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ABSTRACT

String propagation on non-compact group manifolds is studied as an exactly
solvable example of propagation on more general curved space-times. It is shown
that for the only viable group SU(1,1) x G, string propagation is consistent classi-
cally but not quantur mechanically (unitarity is violated). This shows that confor-
mal invariance of the corresponding o-model (vanishing of the S-functions) is not

sufficient to guarantee unitarity.
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1. Introduction

Classical two dimensional conformally invariant sigma models can be interpreted as
string propagation on the target space. It is generally believed that if the target
space has one time-like direction and the corresponding beta functions vanish then
the quantized version of the sigma model is consistent (unitary) and describe the
quantum- mechanical string propagation [1]. To investigate the problem of unitarity
it is very convenient to use exactly solvable models and as is known, principal sigma-
models (with a Wess-Zumino-Witten term) are of this kind and lead to a realization
of a Kac-Moody algebra [2]. The M = My x G. sigma model, where My is 4-
dimensional Minkowski space and G is a compact group, has of course been shown
to be unitary and describe string propagation on M. It would be desirable to extend
this manifold to more general Einstein-spaces, but in seeking solvable models one
is limited to the case of M being a group manifold. Actually G = SU(1,1) x G,
is the only group manifold with a single, nontrivially embedded time-like direction.
So in this paper we should like to consider the G-model as a first step beyond
M = My x G, in the study of string propagation on general curved spaces. This
model constitutes a rather small step in generalizing M but it already raises serious
questions for more general curved spaces, since as we shall show the G—model does

not admit consistent {unitary} quantum-mechanical string propagation.

We recall that the most general renormalizable Weyl invariant 2-dimensional

sigma model is given as
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where Gy, and DBy can be identified as the background spacetime metric and an

antisymmetric tensor field, respectively.

Weyl invariance on the world sheet, which is crucial for the consistency of the
string theory is not automatically guaranteed. To account for this anomaly one adds

the non Weyl-invariant piece
_l e (2)
Sq= ym fd /7 BV 9(X) (1.2)

to the action (1.1), where R(2) denotes the scalar curvature of the world sheet

and ®(X) is the background dilaton field. Weyl-invariance can be expressed as



the tracelessness of the energy-momentum tensor. This leads to demanding the
vanishing of the beta-functions 8%, 8, 8. Perturbative calculations of the beta-
functions using background field expansion to one-loop yield the Einstein equations
and the equations of motion for the dilaton field and the By, field. Higher loop

calculations seem not to spoil this interpretation.

For the case of group-manifolds it has been observed [3] that the Wess-Zumino-
Witten (WZW) term in (1.1) has the interpretation of introducing a parallelizing
torsion field, that is to add to the standard Riemannian connection I’ﬁp an Hﬁp
term coming from V# By, which makes the generalized Riemann tensor zero. For any
group manifold such a parallelizing torsion exists. Furthermore, since the generalized
Einstein equations are expressed as polynomials in this generalized Riemann tensor
and its covariant derivatives, they are automatically satisfied if the curvature tensor

identically vanishes [4].

Motivated by the above considerations we consider a string moving on the man-
old of a noncompact simple group, G. Just as in the compact case [2] we consider

the standard action
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together with the closed string boundary conditions
9(0,7) = g(2m, 7). (1.4)

Introducing the complex variables z = exp(i(7+0¢)) and z = exp(:(r — o)) the action

has a noncompact Kac-Moody symmetry generated by the left and right currents

k 1

_ o ko, _
J(z) = =5 B:99 J(z) =~ bz lg. (1.5)

Since J is an analytic function of z, expanding into a Laurent series
[0 0]
J(z)= 3 Jpz ! (1.6)
n——0oo

the Laurent coefficients J§ form a Kac-Moody (KM) algebra (and similarly for J(Z)
and J2).



The energy momentuim tensor is just the Sugawara one:
1 a b
T(2) = 5-gap : °(2)7°(2) (L.7)

where & is a constant. The Laurent coefficients of T'(2), Ln, are the generators of the
Virasoro algebra, (similarly for T(2), Ly). Since the Virasoro generators correspond

to reparametrization of the string we impose the usual constraints

Ln |phys) = Ly |phys) =0 for n>0
(Lo — Lo) | phys) =0 (1.9)
(Lo + Lo — 2) | phys) = 0.

We will discuss the structure of the physical Hilbert space, i.e. the set of states
satisfying the constraints (1.9) in sections 3 and 4 in detail. The main subject
of this paper is to show that for completely consistent string propagation it is not
sufficient that the resulting sigma model is conformally invariant. It is also necessary
that the quantum mechanical propagation of the string be unitary. In fact, we will
see that for the very special and simple compactification corresponding to string
propagation on a non-compact group manifold, while the beta functions vanish, the

quantum theory is never unitary.



2. Classical String Propagation on SU(1,1)

In this section we study the classical string motion and show that it is completely
consistent (causal). This is not a priori guaranteed since space-time is curved and
strings are extended objects. Indeed we shall see that we have to work on the

universal covering group S UE 1) of SU(L,1) .
The group SU(1,1) can be parametrized as

g=2"+zir;, where 7= (01,092,103) (2.1)
and the coordinates z* lie on the hyperboloid
() + (=%)? - (a1)* - (&P = 1. (2.2)

It follows, in particular, that (z®)2+(23)% > 1, so there are non-contractible loops in
the 20 — 23 plane. We see that SU(1,1) is topologically equivalent to R2 x S1. This
also follows from the Cartan-Mal’cev-Iwasawa theorem, stating that a noncompact
group is topologically the same as R™ x G, where G, is its maximal compact

- subgroup.

The constraint (2.2) can be satisfied by introducing the coordinates

(3:0, 7, 22, :r3) = (cosh p cost,sinh p cos ¢,sinh p sin ¢, cosh p sint) (2.3)
so that ) )
(coshp et sinhp e (2.4)
~ \sinh pet® coshpe i)’ )
In these coordinates the natural metric of the group reads
1
ds? = ——itr (g 1dg)? = cosh? p dt? — (clp2 + sinh? p dqbz). (2.5)

Note that the ‘time’ coordinate ¢ is periodic with period 2x. Since the group-
manifold is to be interpreted as our space-time it is therefore more natural to consider
the universal covering group SUH, 1) which is topologically R? x R!. Then the

periodicity in £ is lost and time extends to the whole real line.

To understand the classical string propagation it is useful to consider first the

motion of free point particles on SU(1,1) . Free particles move along time- or

light-like geodesics

g() = g(0) exp(v(0) 7) where u(r)=v'(r)r; =g " (r)g(r),  (2.6)



and the initial velocity v(0) is time- or light-like, v(0) - v(0) = m? > 0. Here and
in what follows the norms are with respect to the lorentzian metric (—,—,+). In

particular, the geodesics passing through the identity are given by

t = arctan (% tan(m'-"))

2
cosh? p = cos?(mr) + % sin?(m7) (2.7)
¢ = ¢g = const,

where (¢, p, ¢) are the coordinates introduced in (2.3). Again one sees that one must
use the covering group to avoid periodicity in time. Then t(r) can be defined so
that it covers the whole real line. In the massless limit m — 0 the geodesics become
light-like, describing the motion of point-like strings.

The propagation of extended strings is determined by the action (1.3). The

general solution of the field equations is
glo,7) = A(g +7)B (o — 1) (2.8)

where A and B are group elements determined by the initial conditions and are such
that g is periodic in o. Due to reparametrization invariance the energy-momentum

tensor must vanish
T =tr(A A =u-u=0 Tyr=tr(B'B)=v-v=0, (2.9a)
where we have introduced the velocities
ATVA = uir BB =v'r, (2.98)

These constraints further restrict the allowed initial conditions.

Clearly for the string propagation to be consistent, (causal), any point of the

string should move forward in time and not faster than light. In other words, if
—-tr((g_lg)g) >0 and —tr (T3 g'"l_tj') >0 (2.10)

are true at 7 = 0 then they must remain true at all later times 7. By using the
light-like velocities u and v introduced in (2.9) one can show that the conditions
(2.10) are equivalent to

w-v>0 and ud+v°>0. (2.11)



Note that the two velocities u and v depend only on ¢ + 7 and o — 7 respectively.
Using (2.11) and (2.9a) at 7 = 0 together with Schwarz’s inequality, one can show

that u® and v° must be separately positive at T = 0
w3(g)>0 and v3(o) > 0. (2.12)

Since u and v are both functions of one variable, (2.12) implies that they remain
separately positive at all later times, which is sufficient to guarantee that (2.11) and
(2.10) are satisfied at all 7. What we have shown then is that classically both point
particles and extended strings propagate consistently on the ‘space-time’ S Uﬁ, 1),
i.e. in accordance with relativity and causality. The rest of this paper is devoted to

the related quantum mechanical problem.

3. Kac-Moody Algebras for Non-Compact Groups

In this section we first summarize the algebraic structure underlying the problem of
string propagation on non-compact group manifolds. This is a rather straigthforward
generalization of the similar problem for the case of compact groups discussed in
detail in [2]. Here we recall the construction of highest weight representations of
KM algebras and associated Virasoro algebras mainly to establish our notations and
conventions. In this section we concentrate on the left-moving part of the theory only
since left- and right-moving parts are identical and they are completely decoupled

because of conformal invariance.

Our starting point is the KM algebra [5]
R, Th) = i am = Kg™nbimg  (nym€ Z). (3.1)
Here the f%, are the real structure constants of the underlying D-dimensional simple
Lie-algebra
[J%, 0% =if®J°,  abe=1,2,..D (3.2)
i.e. the subalgebra generated by J§, and g“b is the Cartan-Killing metric defined
by:
o Y% = Qg®. (3.3)
where

g = diag < £1 >, (3.4)



and the diagonal elements are -+1 (—1)} for compact (non-compact) directions re-
spectively. With this convention @ is positive, and is actnally the same for all real

forms of a given Lie algebra.

We use g* (and its inverse gab Which is of the same form) to raise and lower
indices in the usual way. The metric also enters the definition of the quadratic

Casimir-operator

2
C=35 9apT0JC. (3.5)

C commutes with the generators of the Lie-algebra, and if the generators are her-

mitian so is C.

Since we are interested in unitary representations of the KM algebra (3.1), we

require the generators to be hermitian;
() = T2, (3.6)

which is compatible with (3.1) provided the parameter K is real.

Given the generators in (3.1) it is natural to construct the Virasoro generators:
1 Z . gegb
Ln = ™ Jab : Jrdn_p: (3.7)
-

where 25 = @ — 2K and the normal ordering is defined with respect to the lower
indices n in the usual way. As usual the relationship between the Virasoro and KM
algebra (3.1) is:

[Ln, Jm] = ~m Jg+m
1 5 (3.8)
[Ln, Lm] = (n — m) Lngm + I_Z;Cvn(n = Déntm,0 »
where the central charge of the Virasoro algebra is given by:
2K
Cy = 2K — QD (39)

The simplest examples, and also the ones we will extensively use in our analysis,
are the KM algebras based on the Lie-algebras SU(2) and SU(1,1). In both cases
@ = 2 and the totally antisymmetric structure constants can be chosen to be the

same for both cases

fRe=¢e 4 pe=1,23. (3.10)



But the metrics are different:

g = diag < €,¢,1 >,

(3.11)

where ¢ = 1 and —1 for SU(2) and SU(1,1) respectively. From (3.9) we see that for

both of these groups the central charge of the Virasoro algebra is

K

=TT

It is useful to introduce the complex basis {J*,J 31, where
JE=Jtxis? |, (IH =J%

In this basis the algebras take the form

[J3,J%) = £J%
[Jt,J7] =2 J3.

The metric and the Casimir-operator are given by

and
C=RP -1+ JtT =P +1)+ eJ7JT

respectively.

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

Let us now turn to the representations of the KM algebra (3.1). The simplest

representations and also the ones relevant for string theory are the highest weight

(Fock space) representations. These are constructed as follows. One first postulates

the existence of the *vacuum’ representation {|a)}. This set of states is annihilated

by all generators with positive lower index n and constitute a representation of the

finite-dimensional subalgebra generated by {J§ }:

Ji o) = n>0

J§ 1)y =3 78 | B) [r%, 7 = if9rC.
B

(3.17)



For non-compact groups the nontrivial unitary representations are of course infinite
dimensional. For irreducible highest weight representations the Casimir-operator

(3.5) takes the same eigenvalue on all vacuum states |c)

2
Cla)y=0C|a) where C = agab’rc‘rb. (3.18)

Note that due to normal ordering, the positive index Virasoro generators also anni-

hilate the vacuum states and Lg reduces to a constant on them:

Lnla)=0 n>0

cQ (3.19)
Ly |a) = 30 — 2K) | o).

Starting from the vacuum representation {|a)}, the vectors of the representation
can be obtained by repeatedly acting with negative lower index generators on them.
The vectors of the representation can be characterized by their L eigenvalue (grade)
and it is easy to see that a basis for the vectors of grade N is provided by the states

of the form
UN) =TT I o) a1,09,.ay=1,2,...,D. (3.20)
Using (3.8) we can compute the actual Ly eigenvalue of the grade-N states

Lol ¥w) = (g =575 + V) %) (321)

10



4. Investigation of unitarity.

After this review of the highest weight representation of KM-Virasoro algebras, we
turn to the question of unitarity (positivity of the Fock space norms). The highest
weight representations of non-compact KM algebras just discussed are never unitary

because the norms of the states J2; | o)
12 el = (o | JfT2) |) = (| [T, J21] |a) = —Kg**(a | a) (4.1)

are indefinite (since g2 is). This observation in itself does not answer the question
whether string propagation on non-compact group manifolds can be physical. The
Hilbert space corresponding to the highest weight representations is the analogue of
the Fock-space spanned by the Lorentzian oscillators in the case of the free bosonic
string, which is also indefinite. The real question is whether the physical subspace
defined by the Virasoro constraints (1.9) is free of negative-norm, ghost states. If
we allow for an arbitrary intercept o, the constraints for the left-moving part of

the string are

Ly |®) =0 n>0 (4.2a)
Ly | ®) = ap | D). (4.2b)

These constraints, which express reparametrization invariance of the physical states,
are known to lead to a positive definite physical Hilbert space in the case of the free
bosonic string [6]. In the case of string propagation on My x G, the Hilbert space is
also restricted by these constraints, but once again their role is to eliminate the time-
like oscillations from the Minkowski-space part, My, of the theory, thus essentially
the same as for the free string. What we wish to investigate here is whether all
negative-norm states of non-compact KM algebras are eliminated by the constraints
(4.2). We shall see that the imposition of the constraints (4.2) is not sufficient
to eliminate all negative norm states of highest weight KM representations. We
shall show this by explicitly constructing ‘physical’ states that satisfy the Virasoro
constraints (4.2) but still have negative norms. (To be precise one should not call

such states physical, but for simplicity we continue to do so.)

We begin by demonstrating that as one might expect from its being the only

simple non-compact group with a single time-like direction SU(1, 1) is the only viable

11



candidate. At first sight this may seem very restrictive since for SU(1,1) D = 3 and
¢y may be less than 26, however one can always form a direct product of of SU(1,1)
with some other compact group to make D > 4 (and if necessary ¢, = 26). The idea
is to note that any other non-compact simple group contains both an SU(1,1) and
an SU(2) subgroup and that these two subgroups are mutually exclusive. In this
section we consider simple non-compact groups only, since the additional compact
factors, which may be necessary to account for the difference between 26 and the
Virasoro charge cy of the non-compact group, are not playing any role in the problem
of positivity.

We label the vacuum states by |jh}, where j(j + 1) and A are the eigenvalues
of the Casimir-operator and J? respectively, of either SU (2) or SU(1,1). (Here we
suppress additional quantum numbers that may be necessary to characterize them.)

We now take the most general grade one state in the J3 basis:
|@1) = 2 JE 1jh—1) +y T2y | jh+1) + 273, | k) (4.3)

where ,y and z are numerical coefficients. The grade-one state | 1) satisfies (4.2a)
if
I ) .
7= —E[df(;, h— 1)z + de(j, h)y) (4.4)

where

de(j,h) = \Jelj (7 + 1) — h(h +1)] (4.5)

is a normalization coefficient and € = 41 and ~1 for the case of SU(2) and SU(1,1)
respectively. Using (4.4) and the KM algebra, the norm of the physical state is

(@1 B1) = [26(1~ K — ) = (3 + 2) d2(j, h — 1]
+ [oell — K 4 B) — (g = ) &2, h)]? (4.6)

K , .
- 23‘2— de(j, h)de(j, b — 1)zy.

To ensure that all physical states (parametrized by « and y) have positive norms it is

necessary that the trace of the matrix defining the quadratic form (4.6) be positive

~2¢K (1+ j(j;g 1)) >0 (4.7)

12



where of course j and A are different for SU(2) and SU(1,1). For SU(2) e = +1 and
7(j +1)/h? is positive so (4.7) implies K < 0. For SU(1,1) e = —1, and j(j + 1)/?7,2
is indefinite, but A% can be arbitrarily large so (4.7) implies K > 0. Thus SU(2)
and SU(1,1) are mutually exclusive as claimed. So we are left with the SU(1,1)
group only and with the condition K > 0.

Let us now turn to the Ly-constraint (4.25). From (3.21), one concludes that the

physical states at grade N must correspond to vacuum representations with Casimir

Cy = 2-2-{%-9(N _ ag) (4.80)

which reduces for both SU(2) and SU(1,1) to
Cny =2(K — 1)}{(N — ap). (4.8b)

We see that the Hilbert space decomposes into infinitely many subspaces, each one
characterized by a highest weight state. According to (4.8) the physical states at
each grade are built on their own distinct vacuum. From this point of view (4.8) is

the analogue of the mass-shell condition for the free bosonic string,
1
P =m? = (N - ag), (4.9)

p? playing the role of the Casimir-operator and K — 1 that of the string tension.
This shows that there is a natural division of the range of K into 0 < K < 1 and
K> 1

The construction of the unitary representations of SU(1,1) is summarized in Ap-
pendix A. Equation (4.8) determines the Casimir eigenvalue of the SU(1, 1) vacuum-
representation, corresponding to grade-N physical states. Note that for large N the
class of representations is determined by the magnitude of K. For K < 1, the
asymptotic representations are the principal ones, whereas for K > 1 they are of

the discrete, or highest weight type. We will consider these two cases separately.

Before going into details, let us define the notion of extremal representations,
which will turn out to be useful in both cases. Let us start from a given irre-
ducible vacuum representation characterized by the parameter j. By acting with
the generators J%; on the vacuum states we can generate three irreducible SU(1, 1)

representations corresponding to j-values j 4+ 1,7 and j — 1 at grade 1. This follows

13



from the lemma of Appendix B with V' = J2,. Using this lemma m times, it is easy
to see that at grade m the 3™ independent states (3.20) belong to 3™ irreducible
SU(1,1) representations. Their j-values range from j —m to j + m. We will call

the representations corresponding to j & m the extremal representations:
C|EE) =(£m)(j+m+1)|Ey). (4.10)

It is not difficult to see that the representations ]Ei:,) (built on the corresponding
vacuum states labelled by jy) are physical for any grade N. To prove this, we note
that since the Virasoro constraints are SU(1,1)-invariant, the states Ly | E?\}) have
the same j-values as the extremal states themselves, namely j5 £ V. On the other
hand, the grade of these states is m = N — n and hence their j-values should be in

the range jy £+ (N — n). This excludes jn 4+ N, therefore the states must vanish:
Ln | EE) =0. (4.11)

Let us now consider the case K < 1. From (4.8) we find that for large enough N,

the j-value of the vacuum is

) 1 . 1

IN=-3 +wy, where wy = \/2(1 — K)}N — o) — T (4.12)
Therefore the vacuum carries a principal representation and consequently the eigen-
value of the Casimir on the N** extremal state have nonvanishing imaginary part,
2iNwy. It follows then that the representation is non-unitary. This result is also
consistent with one’s naive expectations since for negative string tension all but the

first few physical states are tachyonic.

Finally we turn to the most promising case of KX > 1, which is the analogue of
the free string with a positive string tension. In this case the vacuum states carry a

highest weight representation with highest weight state |jyjn) satisfying
J lin in) =0 and  J§ v in) =in lin i), (4.13)

where

R \/;(K ~ 1)V —ag) + 5. (4.14)

Here we can construct the extremal representation explicitly. We define

|EfY = (I LN in)- (4.15)

14



Using the KM algebra we can show that
JEEf)=0 and  JG|ER) =(n+N)|EF) (4.16)

so the extremal states also form a highest weight representation with highest weight

state
|Ef) = |in+N jn+N). (4.17)

But since from (4.14) asymptotically
in ~—=vN, (4.18)

for large /N the highest weight &y = jy+/NV becomes positive. Thus |E}G) is simul-
taneously a highest weight state and an eigenstate of Jg with positive eigenvalue and
such a state is incompatible with unitarity. This can be seen either from Appendix

A or can be verified directly by noting that

(EF|JtI~ | EY)
(E% |EL)

= —2hy < 0. (4.19)

For large K the magnetic quantum number fy first becomes positive for N ~
2K so negative-norm states first occur at grades of order of 2K. In the limit £%8, — 0
(Q — @) the KM algebra (3.1) reduces to the algebra of the free bosonic oscillators.
Indeed in this limit K — 400 (relative to @) and the ghost states disappear from
the physical spectrum.

Finally we note that despite of the noncompactness of the group the Fock space
basis is well defined (that is the basis states have finite norms relative to the vacuum
states). This is because of the structure of the KM algebra and the fact that the
Jg annihilate the vacuum for n > 0. This is in contrast with the embedding of a
noncompact Lie Algebra into a larger one (e.g. SO(2,1) into SO(3,1)) in which case
the relative normalizations are often not finite (e.g. the decomposition of a unitary
irreducible representation of SO(3,1) with respect SO(2,1) is a direct integral). So
in the present KM case the real question was therefore not whether the norms of

the states (3.20) are finite but whether they are positive.

15



5. Summary and Remarks

In this paper we have considered the problem of strihg propagation on non-compact
group manifolds. We have shown that the negative-norm, ghost states are not
all eliminated from the Hilbert space by the Virasoro constraints. This can be
interpreted as if truly consistent string propagation (positivity) rules out certain
manifolds, hence restricting the possible vacua of the string. In our example the
time direction is not decoupled from the non-trivial (curved) part of the manifold
as happens for the usually considered M4 x B case where My is a four-dimensional
Minkowski space and B is a compact internal space. It is clearly a very important
question, whether for other, more physical background space-time manifolds the

string propagation is truly consistent.

We would also like to make a few comments on the recent work of Polyakov et al.
In ref. [7] it has been discovered that the induced string action for two-dimensional
gravity can be solved exactly in the light-cone gauge. The key observation was that
there is an SL(2, R) current algebra satisfied by the components of the world-sheet
metric. It is natural to ask what is the relation between the traditional approach
adopted in our paper and that of ref. [7]. First, the stress-energy tensor of ref. [7]

is not just the Sommerfield-Sugawara one but contains an extra term as well:
T(z) = T55(2) + 8.1%(z). (5.1)

I=, It and I3 satisfy the commutation relations (3.14), illustrating the fact that
the Lie-algebras SL(2,R) and SU(1,1) are isomorphic. However, all the generators
are anti-hermitian in contrast to our case (3.13). More importantly, in addition
to requiring the full energy-momentum tensor (5.1} to vanish, there is an extra
constraint coming from the residual reparametrization symmetry of the light-cone

gauge:

I |®) =0 =n>0 (5.2)
This latter constraint breaks the SL{2,R) symmetry and is extremely restrictive.
Though the problem of unitarity is not investigated in ref. [7], it is likely that the

physical subspace is positive. To see how strong the constraint (5.2) is let us consider

a vacuum representation of the highest weight type. We write a general state | 9}
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in the form 7
| ®) = %frlj,j—r) (5.3)

where the amplitudes f, will be determined by (5.2). Before imposing the constraint
(5.2) on the state (5.3) we have to change the generators from the SL(2, R) basis of
ref. [7] to the SU(1,1) one used in this paper:

It = —%(zﬁ —Jt—J7)
I~ = _%(2.13 +J 4+ J7) (5.4)
B=ut-).
2
Using (5.4) we find the following recurrence relation among the amplitudes f:

26 = ) fr +/r(r =2 = 1)fr1]  (5.5)

showing that apart from normalization only a single physical state is left in the

= e~ %)

vacuum sector.

Finally one can consider the general problem of obtaining the unitarity of non-
compact KM algebras by imposing additional constraints. E.g. {5.2) breaks even the
SL(2, R) invariance. However one might be interested in group invariant constraints.
A natural set of such constraints would be the analogue of the Virasoro operators for
higher order Casimirs. However higher order Casimirs do not occur for SU(1,1) and
such operators alone would probably not produce unitarity for higher rank groups
because the number of time-like directions is always greater than the number of

Casimirs.
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Appendix A

In this appendix we summarize the classification of unitary irreducible representa-
tions of § UH, 1) [8], where S UF(T, 1) is the universal covering group of of SU(1,1).
We use the conventions introduced in section 3. These representations can be
grouped into three classes according to the spectra of C and J3. In all cases one

can choose an orthonormal basis |j &} such that

Clihy=35(+1)|jh) I =h|jh)

PN o e . (A1)
|7 h) =d(j,k) |jh+1) JT k) =d(j,h—1)]jh—1).

Note in particular that the eigenvalues of J3 are real and integer spaced. The

normalization constants
4>, k) = h(h+1) — G +1) (A2)

must be non negative for the representation to be unitary.

(i) The discrete series are characterized by a highest (lowest) weight state,
JElify=0  (J71i5) =0 (43)
and it follows that

j<0 h=j,j—1,... (G>~1 h=j j+1,..) (A4)

(ii) For the principal representations there is no highest weight and the spectrum
of J3 is unbounded

1
j_____§+i,g, h=a,axl,... 0<ax<]1 (A5)

and « is a real parameter.
(iii) In addition there are the ezceptional series for which —1 < j < 0 and % is
again unbounded.
Beside the unitary representations there are representations for which the U(1)
subgroup generated by J3 is still unitary, i.e. J° has real and integer spaced spec-
truﬁl, but for which the Casimir operator has complex eigenvalues. Such represen-

tations are necessarily non-unitary since on a positive Hilbert space the formally

18



self-adjoint Casimir would always possess a real spectrum. Indeed all eigenstates of

C have zero norm. This follows at once from the equations

77 +1)(¥,9) = (¥,C¥) = (CT,T) =j(j + 1)(¥,¥)

which require (U, ¥) = 0 for a complex j(j + 1}. Note however, that the algebraic

structure (A1), (A2) remains unchanged for these non-unitary representations.

Appendix B

We wish to show that the familiar SU(2) Clebsch-Gordan decomposition 91 ® ¥; =
91_1 ® 9 @ 941 also holds for SU(1,1). Let V7 be a vector-operator, i.e.

(T, V9] = i, VF (B1)

where the ieijk are the structure constants of SU(1,1). Furthermore, let |jA) be
the eigenstates of C and J2 in a given representation, then it follows that the set of

states
Viljhy  i=1,2,3 (B2)

decompose into irreducible representations with Casimirs parametrized by j — 1, 7
and j + 1. In other words the same branching rule holds as for SU(2). To show that
this is indeed the case we first observe that the states (B2) are obtained by acting
with J£ on the three basic states

Vv iih), VIV |jk) and V3 |jh). (B3)
They all have the same J? eigenvalue h. With respect to these states the Casimir

has matrix elements

c+2h 0 1
0 c—2h —1 |, where c=j(j+1) (B4)
—2d%(j,h—1) 2d%(j,h) c+2

One sees at once that the state (1,1,—2h) is a right-eigenvector with eigen-
value j(7 + 1). Together with the trace and determinant this eigenvalue uniquely
determines the remaining eigenvalues to be (j +1)(7 +2) and j(j — 1) as stated. In
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particular for the principal representations j = —%—}—z’ «, and the two representations
labeled by 7 — 1 and j + 1 have complex Casimirs and therefore are non-unitary.
Actually 5(j — 1) and (§ 4 1){(§ + 2) are complex conjugate of each other. Note that
the two zero norm states corresponding to these complex conjugate Casimirs are not |

necessarily orthogonal to each other.
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