
tion,erf
(x) = 2p� Z 1x dy e�y2 :Moreover, 1l denotes the 2�2-identity matrix,M = � e� sinh � � 
osh �� 
osh � �e�� sinh �� and N = � e� �1�1 e�� � sinh �:For �nite temperature �eld theory, in whi
h 
ase the Dira
 �eld is antiperiodi
 in x0 andhen
e the eigenvalues of the boundary operator are an = 2�(n + 1=2)=�, the result (4)
oin
ides with the Fourier transform of equation (101) in [21℄.3 Boundary 
ontribution to the spe
tral asymmetry frombag boundary 
onditionsAs already 
ommented, sin
e the eu
lidean spa
e-time is even dimensional, there is nobulk 
ontribution to the asymmetry. To obtain the boundary 
ontribution, the eigenvalue5



problem for the Dira
 operator P should be investigated on a 
ollar neighborhood of theboundary. Here, we 
onsider instead the operator on the semi-in�nite 
ylinder extendingto x1 ! 1. As is well-known [20℄, sin
e we are treating a self-adjoint problem, thisyields the 
orre
t answer for an invertible boundary operator A. We shall dis
uss the noninvertible 
ase toward the end of this se
tion. Hen
e, for the moment, we assume an 6= 0for all n.Denoting the real eigenvalues of the Dira
 operator by �, the relevant spe
tral fun
tion is�(s; P ) =X� sign�j�js = ��s+ 12 ; P 2; P� = 1�� s+12 � Z 10 dt t s�12 Tr�P e�tP 2�: (5)The Dira
 tra
e 
an be 
omputed with the help oftr(
0;11l) = tr(
1M) = tr(
1N) = 0 andtr(
0M) = �2 
osh � ; tr(
0N) = �2 sinh � :From (4) one obtains for the Dira
-tra
e of the kernel needed in equation (5)trhxjPe�tP 2 jyi = 
osh �e��2=4ti�p�t tr ��x0 Xn eian�0e�a2ntn1� tanh2 � ��h1� anp4�tsin 2� eun(�;t)2erf
�un(�; t)�io! : (6)After performing the derivative with respe
t to x0, setting x� = y� and integrating overthe tangential variable, one is left with the following integral over the normal variablex1 � x:Tr�Pe�tP 2� =Xn ane�a2nt 1Z0 dxn 1p�t + an tanh � eu2n(2x;t) erf
�un(2x; t)�o e�x2=t
osh � ; (7)where we took into a

ount that for x� = y� we haveun(�; t) = un(2x; t) = xpt � anpt tanh �; x = x1:6



Now, we may use the simple identity�12 ��xhe�x2=t+u2n(2x;t)erf
�un(2x; t)�i = e�x2=th 1p�t + an tanh � eu2n(2x;t)erf
�un(2x; t)�ito rewrite the relevant tra
e as follows,Tr�Pe�tP 2� = � 12 
osh �Xn ane�a2nt= 
osh2 � Z 10 dx ��x he�2xan tanh �erf
 (u(2x; t))i= 12Xn an
osh �e�a2nt= 
osh2 �erf
��pt tanh �an� : (8)The asymmetry is obtained by inserting (8) into (5) and, hen
e, it is given by�(s; P ) = 1�( s+12 )Xn an2 
osh � Z 10 dt t s�12 e�a2nt= 
osh2 � h1� erf��pt tanh �an�i ;where erf is the error fun
tion,erf(x) = 1� erf
(x) = 2p� Z x0 dy e�y2 :Finally, 
hanging variables to � = a2nt= 
osh2 �, inter
hanging the order of the integrationsand integrating over � one obtains the following rather expli
it expression�(s; P ) = 12 
oshs �Xn �a2n��s=2hsign(an) + I(s; �)i= 12 
oshs �h�(s;A) + �( s2 ; A2)I(s; �)i; (9)where we have introdu
ed the fun
tionI(s; �) = 2p� �( s2 + 1)�( s2 + 12) sinh �Z0 dx �1+x2��1�s=2:With �I(0; �) = 2 ar
tan(sinh �) we obtain�(0; P ) = 12n�(0; A) + 2� �(0; A2) ar
tan(sinh �)o : (10)7



Now, the se
ond term within the 
urly bra
kets 
an be seen to vanish, sin
e the boundaryis a 
losed manifold of odd dimensionality. In fa
t, in our 
ase, �(0; A2) = a1(A2) = 0,where a1(A2) is a heat kernel 
oeÆ
ient in the notation of [4℄ (for details, see Theorem1.12.2 and Lemma 1.8.2 in this referen
e), and we are left with�(0; P ) = 12�(0; A) : (11)As far as A is invertible, this is the main result of this se
tion, relating the ��invariant ofthe Dira
 operator to the same invariant of the boundary operator. Note that the out
omeis the same irrespe
tive of the value of �, i.e., it holds both for pure MIT and 
hiral bag
onditions. The �rst 
ase was treated before in [20℄; our result 
oin
ides with the one givenin that referen
e (equation (4.16)), up to an overall fa
tor 1=2. This dis
repan
y seems tobe due to an extra fa
tor of 2 in equations (4.7) and (4.8) in that referen
e. This extrafa
tor is in
onsistent with equation (4.10), and has seemingly propagated to Theorem 4.4in the same paper.Our result (11) 
hanges sign when the normal to the boundary points in the opposite dire
-tion, sin
e then the non-diagonal entries in M and N 
hange sign and, as a 
onsequen
e,so does the Dira
 tra
e.As already pointed, (11) gives the whole spe
tral asymmetry when the boundary Dira
operator 
0A is invertible. In fa
t, for su
h 
ases it was proved in [20℄ (see also [22℄) thatthe asymmetry splits, in the adiabati
 (in�nite volume) limit, into the volume 
ontributionplus the in�nite 
ylinder one. Moreover, referen
e [23℄ shows that the spe
tral asymmetryis independent from the size of the manifold when the boundary value problem is selfadjoint, as in our 
ase. This, together with the vanishing of the volume 
ontribution ineven dimensions, leads to the previous 
on
lusion.Now, we study the more subtle 
ase of a non-invertible boundary operator A. Then, as
an be seen from (7), an = 0 would give no extra 
ontribution in the semi-in�nite 
ylinder.However, in this 
ase, the tra
e (8) 
an di�er in a substantial way from the 
orrespondingone in the 
ollar neighborhood. As explained in [22℄, both large t behaviors may bedi�erent, thus giving extra 
ontributions to the asymmetry in the 
ollar. This di�eren
e8



in high t behavior is due to the presen
e of \small" eigenvalues, vanishing as the inverseof the size of the manifold in the adiabati
 limit [24℄. These extra 
ontribution 
an bedetermined, modulo integers, by using the arguments in [4, 23, 25℄. To this end, 
onsiderthe one-parameter family of di�erential operatorsP� = P + 2�� �
0; P0 = P:These operators share the same �-independent domain. They are invertible for � 6= 0 and
an be made invertible for all � by subtra
ting the proje
tor on the subspa
e of smalleigenvalues related to the zero-modes at � = 0. This then yields a new family of operatorsP 0� and one obtains�(0; P�) = �(0; P 0�) modZ and dd��(0; P�) = dd��(0; P 0�):Then, di�erentiating with respe
t to � one �ndsdd��(0; P 0�) = 1�( s+12 ) dd� 1Z0 dt t s�12 Tr�P 0�e�tP 0�2���s=0= 1�( s+12 ) 1Z0 dt t s�12 TrhdP 0�d� �1 + 2t ddt�e�tP 0�2i��s=0= � 2� s� �( s+12 ) 1Z0 dt t s�12 Tr�
0e�tP 0�2�+ 4���( s+12 ) Tr�t s+12 
0e�tP 0�2�1t=0���s=0 ;(12)
where we performed a partial integration to arrive at the last equation. In addition, weused dP 0�=d� = 2�� 
0. Sin
e P 0� � P� is an operator of �nite range we may safely skip theprime in the last line of the above formula. Finally, the very last term in equation (12)
an be seen to vanish, whi
h gives, for the spe
tral 
ow (with almost the same 
al
ulationas the one starting with equation (6), ex
ept that no derivative w.r.t x0 must be taken)dd��(0; P 0�) = ���Resjs=0h�( s+12 ; A2) + 2��(s+1; A) ar
tan(sinh �)i : (13)Now, the se
ond term 
an be seen to vanish, sin
e (again with the notation of [4℄),9



p�Resjs=0�(s+1; A) = 2a0(A2; A) = 0. Moreover, p�Resjs=0�( s+12 ; A2) = 2a0(A2) = �� .Thus, one �nally has for the spe
tral 
ow, no matter whether A is invertible or notdd��(0; P�) = �1 (14)So, at varian
e with the 
ase treated in Theorem 2.3 of referen
e [25℄, the spe
tral 
owdoesn't vanish for bag boundary 
onditions. As a 
onsequen
e, the 
ontribution to theasymmetry 
oming from boundary zero modes is di�erent from an integer. This also seemsto disagree with the result in [20℄. Unfortunately, we were not able to tra
e the origin ofthis dis
repan
y from the results presented in that referen
e. However, we will see, in thenext se
tion, an expli
it example of how this works.4 The asymmetry in a �nite 
ylinderHere, we 
onsider the simple 
ase of the free Dira
 operator on a �nite \
ylinder" andimpose twisted boundary 
onditions in the Eu
lidean time dire
tion (x0 ranges from 0 to�), non-lo
al APS boundary 
onditions at x1 = 0 and lo
al 
hiral bag boundary 
onditionsat x1 = L. (Note that twisting the boundary �ber is equivalent to introdu
ing a 
onstantA0 gauge �eld in the Dira
 operator).APS L
x0 x1

bag
The eigenfun
tions of the Dira
 operator (2) 
an be expanded in eigenfun
tions of theboundary operator A = i�0, satisfying twisted boundary 
onditions in the time-dire
tionwith twist parameter �,  (x0 + �) = e2�i� (x0), as follows10



 =Xn  n(x1)eianx0 ;  n = � fngn� ; (15)where the eigenvalues of the boundary operator readan = 2�� (n+ �); n 2 Z:For de�niteness, we will 
onsider 0 � � < 1 su
h that an � 0 is equivalent to n � 0and an < 0 to n < 0. A vanishing � 
orresponds to periodi
 boundary 
onditions, and� = 1=2 to anti-periodi
 (�nite temperature) boundary 
onditions. The mode-fun
tionsin (15) ful�ll the simple di�erential equationsg0n � angn = �fn and � f 0n � anfn = �gn:At x1 = 0, the APS boundary 
onditions requirean � 0 : fn(0) = 0 and an < 0 : gn(0) = 0 :Hen
e, the mode-fun
tions have the form n�0 � � � sinh�x1�an sinh�x1 � � 
osh�x1� ;  n<0 � ��an sinh�x1 + � 
osh�x1� sinh�x1 �with � =pa2n � �2. On these we must impose 
hiral bag boundary 
onditions at x1 = L.The proje
tor de�ning these 
onditions readsB = 12(1� i
5e
5�n=) = 12 � 1 �e��e�� 1 � ;and yields the following trans
endental equations(�e�� + an) sinhL�n(�) + �n(�) 
oshL�n(�) = 0; for n � 0(�e� + an) sinhL�n(�)� �n(�) 
oshL�n(�) = 0 for n < 0 (16)for the eigenvalues �(�) of the Dira
 operator on the �nite 
ylinder with APS and bagboundary 
onditions. With the evident relationa�n�1(�) = �an(1� �)11



one shows that the assignment(n; �; �; �) �! (�n� 1; 1 � �;��;��) (17)maps one of the lines of equation (16) into the other. Hen
e, it suÆ
es to 
onsider the
ase n � 0. The 
ontribution of the negative n to spe
tral fun
tions is taken into a

ountby exploiting the symmetry (17).Let us �rst study the asymmetry for � 6= 0, thus ex
luding the 
ase of a non-invertible A.From the well-known formulaX� ��s = 12�i I� dzzs f 0(z)f(z) ; (18)with f de�ned by the left hand side in the �rst line of equation (16), one obtains�(s; P ) = 12�i 1Xn=0Z� dzzs ddz log (an+ze��) sinhL�n(z) + �n(z) 
oshL�n(z)(an�ze��) sinhL�n(z) + �n(z) 
oshL�n(z)���! 1��; �! ��� : (19)with �n(z) = pan � z2. The 
urve � 
omes from 1 + i� to a small semi-
ir
le avoidingthe origin and ba
k to +1� i�, surrounding the real positive axis 
ounter
lo
kwise.=(z)
<(z)�zeroes of f(z)

12



Now, the 
ontour 
an be opened to the imaginary axis, and the 
ir
le around the origin
an be shrunken, sin
e the integrand vanishes at z = 0. After doing so, one gets�(s; P ) = 1i� 1Xn=0 1Z0 dtts 
os ��s2 � ddt log (an � it e��) tanhL�n(it) + �n(it)(an + it e��) tanhL�n(it) + �n(it) � ��! 1� �; �! ��� :Now, 
hanging variables a

ording to t = anu, one obtains�(s; P ) = 1i� 1Xn=0 
os ��s2 �a�sn 1Z0 duus ddu log (1� iu e��) tanh[Lanp1 + u2℄ +p1 + u2(1 + iu e��) tanh[Lanp1 + u2℄ +p1 + u2�(�! 1� �; � ! ��) :The whole expression 
an be evaluated at s = 0, and one obtains the following simpleresult for the spe
tral asymmetry�(0; P ) = �12 [�H(0; �) � �H(0; 1� �)℄ = �� 12 ; (20)where �H is the Hurwitz �-fun
tion. In parti
ular, the asymmetry vanishes in the �nitetemperature 
ase (� = 12).As shown in the previous se
tion (equation (11)), bag boundary 
onditions give, in theabsen
e of boundary zero modes, a 
ontribution �12�(0; A) to the asymmetry. The minussign is due to the fa
t that, at x1 = L, the external normal is (0; 1). APS boundary
onditions give no 
ontribution at all and, as a 
onsequen
e, the total asymmetry is dueto bag boundary 
onditions. In this 
ase, it 
an easily be 
omputed in terms of Hurwitzzeta fun
tions�12�(0; A) = �12�2�� ��shXn�0(n+ �)�s �Xn>0(n� �)�s)i���s=0whi
h is seen to redu
e to equation (20).Let us �nally study the periodi
 
ase, where a boundary zero mode does exist. The totalasymmetry 
an be obtained as follows: From the symmetry (17) it follows, that(n; �; �) �! (�n;��;��); n 6= 013



is a symmetry of the equations (16). The 
ontribution from this modes 
an be evaluatedas in the invertible 
ase, and it is seen to be 12 � 2� ar
tan e�. Regarding n = 0, the
ontribution 
oming from these modes 
an be 
omputed dire
tly in terms of Hurwitz zetafun
tions, and it gives �1 + 2� ar
tan e�. So, the sum of both 
ontributions gives for thetotal asymmetry �(0; P ) = �12 .This result is again in 
omplete agreement with our general result in the previous se
tion.In fa
t, APS boundary 
onditions do not 
ontribute to the asymmetry mod Z. The
ontribution of the lo
al boundary 
onditions mod Z 
an be gotten from the spe
tral 
owin equation (12). Hen
e,�(0; P0)� �(0; P1=2) = �(0; P0) = �12 (modZ):It is interesting to note that in all 
ases bag boundary 
onditions transform the would-be
ontribution to the index due to APS boundary 
onditions into a spe
tral asymmetry. Infa
t, the problem 
an be easily seen to present no zero modes.5 Spe
tral asymmetry in the diskIn this se
tion, we will study the spe
tral asymmetry for the free Dira
 operator in a disk,subje
t to bag boundary 
onditions at the radius R and with arbitrary �. Note that weare dealing with a non-produ
t 
ase. However, we will suggest a plausible interpretationin terms of our results in 3. The Dira
 operator on the disk, subje
t to nonlo
al APS-
onditions has been 
arefully analyzed in [7, 13℄. In parti
ular, the 
onne
tion to thes
attering theory of P 2 has been 
lari�ed in [13℄.We 
hoose the same 
hiral representation as in se
tion (2) and take polar 
oordinates(r; '), su
h that the free Dira
 operator takes the formP = i�
r�r + 
'�'r �; with 
r = � 0 e�i'ei' 0 � ; 
' = � 0 �ie�i'iei' 0 � : (21)Here, the angle ' is the boundary variable, and 0 � r � R is the outward-growing normalone. With n= = 
r the proje
tor de�ning bag boundary 
onditions at r = R reads14



B = 12�1� i
5e
5�
r� = 12 � 1 �ie��i'ie��+i' 1 � ; (22)and the boundary operator at r = R isA = iR �':We expand the eigenfun
tions of the Dira
 operator P in eigenfun
tions of the total angularmomentum operator J = 1i ��' + 12�3;whi
h 
ommutes with both P and B, = 1Xn=�1 
n� fn(r)ein'gn(r)ei(n+1)' � : (23)The radial mode-fun
tions are determined by the di�erential equation P = � , togetherwith the bag boundary 
onditions. The di�erential equation implies,fn = Jn�j�jr� and gn = �i sign(�)Jn+1�j�jr� ;where Jn is the Bessel fun
tion of integer order n. The boundary 
onditions with boundaryoperator (22) yieldJn�j�jR�� e�sign(�)Jn+1�j�jR� = 0; n 2 Z : (24)Here it is 
onvenient to 
onsider these 
onditions for positive and negative eigenvalues �separately. With the help of J�n(x) = (�)nJn(x) they 
an be written as follows:� > 0 : Jn(j�jR)� e�Jn+1(j�jR) = Jn(j�jR) + e��Jn+1(j�jR) = 0� < 0 : Jn(j�jR) + e�Jn+1(j�jR) = Jn(j�jR) � e��Jn+1(j�jR) = 0;where n = 0; 1; 2; : : :. Note these 
onditions are left invariant by the repla
ement(�; �) �! (��;��):15



Hen
e, with the help of (18) the spe
tral asymmetry is given by the following 
ontourintegral in the 
omplex plane�(s; P ) = 12�i 1Xn=0Z� dz z�s ddz log�Jn(zR)� e�Jn+1(zR)Jn(zR) + e�Jn+1(zR)�� (� ! ��)where the 
ontour � is the same as in (19). Again we deform the path of integration su
hthat we integrate along the imaginary axis. After doing that, and using the de�nition ofthe modi�ed Bessel fun
tions,Jn(ix) = inIn(x) and Jn(�ix) = (�i)nIn(x);we obtain�(s; P ) = 1i� 
os �s2 1Xn=0 1Z0 dt t�s ddt log In(tR) + ie�In+1(tR)In(tR)� ie�In+1(tR) � (�!��): (25)It is 
onvenient to separate the 
ontribution from n = 0, whi
h 
an be evaluated at s = 0without problems. The 
orresponding integral gives�n=0(0; P ) = 1i� log I0(tR) + ie�I1(tR)I0(tR)� ie�I1(tR) ���10 � (� ! ��)= 1i� log 1 + ie�1� ie� � (� ! ��) = 4� h�4 � ar
tan e��i (26)For the remaining subspa
es, n 6= 0, we add and subtra
t the �rst term in the Debyeexpansion of the modi�ed Bessel fun
tions.To this end, we 
hange variables a

ording to t = nu=R, so that�n 6=0(s; P ) = 1i� 
os �s2 1Xn=1� nR��s1Z0 duu�s ddu log In(nu) + ie�In+1(nu)In(nu)� ie�In+1(nu) � (�!��) : (27)The �rst term in the Debye expansion of the argument of the logarithm giveslog In(nu) + ie�In+1(nu)In(nu)� ie�In+1(nu) � logF (u; �); F (u; �) = �p1 + u2 � 1� iue��p1 + u2 � 1 + iue�� :16



When this is added and subtra
ted in equation (27), the subtra
ted part 
an be seen tovanish at s = 0, sin
e the integrand 
an
els both at 0 and 1. Thus, we are left with�n 6=0(s; P ) = 1i� 
os �s2 1Xn=1� nR��s 1Z0 duu�s ddu logF (u; �)� (�! ��) ;whi
h yields a �nite expression for s = 0,�n 6=0(0; P ) = 1i� �R(0) log F (u; �)���10 � (�! ��) ;where �R is the Riemann zeta fun
tion. Inserting the values of F and �R(0) yields�n 6=0(0; P ) = 2� h ar
tan e�� � �4 i : (28)When added to the 
ontribution in equation (26), this gives for the total asymmetry�(0; P ) = 2� � ar
tan e� � �4 i = � 2� � ar
tan e�� � �4 i : (29)This is, up to a sign, pre
isely the result predi
ted by equation (10) when the eigenvaluesof A are of the form an = n=R, with n 2 Z. In fa
t, in this 
ase, �(0; A) = 0 and� 0(0; A2) = �1 (This last is evaluated in the subspa
e orthogonal to the zero mode). This
an be interpreted as follows: The operator P in equation (21) is not of the form (2).However, it redu
es to su
h a form (although with an r-dependent A) after 
hoosing theeigenfun
tions as in (23). Now, due to the di�erent dependen
e on the tangent variable ofboth 
omponents in the spinors, 
0A never goes through zero modes and the 
al
ulationin the in�nite 
ylinder seemingly gives the 
orre
t value for the asymmetry, even thoughthis is a non-produ
t example. On the disk the left hand side in (10) 
hanges sign sin
ethe 
oordinate r normal to the boundary in
reases if one leaves the disk.6 CommentsAs already pointed out, our result in equation (11) gives the answer also in the presen
eof a 
onstant A0 gauge �eld, whi
h 
an always be eliminated with the only 
onsequen
e of17



twisting the boundary �ber. It 
an also be shown to hold for a gauge �eld su
h that A0 =A0(x0) (independent of the normal variable) and A1 = 0 for, then, a gauge transformation
an be performed of the form  0(x0; x1) = ei R x00 A0(x)dx (x0; x1), again leading to just atwist in the boundary �ber.Finally, our result should, in prin
iple, extend to higher even dimensions. It is 
learthat this is so in the 
ase of pure MIT bag boundary 
onditions (� = 0). For 
hiral bagboundary 
onditions, this is not so 
lear due to to presen
e of oblique boundary 
onditions[26℄ (and possible la
k of ellipti
ity) in the asso
iated se
ond order problem [1, 27, 28℄.A
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