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1 IntrodutionInstantons are self-dual solutions of the pure Yang-Mills equations [1℄. For the lassialgroups the omplete set of instanton solutions on R 4 (and via stereographi projetion S4)have been known for over twenty years. Although even now some important details remainobsure. For example, what is the metri on the k-instanton moduli spae [2, 3, 4℄ forR 4 instantons? This is an important ingredient in the instanton-theoreti heks [5, 6, 7℄of the Seiberg-Witten results [8℄ in N = 2 supersymmetri Yang Mills theory. For otherfour manifolds even less is known. A partiularly important manifold is the four torus T4.Firstly, it is ompat, thereby removing from the outset, any infrared divergenes. Unlikeother ompat four manifolds (e.g. S4 orK3) the four torus retains translational invariane,and is at. However, while T4 has all these attrative features the only known expliit T4instanton solutions are some reduible onstant urvature solutions due to 't Hooft [9℄.These exist only for speial values of the periods and an only represent singular points inthe moduli spae of a given instanton setor. The possibility that these onstant urvaturesolutions are the only instantons on T4 was ruled out a long time ago by Taubes [10℄.However, using the Nahm transformation, it an be shown that there exist no untwistedinstantons with unit topologial harge on T4 [11, 12℄. The work of Taubes establishedthe existene of instantons in all higher topologial harge setors. A similar pattern isfollowed by the O(3) sigma model instantons on T2 [13℄. Here the one instanton setor isempty, and this orresponds to the statement that there are no ellipti funtions with asingle simple pole in the fundamental torus.How should one start to look for instanton solutions on T4? An obvious approah wouldbe to adapt to the torus the tehniques developed in the late 1970's for the R 4 problem.Loosely speaking, we seek periodi versions of these ans�atze, sine instantons on T4 an beviewed as periodi solutions1 on R 4. The general solution to the instanton problem on R 4was provided by Atiyah, Drinfeld, Hithin and Manin (ADHM) [14℄. This work reduesthe problem of onstruting instantons on R 4 or S4 to an exerise in algebra. To onstrutan instanton with topologial harge k one must �nd a quaternioni (k+1)�k matrix,M ,obeying ertain non-linear reality onditions. However, while this onstrution is purelyalgebrai, its struture is very muh tied to the manifold R 4 or S4, and it appears diÆult1They an only be periodi in a singular gauge. 1



to `make it periodi' in a simple way. An important sublass of solutions is provided by the't Hooft ansatz [15, 16, 17, 18℄. This onverts a (singular) positive solution of the Laplaeequation into an SU(2) instanton. Sine this is a linear equation, it seems that we simplyhave to �nd a periodi solution of the Laplae equation to onstrut an instanton on thetorus. However, it is not too diÆult to show that it is impossible to onstrut a positivesolution of the Laplae equation on T4 with aeptable singularities (i.e. singularities whihdo not show up in the Yang-Mills ation density).In this paper we render the ADHM onstrution periodi by `brute fore', in that weregard instantons on the torus as a periodi lattie of instantons on R 4. We start withADHM data orresponding to an in�nite array of instantons embedded in R 4. While ourinitial objetive was to extrat the T4 instantons, we will see that the less ambitious targetto have periodiity in fewer than four diretions o�ers onsiderable tehnial simpli�ation.To that end we onsider the appliation of the ADHM method to SU(2) Yang-Mills onTn � R 4�n for n = 1; 2; 3; 4. Although T4 has no one instanton solution, S1 � R 3, T2 � R 2and T3 � R should have [12℄. Again the O(3)-sigma model provides a useful hint, sinewhile there are no one-instantons on T2, one-instanton solutions have been onstruted onS1 � R [19℄. As the R 4 topologial harge of a Tn � R 4�n instanton is in�nite we have todeal with an in�nite dimensional M matrix. For the k-instanton problem on Tn � R 4�n,M an be related to a U(k) Weyl operator on ~Tn, ~Tn being the torus dual to Tn. This isa manifestation of the Nahm transformation [20, 21℄.Reently this programme has been implemented by Kraan and van Baal in the one-instanton setor of SU(N) gauge theory on S1�R 3 [22, 23℄. Equivalent results were derivedindependently by Lee and Lu [24℄. These works revealed a vivid `monopole onstituent'piture of alorons (see also [25, 26, 27, 28℄). There is however an important pitfall in thiswhole approah; even if one has onstruted a Weyl operator on ~Tn via the ADHM methodone must hek that it atually leads to a well de�ned gauge potential on Tn�R 4�n.2 Herewe solve the ADHM onstraints for the one instanton problem on Tn � R 4�n and givepartiular solutions for the two instanton ase. However, we are only able to expliitlyhek that these sometimes lead to a well de�ned gauge potential for n = 2. This isbeause the tehnial task of solving the Weyl equation on ~Tn beomes more involved for2For n = 1 the proedure always leads to a well de�ned instanton.2



higher n. We will see that the n = 2 ase (i.e. T2 � R 2) boils down to a spei� AharonovBohm problem 3 on ~T2. A stringy interpretation of T2 � R 2 instantons an be found in[32℄. Our gauge potential on T2 � R 2 is well de�ned only if we apply ertain onstraintson the ADHM parameters. In the one instanton setor there is an upper limit on thesale parameter. For our sublass of two instantons further onstraints emerge. The two`omponent' instantons must share a ommon sale parameter whih itself is bounded fromabove. Furthermore, the relative group orientation of the two instantons is onstrained.The outline of this paper is as follows. In hapter 2 we briey reall the standard ADHMonstrution on R 4 and then explain in a general way how it an be `made periodi' inone or more diretions. In hapter 3 we solve the ADHM onstraints for the one-instantonproblem on Tn� R 4�n. The assoiated Weyl operator on ~Tn is given expliitly in terms ofa spei� Green's funtion for the Laplae operator on ~Tn. Then we speialise to T2� R 2,where the Weyl equations seem to be more manageable than in the general ase. Finallyin hapter 4 we disuss the two instanton problem. Some tehnial results are given in theappendies.During the writing up of this paper we beame aware of some related work by Jardim.In a series of papers [33, 34, 35℄ a mathematially sophistiated analysis of the Nahmtransformation on T2 � R 2 has been given. A somewhat more physial aount an befound in [36℄ where the Jardim formalism is applied to periodi monopoles, i.e. instantonson S1 � R 2 so that the dual torus is ~S1 � R instead of ~T2.2 ADHM onstrutionIn this hapter we review the standard ADHM onstrution on R4. We then explain howthe formalism an be extended to Tn � R 4�n. This is a straightforward extension of theS1 � R 3 formalism.2.1 ADHM on R4Closely following the presentation of Christ Weinberg and Stanton [37℄ (see also [38℄) webriey reall the ADHM onstrution. For simpliity we speialise to the gauge group3To our knowledge the extensive literature on the AB problem (see for example [29, 30, 31℄) does notexpliitly takle this spei� ase. 3



SU(2). We wish to onstrut a self-dual SU(2) Yang-Mills �eld A�(x) on R 4 with topo-logial harge or instanton numberk = � 116�2 ZR 4 d4x tr (F��F��) : (2.1)Here the Yang-Mills �eld strength isF�� = ��A� � ��A� + [A�; A�℄; (2.2)and the gauge �eld A� an be viewed as a 2� 2 anti-Hermitian traeless matrix. However,one an equally regard A� as being a purely imaginary quaternion. Reall that the spaeof quaternions H has four generators i� = (1; î; ĵ; k̂) where the î, ĵ, k̂ antiommute andsatisfy î2 = ĵ2 = k̂2 = �1; îĵk̂ = �1: (2.3)The transition bak to the standard Pauli matrix language an be made via the identi�-ations î$ �i�1, ĵ $ �i�2, k̂ $ �i�3. We will use � to denote quaternioni onjugation(i.e. 1� = 1, î� = �î, ĵ� = �ĵ, k̂� = �k̂). In the following y should be understood as thetranspose of the quaternioni onjugate.The reipe for onstruting a self-dual A� with instanton number k is as follows. Onesimply has to onstrut a k + 1� k quaternioni matrix M with the following properties:i) the k � k matrix M yM is real.ii)M is linear in the quaternion x � x0+x1 î+x2ĵ+x3k̂ formed from the four Eulideanoordinates.The orresponding anti-hermitian self-dual gauge potential is given byA�(x) = N y(x)��N(x); (2.4)where N(x) is a k + 1 omponent olumn vetor satisfyingM yN = 0; and N yN = 1: (2.5)Without loss of generality one may assume M has the following form [37, 38℄M = � v̂M � ; (2.6)4



where v is a k-omponent row vetor v made up of k onstant quaternionsv = (q1 q2 ::: qk): (2.7)These quaternions enode the sales and SU(2) group orientation of the k `omponent'instantons. M̂ is a k � k matrix with the following `anonial' formM̂ij(x) = Æij(yi � x) + bij: (2.8)bij is independent of x, symmetri and has no diagonal entries (bij = 0 for i = j). Thereality of M yM translates into the following non-linear requirement on bij12(q�i qj � q�j qi) + (yi � yj)�bij + 12 kXl=1 �b�liblj � b�ljbli� = rij; (2.9)for some real k � k matrix r. The yi an be interpreted as the quaternioni positions ofthe instantons. One an immediately write down a olumn vetor N satisfying (2.5)N = 0B� up�� 1p� �M̂ y��1 vy u 1CA ; (2.10)and � = 1 + vM̂�1 �M̂ y��1 vy: (2.11)Here u is an arbitrary, possibly x-dependent unit quaternion; di�erent hoies for u yieldgauge equivalent Yang-Mills �elds. Observe that it is neessary to invert the anonialform M̂ to extrat the �nal gauge potential. In the singular gauge u(x) = 1, the potentialan be written, A� = � 12�v �M̂�1��M̂ y�1 � ��(M̂�1)M̂ y�1� vy: (2.12)The orresponding �eld strength readsF�� = 1�vM̂�1i� f i��(M̂ y)�1vy � [�$ �℄; (2.13)where f is the real k � k matrixf = (M yM)�1 = M̂�1(M̂ y)�1 � 1�M̂�1(M̂ y)�1vyvM̂�1(M̂ y)�1: (2.14)5



The reality of f ensures that F�� is self-dual.One immediately sees that A�(x) is una�eted by the following transformation on theADHM data M̂ ! O�1M̂O; v ! vO; (2.15)where O is a k�k real orthogonal matrix. Invoking this freedom one may argue that rij anbe set to zero [37℄. With this hoie bij is fully determined by the 8k parameters enodedin the qi and yi. Three of these parameters orrespond to the global gauge symmetry. Thisfreedom an be �xed by taking q1 to be real, leaving 8k� 3 genuine moduli parameters. Atrivial but useful onsequene of the `symmetry' (2.15) is that the qi are determined onlyup to a sign. If we ip the sign of one of the qi, say q3 ! �q3, then this orresponds tothe orthogonal transformation O = diag(1; 1;�1; 1; 1; ::::).2.2 ADHM on Tn � R4�nWe view Tn as Rn modulo a n dimensional lattie � generated by n quaternions e0, e1,... ,en�1 orresponding to n orthogonal vetors. The periods or equivalently the Eulideanlengths of the ei are denoted by Li; i = 0; 1; :::; n�1. First we will show how (in priniple)one an produe instantons whih in the singular gauge (i.e. u(x) = 1 as in eqn. (2.12))are periodi with respet to shifts by the lattie generators,A�(x+ ei) = A�(x); i = 0; 1; ::; n� 1: (2.16)Later we will onsider a more general periodiity property whih proved ruial in obtainingnew 1-instanton solutions on S1 � R 3. To onstrut a k-instanton on Tn � R 4�n � R 4=�onsider the following set up. For every � 2 � we have instantons at the positions yi+� withrespetive sale/orientation quaternions qi where i = 1; 2; :::; k enumerates the instantonsin the fundamental ell. The quaternions yi give the instanton positions in the fundamentalell. Thus, our M̂ and v now have the following struturev�i = qi; M̂��ij = ÆijÆ��(yi + �� x) + b��ij ; i; j = 1; 2; :::; k; �; � 2 �: (2.17)The matrix b��ij has the propertiesb��ij = b��ji ; b��ii = 0 (no sum); (2.18)6



and 12(v�i �v�j � v�j �v�i ) + (yi � yj + �� �)�b��ij + 12 kXl=1 X2� �b�li �b�lj � b�lj �b�li � = 0: (2.19)Now that M̂ is an in�nite dimensional matrix the non-linear onstraint appears muh moreformidable than its R 4 ounterpart (2.9). Moreover, even if we an solve the onstraintwe still fae the problem of inverting M̂ . We see that the onstraint implies b��ij has thefollowing property b̂��ij = b��� 0ij ; �; � 2 �: (2.20)At this point it is useful to perform a Fourier transform [22℄;vi(z) =X�2� v�i e�i��z; M̂ij(z)Æn(z � z0) = X�;�2� M̂��ij ei��z�i��z0; (2.21)where Æn(z � z0) is a n-dimensional delta funtion whih is periodi with respet to thedual lattie ~� = fz 2 Rnj(2�)�1z � � 2 Z for all � 2 �g: (2.22)Here � � z denotes the usual salar produt in Rn, i.e. � � z = Pn�1j=0 �jzj. The deltafuntion has the Fourier representationÆn(z) = 1~VX�2� ei��z; (2.23)where ~V = (2�)n=L0L1:::Ln�1; (2.24)is the volume of the dual torus ~Tn := Rn=~�. Using (2.17) M̂ij an be written as follows~V�1M̂ij(z) = Æij  �idz � x + 1k kXl=1 yl!� iÂij(z); dz = n�1Xi=0 ii�zi ; (2.25)and �iÂij(z) = Æij  yi � 1k kXl=1 yl!+X�2� b�0ij ei��z; (2.26)7



an be regarded as a SU(k) (U(1) for k = 1) potential on the dual torus ~Tn. From now onwe will assume (without loss of generality) thatkXl=1 yl = 0; (2.27)so that ~V�1M̂ij(z) = Æij(�idz�x)� iÂij(z). The z-spae analogue of M an be written asM = � vi(z0)M̂ij(z)Æn(z � z0) � : (2.28)We also require M y M y = � (vy)i(z) (M̂ y)ij(z)Æn(z � z0) � ; (2.29)where (vy)i(z) =X�2� (v�i )� ei��z; (M̂ y)ij(z)Æn(z � z0) = X�;�2��M��ji �� ei��z�i��z0; (2.30)so that ~V�1M̂ yij(z) = Æij(�id�z � x�)� iÂ�ij(z). We now onsider the produt M yM(M yM)ij(z; z0) = (vy)i(z)vj(z0) + ~V�1 Z ~Tn dnw(M̂ y)ik(z)Æn(z � w)M̂kj(w)Æn(w � z0)= (vy)i(z)vj(z0)+~V�2 �Æik(�id�z � x�)� iÂ�ik(z)� �Ækj(�idz � x)� iÂkj(z)� Æ(z � z0):(2.31)In z-spae the onstraint that M yM is real redues to the self-duality equation for theSU(k) ( or U(1) ) potential Âij(z), but with delta funtion soures. These soures omefrom the (vy)i(z)vj(z0) term; with the hoie (2.17) we have vi(z) = ~VqiÆn(z).It is also possible to arrange so that in the singular gauge u(x) = 1, A�(x) is periodimodulo global gauge transformations. This is ahieved by replaing v�i = qi withv�i = e(��!)l̂qi; (2.32)where ! is an element of the dual torus and l̂ is a purely imaginary unit quaternion. Inthe u(x) = 1 gauge, the instanton potential has the following periodiity propertiesA�(x+ ei) = e(ei�!)l̂A�(x)e�(ei�!)l̂: (2.33)8



This hoie of v�i still entails delta funtion soures on the dual torusvi(z) = 12 ~V h�1� il̂� Æn(z � !) + �1 + il̂� Æn(z + !)i qi: (2.34)�1 + il̂� and �1� il̂� are projetors in the sense that�1� il̂�2 = 2�1� il̂� ; �1 + il̂��1� il̂� = 0: (2.35)Looking at the expression (2.12) for the R 4 gauge potential we see that it suÆes toompute the k-omponent row vetor n := vM̂�1. The Tn � R 4�n analogue of this objetis the z-dependent k-omponent row vetor, n(z), with omponentsnj(z) = ~V�1Xi Z ~Tn dnz0 vi(z0)M̂�1ij (z0; z); (2.36)and similarly the k-omponent olumn vetor ny(z) has omponents(ny)i(z) = ~V�1Pj R ~Tn dnz0(M̂ y)�1ij (z; z0)(vy)j(z0). HereM̂�1ij (z; z0) =P�;� �M̂�1���ij ei��z�i��z0, so thatM̂(z)M̂�1(z; z0) = ~V2Æn(z � z0): (2.37)Using (2.34) we havenj(z) = 12 �1� il̂� qiM̂�1ij (!; z) + 12 �1 + il̂� qiM̂�1ij (�!; z); (2.38)whih redues to nj(z) = qiM̂�1ij (0; z) in the periodi ase (! = 0). The Tn � R 4�n gaugepotential an be writtenA� = � ~V�12� Z ~Tn dnz �n(z)��ny(z)� ��(n(z))ny(z)� ; (2.39)where � is now � = 1 + ~V�1 Z ~Tn dnz n(z)ny(z): (2.40)Note that the integrand, n(z)ny(z) in (2.40) is not neessarily real, although the integralitself, R dnz n(z)ny(z), is real and positive (see setion 3.2).The orresponding �eld strength isF�� = V�2� Z ~Tn dnz Z ~Tn dnz0n(z)i�f(z; z0) i��ny(z0)� [�$ �℄; (2.41)9



where the Green's funtion f(z; z0) isf(z; z0) = (M yM)�1(z; z0) (2.42)= ~V�1 Z ~Tn dnyM̂�1(z; y)(M̂ y)�1(y; z0)� ~V�2� Z ~Tn dnyM̂�1(z; y)ny(y) Z ~Tn dny0n(y0)(M̂ y)�1(y0; z0):As we shall see, all the formulae in this setion require partiularly areful handling forn > 1.3 One-instantonsIn this hapter we onsider in some detail the one instanton problem on Tn � R 4�n. Inpartiular we expliitly determine the ADHM matrixM . Under the Fourier transform thisbeomes a Weyl operator assoiated with an Abelian self-dual potential Â(z) on the dualtorus ~Tn. Unfortunately we do not have a general approah to the solution of suh Weylequations. In setion 3.2 we onentrate our attention on the ~T2 Weyl equation (orre-sponding to one instantons on T2 � R 2) where Â(z) is an Aharonov Bohm potential on~T2. The ADHM onstrution of the instanton potential A�(x) and F��(x) is onsidered.For values of x restrited to a two dimensional subspae of T2�R 2 losed forms for A�(x)and F�� are given. From a mathematial standpoint the alulation is not ompletely sat-isfatory; a formal limiting proedure is employed to obtain the gauge potential. However,we are able to hek that the �eld strength is self-dual and that tr(F��)2 is non-zero andsmooth. Moreover, in setion 3.3 we see that our potential an be interpreted as the Nahmtransform of the AB potential Â(z). More spei�ally, we identify the two Nahm zeromodes assoiated with Â(z).3.1 ADHM onstraints for Tn � R4�nLet us start by onsidering 1-instanton solutions on Tn�R 4�n. If we seek instantons whihare stritly periodi in the u(x) = 1 gauge we are immediately restrited to S1 � R 3. Thisis beause all the instantons in our lattie will, by onstrution, have the same sale/grouporientation q1 and hene be of the 't Hooft type. Sine the 't Hooft instantons on S1 � R 3are well known [39℄ we will examine the more general instanton array (2.32).10



Without loss of generality we an assume that q1 is a real quaternion whih we identifyas the `sale' �, so that v� = e(��!)l̂�; (3.1)where we have dropped the redundant 1 subsript on v�. The M̂ matrix has the formM̂�� = Æ��(�� x) + b��: (3.2)We now have to determine the b matrix via (2.19). Under the Fourier transformation thisis a self-duality equation on the dual torus ~Tn. However, it is instrutive to examine theonstraint equation in the original (matrix) variables. In Appendix A we will argue thatfor k = 1 the quadrati term in (2.19) is zero, i.e. the b matrix is simplyb�� = � 12(�� �)� �v��v� � v��v�� = �2(�� �)� l̂ sin [(�� �) � !℄ ; � 6= �: (3.3)In order to onstrut the potential we must now invert the M̂ matrix. To failitate thiswe perform the Fourier transform elaborated in setion 2.2,~V�1M̂(z) = �idz � x� iÂ(z); (3.4)where Â(z) is the U(1) potential Â(z) = i�2dz�(z)l̂; (3.5)and � is the real funtion�(z) = �12 X�2�n0 exp[i� � (z + !)℄� exp[i� � (z � !)℄j�j2 ; (3.6)whih is a Green's funtion for the Laplae operator on ~Tndzd�z�(z) = ~V2 [Æn(z + !)� Æn(z � !)℄ : (3.7)Clearly �(z) is an odd funtion �(�z) = ��(z): (3.8)Writing Â(z) = Pn�1l=0 ilÂl(z), one an hek that the Abelian �eld strength F̂ij(z) =�iÂj � �jÂi is self-dual, exept at the singularities z = �!.11



3.2 One-instantons on T2 � R2Sine our lattie is two dimensional we may take e0 to be real and e1 to be proportionalto the purely imaginary unit quaternion l̂ 4. Now rewrite the quaternion z as followsz = z0 + l̂z1 = 12 �1� il̂� z + 12 �1 + il̂� �z; (3.9)where z = z0 + iz1, �z = z0 � iz1 denote standard omplex oordinates. We an write theFourier transformed M̂ as follows~V�1M̂(z) = �idz � x� iÂ0(z)� il̂Â1(z); (3.10)where Â0 = �i�2�z1�; Â1 = i�2�z0�; (3.11)and � is the Green's funtion de�ned by (3.6). Sine we are on ~T2 we an write � diretlyin terms of Jaobi theta funtions5�(z) = ~V8� log ���� �L02� (z + w) + 12 + iL02L1 ; iL0L1 ����2���� �L02� (z� w) + 12 + iL02L1 ; iL0L1 ����2 + (z� �z)(w� �w)4 � iw � �w4L1 ; (3.12)where w = !0 + i!1, �w = !0 � i!1. The assoiated �eld strength is given by F̂01 = i�2��,whih is zero exept at z = �!. At the points ! + ~�; ~� 2 ~� we have a `ux tube' ofstrength 12�2 ~V , and at the points �! + ~�; ~� 2 ~� we have ux tubes of strength �12�2 ~V.What about the x term in (3.10)? It will prove onvenient to deompose x into twopiees x = xjj + x?; (3.13)where xjj and x? respetively ommute and antiommute with l̂. Therefore the xjj on-tribution just amounts to shifting Â0 and Â1 by onstants, while x? is akin to a massterm.4We an always perform an O(4) Lorentz transformation to arrange this.5We follow the notation of Mumford [40℄; �(z; �) = P1n=�1 e�in2�+2�inz. In the fundamental torus�(z; �) has a single zero at z = 12+ 12� , and has the periodiity properties �(z+1; �) = �(z; �); �(z+�; �) =e��i��2�iz�(z; �). 12



Figure 1: Flux tubes threading the dual torus at the points !+ ~� and �!+ ~� with equaland opposite strengths.We an write M̂(z) as follows~V�1M̂(z) = e�il̂�2�(z) ��idz � xjj� eil̂�2�(z) � x?: (3.14)This is not a pure gauge deomposition sine the argument of the exponential is not a purephase. If x? = 0, one an immediately write down a formal inverse for M̂M̂�1(z; z0) = ~Ve�il̂�2�(z)G(z � z0)eil̂�2�(z0); (3.15)where G(z � z0) is the periodi free Green's funtion de�ned by6��idz � xjj�G(z � z0) = Æ2(z � z0); (3.16)and has the Fourier series representationG(z � z0) = ~V�1X�2� ei��(z�z0)�� xjj : (3.17)The inverse (3.15) obviously satis�es M̂(z)M̂�1(z; z0) = ~V2Æ2(z�z0) for z 6= �!. However,due to the singularities at z = �! some aution is alled for when interpreting (3.15) asthe inverse of M̂ . We will return to this point in the next setion. For now we will stikwith (3.15). G(z) an be deomposed as followsG(z) = 12 �1� il̂�G�(z) + 12 �1 + il̂�G+(z); (3.18)6This Green's funtion exists for xjj =2 �. 13



where G�(z) are the following standard (i.e. omplex rather than quaternioni) free Green'sfuntions ��i�z � 12�xjj�G+(z) = 12Æ2(z); ��i��z � 12xjj�G�(z) = 12Æ2(z): (3.19)Here �z = 12(�z0 � i�z1), xjj = (xjj)0 + i(xjj)1 and the bar denotes omplex onjugation.Evidently G+(z) = G�(�z): (3.20)Now that we have the inverse of M̂ (at least for x? = 0) let us start the omputationof the gauge potential A�(x). As was emphasized in the introdution it is not guaranteedthat A�(x) atually exists. We begin by onsidering �(x) for our putative one-instanton.Inserting (3.15) into (2.38) yieldsn(z) = �~V2 h�1� il̂� e�2(�(!)��(z))G�(! � z) (3.21)+ �1 + il̂� e��2(�(�!)��(z))G+(�! � z)i :We now appear to be in trouble; �(z) ! �1 as z ! �!, and so n(z) is proportional tothe `in�nite' onstant e�2�(!). Thus it appears that our use of the inverse (3.15) was indeedunwarranted. Note that this problem is absent on S1 � R 3; while the derivative of �(z)is disontinuous at z = �!, �(�!) is well de�ned. For now we will proeed formally andtreat �(!) = ��(�!) as if it were a �nite onstant. The integrand in (2.40) isn(z)ny(z) = �2 ~V2e2�2�(!)2 h�1� il̂� e�2�2�(z)jG�(! � z)j2 (3.22)+�1 + il̂� e2�2�(z)jG+(�! � z)j2i :Here ny(z) = n�(�z): Clearly the integrand (3.22) has singularities over and above thequestionable e2�2�(!) fator. We also note that n(z)ny(z) is not real. Now we will arguethat these singularities are integrable provided0 < �2 ~V < 4�: (3.23)In the neighbourhood of z = ! we have the following singularity pro�lejG�(! � z)j2 / 1jz� wj2 ; jG+(�! � z)j2 non-singular: (3.24)14



jG�(! � z)j2 has a non-integrable singularity at z = !. However, we must also onsiderthe behaviour of �(z) at z = ! �(z) � � ~V4� log jz� wj: (3.25)Near z = ! we have jG�(! � z)j2e�2�2�(z) / jz� wj�2+�2 ~V=(2�): (3.26)This singularity is integrable for �2 > 0. In fat if we take �2 ~V � 4� the singularity disap-pears. However, then jG�(!� z)j2e�2�2�(z) will not be integrable at z = �!. Aordingly,for integrability at both z = ! and z = �! we must impose (3.23).The bound (3.23) is nothing but the statement that �2, the square of the ADHM sizeparameter, should not exeed the volume of the two-torus T2. Looking at the Abelian U(1)potential Â(z) the bound is quite natural. Given that its assoiated �eld strength is zeroaway from the uxes one an formally write it as a pure gauge, i.e. Âi(z) = �zi�(z). �(z)is of ourse singular at the uxes, but for 0 < �2 ~V < 4� has a branh ut joining the twouxes. At the ritial value �2 ~V = 4� the branh ut disappears, i.e. � is single-valuedon ~T2. Then Â(z) is truly a pure gauge and hene physially indistinguishable from the�2 ~V = 0 ase.Let us now return to the problem of the in�nite onstant e�2�(!) whih seems to renderour instanton meaningless. De�ne a `�nite' n as follows�~Vnf(z) := e��2�(!)n(z): (3.27)For x? = 0 we have nf(z) = 12 �1� il̂� e��2�(z)G�(! � z) + 12 �1 + il̂� e�2�(z)G+(�! � z),whih is �nite exept at the uxes z = �!. The gauge potential an be writtenA�(x) = �R ~T2 d2z hnf (z)��nyf(z)� �� (nf (z))nyf (z)i2�e�2�2�(!)��2 ~V�1 + R ~T2 d2z nf(z)nyf (z)� ; (3.28)where the �� derivative is with respet to x�. The only remnant of the in�nite onstantis the e�2�2�(!) term in the denominator of (3.28); this exponential an be interpreted as`zero', i.e. for our �nal potential we should takeA�(x) = �R ~T2 d2z hnf (z)��nyf (z)� ��(nf (z))nyf(z)i2�f(x) ; (3.29)15



where �f(x) = Z ~T2 d2z nf(z)nyf (z): (3.30)Although nf (z)nyf (z) is not real a short alulation suÆes to express �f in a manifestlyreal and positive form (here we use that �(z) is an odd funtion, i.e. equation (3.8))�f (xjj) = Z ~T2 d2z e�2�2�(z)jG�(! � z)j2: (3.31)So �nally, the role of the in�nite onstant is simply to expunge the 1 from the de�nition of�. Without the 1 the in�nite onstant simply drops out of the �nal potential A�(x). Thisis in sharp ontrast to the situation on S1�R 3, where the 1 term must be kept sine �(!)is a �nite onstant.While (3.29) represents the �nal gauge potential we have only given nf(z) and �fexpliitly for the speial ase x? = 0. To onstrut nf (z) for x? 6= 0 is non-trivial. If wetry to bring the x? inside the braket of equation (3.14) we get~V�1M̂(z) = e�il̂�2�(z) ��idz � xjj � x?e�2il̂�2�(z)� eil̂�2�(z): (3.32)Proeeding as in the x? = 0 ase we an write the inverse as followsM̂�1(z; z0) = ~Ve�il̂�2�(z) ~G(z; z0)eil̂�2�(z0); (3.33)where ~G(z; z0) is no longer a free Green's funtion��idz � xjj � x?e�2il̂�2�(z)� ~G(z; z0) = Æ2(z � z0): (3.34)Inserting (3.33) into (3.27) yieldsnf(z) = 12 h�1� il̂� ~G(!; z) + �1 + il̂� ~G(�!; z)i eil̂�2�(z): (3.35)A more detailed disussion of the properties of nf for x? 6= 0 will be given elsewhere.The �eld strength derived from (3.29) isF�� = ~V�1�f (x) Z ~T2 d2z Z ~T2 d2z0 nf (z) i� f(z; z0) i�� nyf (z0)� [�$ �℄; (3.36)
16



where f(z; z0) isf(z; z0) = ~V�1 Z ~T2 d2yM̂�1(z; y)(M̂ y)�1(y; z0) (3.37)� ~V�1�f (x) Z ~T2 d2yM̂�1(z; y)nyf(y) Z ~T2 d2y0nf(y0)(M̂ y)�1(y0; z0):Equations (3.36) and (3.37) are `�nite' forms of (2.41) and (2.42), respetively; as with thegauge potential the n(z) vetor is replaed with its �nite form, nf (z), and the 1 in � isremoved.Sine on the plane x? = 0 the expliit form of nf(z) and M̂�1(z; z0) are at hand we analso give a losed form for f(z; z0):f(z; z0) = 12 �1� il̂� f�(z; z0) + 12 �1 + il̂� f+(z; z0); (3.38)where f�(z; z0) = ~Ve��2�(z)g�(z; z0)e��2�(z0); (3.39)and g�(z; z0) = Z ~T2 d2yG�(z � y)e�2�2�(y)G�(y � z0) (3.40)� 1�f Z ~T2 d2yG�(z � y)e�2�2�(y)G�(�! + y)� Z ~T2 d2y0G�(�! � y0)e�2�2�(y0)G�(y0 � z0):A suÆient ondition for the self-duality of F��(x) is that f(z; z0) ommutes with thequaternions. This ondition is equivalent tog+(z; z0) = e2�2�(z)g�(z; z0)e2�2�(z0): (3.41)A (somewhat roundabout) proof of (3.41) is given in Appendix B.To sum up, the gauge potential, A�(x), and hene the �eld strength, F��(x), an bewritten in terms of the `renormalised' nf (z). We have expliitly determined nf (z) on theplane x? = 0. At the point x = 0 (i.e. xjj = x? = 0) nf and hene A� is ill de�ned. Thisis no surprise sine we are working in the singular gauge u(x) = 1. The singularity has itsorigins in the zero mode struture of the G�(z); we an writeG+(z) = � 1~V�xjj +G0+(z); G�(z) = � 1~Vxjj +G0�(z); (3.42)17



where the G0�(z) have no zero modes and are thus well de�ned for xjj = 0. AlthoughA� diverges at x = 0, loal gauge invariants suh as tr(F��)2 (no sum) should be smooth(presumably C1). As for the �eld strength itself, F��(x), this is not smooth at x = 0, butits omponents must be bounded. Let us onsider F�� at x? = 0 with xjj � 0. For xjj � 0the zero modes in (3.42) dominate and so we have7nf (z) � �e��2�(z)2xjj ~V �1� il̂�� e�2�(z)2�xjj ~V �1 + il̂� ; (3.43)thus �f � jxjjj2 ~V2 ; (3.44)where  = Z ~T2 d2z e2�2�(z): (3.45)Plugging (3.43) and (3.44) into the �eld strength formula (3.36) we see that in order tohave a bounded F�� in the viinity of x = 0, f(z; z0) must be well behaved for xjj � 0. Tosee this onsider, F01 = F23, whih for x? = 0 and xjj � 0 has the formF01 � �2i1 ~V�1 Z ~T2 d2z Z ~T2 d2z0 e�2�(z)e�2�(z0)f(z; z0): (3.46)F02 and F03 are a bit more ompliated; here one �nds phases of the form �xjj=xjj whihdo not have de�nite values at xjj = 0. These phases are an artifat of the singular gauge;tr(F02)2 and tr(F03)2 are well behaved at xjj = 0. We now show that f(z; z0) is smooth inthe viinity of xjj � 0. Sine the exponentials in (3.39) are xjj-independent it suÆes toshow that g+(z; z0) has a well de�ned xjj ! 0 limit. Glaning at (3.40) one sees that the�rst term in g+(z; z0) has double and single poles in xjj and �xjj. These poles are anelledby the seond term. After some algebra one �nds thatg+(z; z0) = Z ~T2 d2y �G0+(z � y)�G0+(�! � y)� e2�2�(y) �G0�(y � z0)�G0�(y + !)��1 Z ~T2 d2y e2�2�(y) �G0+(z � y)�G0+(�! � y)�� Z ~T2 d2y0 e2�2�(y0) �G0�(y0 � z0)�G0�(y0 + !)�+O(xjj); (3.47)7Stritly speaking (3.43) is only good away from z = �!. But as we are always dealing with integrablesingularities we may safely employ (3.43) under the integral sign.18



whih is well de�ned at xjj = 0. A similar expression an be obtained for g�(z; z0). From(3.39) the integrand in (3.46) is simply g+(z; z0) and so all we have to do is to integratethe right hand side of (3.47) over z and z0. Sine the G0�(z) integrate to zero this is trivial.Putting all this together yieldsF01 = �2i1 ~V2 �Z ~T2 d2y e2�2�(y)jG0+(�! � y)j2 (3.48)�1 ����Z ~T2 d2y e2�2�(y)G0+(�! � y)����2#+O(xjj):The ontent of the brakets is stritly positive, i.e. we have not simply determined the �eldstrength at a point where it is zero.3.3 Nahm transform interpretationIn the previous setion we implemented the ADHM onstrution in the one-instanton setorfor T2 � R 2. However, in ontrast to the aloron problem n(z) appears not to exist. Thiswas irumvented by formally extrating an in�nite fator to obtain the `�nite' nf(z). Herewe will explain preisely how the gauge potential (3.29) an be interpreted as the Nahmtransform of the AB potential (3.11). We would like to stress that this does not entail thekind of formal manipulations we used to derive (3.29) in the �rst plae via the ADHMonstrution.The Weyl operator on ~T2 assoiated with Â(z) has two square integrable zero modes8. These modes an be identi�ed with the olumns of nyf(z) when the quaternioni objetnf (z) is reast as a 2� 2 matrix with omplex entries. To set the sene let us briey reallhow the Nahm transformation is formulated on T4. Consider a self-dual SU(N) potentialA�(x) on T4 with instanton number k. Then one studies the Weyl operator assoiatedwith the U(N) potential obtained by adding a onstant abelian potential �iz� to A�Dz(A) = i�D�z (A); D�z = �� + A�(x)� iz�: (3.49)Provided ertain mathematial tehnialities are met Dy = �i��D�z (A) has k square inte-grable zero modes  iz(x) with i = 1; 2; :::; k. For onveniene we take them to be normalised8In ref [36℄ where the dual torus was take to be ~S1�R a limiting ase of ~T2, dim(kerD̂y) = 2 was alsoobtained. 19



to unity. The U(k) potentialÂij� (z) = ZT4 d4x izy(x) ��z� jz(x); (3.50)is a self-dual potential on the dual torus ~T4 with instanton number N . On T4 this proedureis involutive and (in a suitable gauge) free of singularities.Let us write the Weyl operator assoiated with the AB potential (3.11) as a 2 � 2matrix: � i2Dyx(Â) = S � i��z + 12xjj � i��z� 12x?�12�x? i�z + 12�xjj + i�z� �S�1; (3.51)where 9 S = (1l � i�2)=p2 and x? = x2 + ix3. For x? = 0 one an write down twosquare-integrable zero modes for Dyx(Â) 1x(z) = 1p�f S � e�2�(z)G�(z + !)0 � ;  2x(z) = 1p�f S � 0e��2�(z)G+(z � !) � : (3.52)Both zero modes are singular at z = �!. Inserting these (normalised) zero modes into(3.50) yields exatly the same potential (disarding the U(1) part of the U(2) onnetion) asonstruted in the previous setion. If one writes nyf as a 2�2 matrix the olumns are (uptoa normalisation fator) the Nahm zero modes. As should be lear from the onsiderationsof the previous setion it is non-trivial to obtain the zero modes for x? 6= 0. The ruialfeature of these zero modes is that although they are singular at the uxes z = �! the Weylequation does not have soures, i.e. Dyx(Â) ix(z) is exatly zero. Basially, the dampingexponentials soften the singularities of the Green's funtions G�(z + !) and G+(z � !) sothat no delta funtion soures our on the right hand side of the Weyl equation.It is also instrutive to ompare the situation on T2�R 2 with the aloron ase (S1�R 3).It is easy to write down the orresponding zero modes on ~S1 for the aloron problem.One simply replaes the ~T2 Green's funtions �, G+ and G� with their ~S1 ounterparts.However, in this ase the Weyl equations do have soures. The e��2�(z), being �nite atz = �!, have no damping e�et on the G�. Beause of these soures, diret insertion ofthe ~S1 `zero modes' into (3.50) does not yield a self-dual potential on S1 � R 3. Rather,one has to hange the normalisation of the zero modes to ompensate for the soures. Thisamounts to inluding 1 in the de�nition of �.9S is a unitary transformation with the property S�1�1S = �3, S�1�2S = �2 and S�1�3S = ��1.20



Given that the ~T2 Weyl operator has perfet zero modes what exatly is the status ofthe inverse of M̂ introdued in the previous setion? What is lear is that our M̂�1(z; z0)is not the inverse of M̂ on the spae of square integrable spinors; no suh inverse exists.Our M̂�1(z; z0) an be viewed as the inverse of M̂ on a spae of funtions on ~T2 havingsofter singularities at the uxes than the zero modes. In any ase M̂�1(z; z0) only entersat intermediate stages of the alulation. What is important is nf (z), whih, as we haveshown here, enodes two perfet zero modes of our Weyl operator.Thus it seems there are three types of Nahm transformation. First and foremost isthe T4 transformation where all potentials and attendant zero modes are smooth. ForTn � R 4�n; n < 4 the self-duality equations on ~Tn have soure terms. The Weyl zeromodes on ~Tn are also singular but for n = 2 (and presumably n = 3) there are no soureterms in the Weyl equation and so (3.50) an be applied without modi�ation. For n = 1(and n = 0 for that matter) the Weyl equation has soure terms whih are �nessed byaltering the normalisation of the zero modes.4 Two-instantonsThe two-instanton problem on the torus presents new hallenges. In partiular, the Nahmpotential, Â(z), on ~Tn is non-Abelian; for k = 2 instantons Â(z) is an SU(2) potential. Inontrast to the one-instanton ase the determination of Â(z) is itself a non-trivial exerise.For T2 � R 2 and S1 � R 3 the �eld strength assoiated with the Nahm potentials is zero,exept at the singularities. But even here we do not have losed forms for Â(z). In setion4.1 we give some partiular solutions to the k = 2 ADHM onstraints. The assoiated Weylequations for the T2 � R 2 problem are investigated in setion 4.2. This analysis is verysimilar to that of setion 3.2 for the one instantons. Indeed, the resulting two-instantonsan be viewed as twisted one instantons when the torus is ut in half.4.1 ADHM onstraints on Tn � R4�nIn the previous hapter we onsidered the general one-instanton whih (apart for S1� R 3)is non-periodi. For k = 2 the ADHM onstraint (2.19) is obviously more ompliated.In partiular, the quadrati term in (2.19) is, in general, non-zero. There is however onesimpli�ation at the two-instanton level; there exist non trivial solutions of the ADHM21



onstraints whih orrespond to periodi gauge potentials on Tn � R 4�n. This is beausewe an hoose the two `omponent' instantons to have a di�erent orientation in groupspae.For simpliity, let us restrit ourselves to the periodi ase. Then for k = 2 we anwrite v and M̂ as followsv = (v�1 v�2 ); M̂ = � M̂��11 M̂��12M̂��21 M̂��22 � ; (4.1)where v�1 = q1, v�2 = q2, andM̂��11 = Æ��(�+ y1 � x) + b��11 ; M̂��12 = M̂��21 = b��12M̂��22 = Æ��(�+ y2 � x) + b��22 : (4.2)We now have to determine the b matries via (2.19). In the one instanton alulation werelied on the vanishing of the quadrati term in (2.19). While this will not hold, in general,for the two instanton ase there may be partiular solutions where the quadrati term iszero. Indeed on R 4, the k = 2 problem is expedited by the vanishing of the quadrati termin (2.9) [37℄. If the quadrati term in (2.19) is zero, the b matries readb��11 = b��22 = 0; b��12 = � 12(�� � + y1 � y2)�Q; (4.3)where Q = q�1q2 � q�2q1: (4.4)In Appendix A we will prove that if 2(y1 � y2) 2 � and y1 � y2 =2 � then the quadratiterm does indeed vanish. For example this happens for y1 � y2 = 12(e0 + e1 + ::: + en�1).This means that the lattie points of the seond `speies' of instanton lie exatly at themidpoints (see �gure 2) of the lattie points of the �rst.In the speial ase n = 1 (i.e. the aloron problem) one only needs y1�y2 to be parallelto e0 for the quadrati term to vanish. This is a onsequene of the fat that for S1 � R 3one may take e0 and hene the elements of � to be real. For n > 1, 2(y1 � y2) 2 � is aneessary ondition for the vanishing of the quadrati term. Thus for 2(y1� y2) =2 � (4.3)is an approximation; (4.3) is then the �rst term of a power series expansion in the saleparameters. 22



Figure 2: One `speies' of instantons lying at the midpoints of the lattie points of theother speies of instantons.Let us onentrate on the ases where the quadrati terms does vanish. Fourier trans-formation yields ~V�1M̂ = �idz � x+ Â(z), where Â(z) is the SU(2) potential�iÂ(z) = � 12(y1 � y2) 12 ie�i(y1�y2)�zdz (z)Q�12 iei(y1�y2)�zdz (�z)Q 12(y2 � y1) � ; (4.5)and  (z) =X�2� ei(�+y1�y2)�zj� + y1 � y2j2 : (4.6) (z) is a Green's funtion for the Laplae operator on ~Tndzd�z (z) = �~Vei(y1�y2)�zÆn(z): (4.7)Observe that  is non-periodi (z + ~ei) = ei(y1�y2)�~ei (z); (4.8)where ~ei refers to the dual basis; ~ei � ej = 2�Æij. Now if 2(y1 � y2) 2 � and (y1 � y2) =2 �, (z) will be antiperiodi in at least one diretion, and periodi in the remaining diretions.One an also see that for these speial values of y1 � y2,  (z) is real. The reality of  is asuÆient ondition for the potential (4.5) to be self-dual.We now appear to have to deal with a non-Abelian Weyl operator. In what follows theinversion problem is redued to an Abelian problem muh like that for the one instanton23



ase. Of ourse, in the light of the previous hapter due are regarding the meaning of theinverse is in order. M̂ an be rewritten as follows~V�1M̂ = e� i2 (y1�y2)�z�3P�1� D+ 00 D� �Pe i2 (y1�y2)�z�3 ; (4.9)where D� are the (Abelian) Weyl operatorsD� = �idz � x� 12dz Q; P = 1p2(1l + i�1): (4.10)The inverse of M̂ is simplyM̂�1(z; z0) = ~Ve� i2 (y1�y2)�z �3P�1�(z; z0)Pe i2 (y1�y2)�z0�3 ; (4.11)where �(z; z0) is a Green's funtion for the diagonal operator diag(D+; D�). Note thatthe exponentials in the deomposition of M̂�1(z; z0) are not periodi. To ensure a periodiM̂�1(z; z0) we must impose ertain non-periodi boundary onditions on �(z; z0). Sine werequire M̂(z)M̂�1(z; z0) = ~V2Æn(z � z0), then it follows that� D+ 00 D� ��(z; z0) = Pe i2 (z�z0)�(y1�y2)�3P�1Æn(z � z0): (4.12)It is onvenient to absorb the exponential fator into the delta funtion. That is, onsiderthe following (non-periodi) delta funtionsÆn1 (z) = e i2 z�(y1�y2)Æn(z); Æn2 (z) = e� i2 z�(y1�y2)Æn(z): (4.13)Using the following four (Abelian) Green's funtions, ��i (z; z0); i = 1; 2, whereD�z ��i (z; z0) = Æni (z � z0): (4.14)� an be written as�(z; z0) = 12 � �+1 +�+2 i ��+1 ��+2 ��i ���1 ���2 � ��1 +��2 � (z; z0): (4.15)AordinglyM̂�1(z; z0) = ~V2 e� i2 z�(y1�y2)�3 � �+1 +��1 �i ���2 ��+2 �i ���1 ��+1 � �+2 +��2 � (z; z0)e i2 z0�(y1�y2)�3 :(4.16)24



4.2 Two-instanton on T2 � R2Muh as in setion 3.2 we may take e0 to be real and e1 to be proportional to Q. ThusQ̂ = Q=jQj plays the same role as l̂ did in the previous setion. Indeed, the analogue of(3.9) is just z = 12 �1� iQ̂� z + 12 �1 + iQ̂��z. We an write the Abelian Dira operatorsD� de�ned in (4.10) as followsD� = e�12 iQ (z) ��idz � xjj� e�12 iQ (z) � x?: (4.17)For the ase y2 � y1 = 12(e0 + e1), we have (z) = ~V4� log ���� �L04� z + iL04L1 ; iL02L1����2���� �L04� z + 12 ; iL02L1����2 ; (4.18)whih is antiperiodi in both diretions.When x? = 0, the four Green's funtions ��i read10��1 (z; z0) = e�12 iQ (z) hG1(z � z0) osh �12 jQj (z0)��G2(z � z0)iQ̂ sinh �12 jQj (z0)�i��2 (z; z0) = e�12 iQ (z) hG2(z � z0) osh �12 jQj (z0)��G1(z � z0)iQ̂ sinh �12 jQj (z0)�i ;(4.19)where the Gi(z � z0) are (non-periodi) free Green's funtions de�ned as��idz � xjj�Gi(z � z0) = Æ2i (z � z0); i = 1; 2: (4.20)Inserting (4.19) into (4.16) yieldsM̂�1(z; z0) = ~V	(z)� G1(z � z0) 00 G2(z � z0) �	�1(z0); (4.21)where 	(z) is the 2� 2 matrix	(z) =  e�12 i(y1�y2)�z osh �12 jQj (z)� Q̂e�12 i(y1�y2)�z sinh �12 jQj (z)��Q̂e12 i(y1�y2)�z sinh �12 jQj (z)� e12 i(y1�y2)�z osh �12 jQj (z)� ! : (4.22)The two omponent row vetor n(z) isn(z) = ~V(q1 ; q2)	(0)� G1(�z) 00 G2(�z) �	�1(z): (4.23)10Note that ��i (z; z0) = e�iQ (z)Gi(z � z0)e�iQ (z0) is not orret, sine one has to take into aountthe non-periodiity of the exponentials e�iQ = osh (jQj )� iQ̂ sinh (jQj ).25



Again we enounter in�nite onstants;  (z)!1 as z ! 0 and so all entries of the matrix	(0) are `in�nite'. As in setion 3.2 we will temporarily treat 	(0) as a �nite objet. Inthe light of our one instanton alulation we expet some onstraints on q1 and q2. We anhoose q1 to be real. In appendix B we show that for n(z)ny(z) to be integrable requiresthat (q1; q2) = �(1; Q̂); (4.24)where � is a ommon sale parameter sine jq1j = jq2j = �. Observe that the relativegroup orientation of the two instantons is �xed. If the orientation of the �rst instantonlies at the `North pole' of S3 � SU(2), then the orientation of the seond instanton sits onthe equator. Muh as in the one instanton ase the absene of non-integrable singularitiesleads to an upper bound on the sale parameter0 < �2 ~V < 2�: (4.25)Another onsequene of (4.24) is that (q1; q2) is an eigenvetor of the in�nite matrix 	(0),i.e. (q1; q2)	(0) = e12 jQj (0)(q1; q2). As in the one instanton alulation we de�ne a `�nite'row vetor �~Vnf (z) = e�12 jQj (0)n(z). The �nal gauge potential is obtained by replaingn(z) with nf(z) in (2.39) and replaing (2.40) with � = ~V�1�f = ~V�1 R ~T2 nf (z)nyf (z):In the ourse of the onstrution a number of onstraints have been put on the ADHMdata. It is helpful to divide these onstraints into two. The �rst onstraints are simplythose imposed by hand to ahieve tehnial simpli�ation, i.e. we imposed periodiity andthe midpoint ondition in order that we ould exatly determine the Weyl operator. Inaddition to these onstraints we were fored to impose the additional onstraints (4.24)and (4.25). By virtue of the midpoint presription and (4.24) our two instantons begin toresemble one instantons if we ut T2 in half. In fat if we had hosen y1 � y2 = 12e0 ory1 � y2 = 12e1 instead of y1 � y2 = 12(e0 + e1) then our `two instanton' would be nothingmore than a `doubled' one instanton. That is one an always produe a two-instantonon Tn � R 4�n by taking a one instanton and doubling one of the periods. To show thisequivalene one simply ompares the `two instanton' with y1�y2 = 12e0 or y1�y2 = 12e1 withthe one instanton with ! = 14~e0 or ! = 14~e1. Then using the qi ! �qi symmetry mentionedat the end of setion 2.2 one an show that the two sets of ADHM data orrespond to thesame instanton. The two instanton orresponding to y1 � y2 = 12(e0 + e1) appears to be26



`genuine' in the sense it is not equivalent to some one-instanton solution. However it seemsplausible that the y1 � y2 = 12(e0 + e1) ase orresponds to a twisted one instanton (thetwisted Nahm transformation is disussed in [41℄).5 DisussionIn this paper we have desribed in a general way how to implement the ADHM onstru-tion of SU(2) instantons on Tn � R 4�n. The �rst step (whih orresponds to solving thequadrati ADHM onstraint) is to onstrut a self-dual SU(k) (U(1) for k = 1) potential,Â(z), on the dual torus ~Tn (here k is the topologial harge). Â(z) has singularities whihare determined by the ADHM data (i.e. the sales, positions and group orientation ofthe `omponent' instantons). We have onstruted the Weyl operators orresponding tothe general one-instanton and some two instantons on Tn � R 4�n. However, the problemof solving the Weyl equations poses a onsiderable tehnial hallenge. One is thereforemotivated to start with lower values of n. We have onsidered the n = 2 problem in somedetail.The solutions here are not deformations of 't Hooft instantons; the 't Hooft ansatz failsto provide solutions on T2�R 2. Unlike for S1�R 3 we are fored to impose onstraints on theADHM parameters in order to guarantee a well de�ned potential on T2�R 2. In partiular,we �nd an upper bound on the sale parameters; for the one-instanton, �2 ~V < 4� and forour restrited two-instanton we found that �2 ~V < 2� (here we were fored to give the twoomponent instantons a ommon sale parameter).For n > 2, i.e. T3 � R and T4, the Weyl equations seem more problemati. Whilethe T2 � R 2 Weyl operator orresponds to an Aharonov-Bohm problem on ~T2, on T3 � Rwe have to solve the Weyl equation on ~T3 in the (self-dual) bakground of an eletri andmagneti dipole �eld [42℄. For T4 the one instanton alulation should fail. Presumablythere is no way to avoid non-integrable singularities. For our restrited two instantons theprospets seem a little brighter. This is beause these seemingly orrespond to twisted oneinstantons (or even 12 instantons in the presene of non-orthogonal twists). There is noknown obstale to the existene of suh objets on T4.Although the T3� R and T4 problems ertainly merit more attention the T2� R 2 aserequires further development. Even in the 1-instanton setor we were only able to provide27



losed forms for A�(x) and F��(x) in a 2-dimensional subspae (x? = 0) of T2 � R 2. Toobtain analyti results for x? 6= 0 requires progress in dealing with massive Aharonov-Bohm type Dira equations on ~T2. Furthermore, we have said nothing about the geometryof the moduli spae or the onstituent monopoles of our instantons. One ould numeriallyplot the ation density of the one instantons in the plane x? = 0 to see if there are twopeaks assoiated with the two expeted monopole onstituents.AknowledgementsC. F. is grateful to C. J. Biebl for helpful disussions. We thank P. van Baal for hisomments on a preliminary version of the manusript. Part of the researh of T. T. wasperformed during his stay at the Institute of Theoretial Physis in Jena, and in thelatter stages of the work he was supported by the Deutshe Forshungsgemeinshaft (grantDFG-Re 856/4-1). In the early stages of this work C. F. was supported by the DFG (grantDFG-Wi 777/3-2).A The quadrati term in (2.19)In this appendix we show that the quadrati term in (2.19) vanishes for the one instantonand partiular two instanton desribed in hapter 4.Let us start with the one instanton. The quadrati term in question isR�� =X2� �b��b� � b��b�� : (A.1)Assuming R�� = 0 leads to (3.3). Inserting this into (A.1) givesR�� = ��4 X2�nf�;�g l̂� 1( � �)� 1 � � � 1( � �)� 1 � �� l̂� sin [(�� ) � !℄ sin [(� � ) � !℄ : (A.2)It is lear that eah summand in (A.2) does not separately vanish. Rather there is a pairwiseanellation; for eah  2 � n f�; �g there is exatly one other lattie point 0 2 � n f�; �gso that the two summands add up to zero. It is apparent that the appropriate hoie for0 is 0 = � + � + �: If 2 = �+ �, i.e. 0 = , then the summand itself vanishes.28



The argument is similar for the two instanton of setion 4. Here the quadrati term isR��ij =X2� �b�1i �b�1j � b�1j �b�1i + b�2i �b�2j � b�2j �b�2i � : (A.3)Inserting (4.3) gives R��12 = R��21 = 0, andR��22 = X2� �b�12 �b�12 � b�12 �b�12 � (A.4)= �14X2��Q 1 � � + y1 � y2 1( � � + y1 � y2)�Q�Q 1 � � + y1 � y2 1( � � + y1 � y2)�Q� :Now we will show that R22 is zero for 2(y1 � y2) 2 �. As in the one instanton ase eahsummand in (A.4) does not separately vanish. For eah  2 � there is one other lattiepoint 0 2 � so that the two summands add up to zero0 = � + � + � � 2(y1 � y2): (A.5)Sine 0 2 � we require 2(y1 � y2) 2 �. If 2 = � + �� 2(y1 � y2) then 0 =  so that wedo not have two ounterbalaning summands. However, in this ase the summand itselfvanishes.B Equation (3.41)In this appendix we outline a proof of (3.41) whih, for x? = 0, is equivalent to thestatement that f(z; z0) ommutes with the quaternions. In the aloron problem one simplynotes that f is the inverse ofM yM whih by onstrution ommutes with the quaternions.We ould also expliitly hek that our f is the inverse of M yM . However, we would faethe thorny problem of oinident uxes and soures [43, 44, 45℄. Therefore, we will adopta more pedestrian approah. Before we embark on this we note that for z+ z0 = 0 a trivialhange of variables in the integrals de�ning g�(z; z0) suÆes to verify (3.41). For z+z0 6= 0we have a more indiret argument. When z 6= ! it is easy to hek that��i��z � 12xjj� e�2�2�(z) ��i�z � 12�xjj� �g+(z; z0)� e2�2�(z)g�(z; z0)e2�2�(z0)� = 0: (B.1)29



This shows that the left and right hand sides of (3.41) satisfy the same di�erential equa-tions. To omplete the argument we must show that they obey the same boundary on-ditions. Clearly both are periodi on ~T2, but we also need to show that g+(z; z0) ande2�2�(z)g�(z; z0)e2�2�(z0) have the same asymptotis at the uxes. Let us examine g�(z; z0)in the neighbourhood of z = !. One an see that g+(!; z0) is well de�ned for �2 ~V < 2�,while g�(!; z0) = 0. This does not ontradit (3.41) sine the exponential e2�2�(z) di-verges as �jz � wj��2 ~V=(2�) for z � ! where � is a onstant. Consisteny requires thatg�(z; z0) � ��1jz � wj�2 ~V=(2�)g+(!; z0)e�2�2�(z0) for z � !. One an show that g�(z; z0)deays as it should in the limit z ! ! by onsidering the derivative of g�(z; z0):��i��z � 12xjj� g�(z; z0) = 12e�2�2�(z)G+(z � z0) (B.2)�e�2�2�(z)2�f G+(�! + z) Z ~T2 d2y0G�(! � y0)e�2�2�(y0)G+(y0 � z0):In the neighbourhood of z = !, 2�G+(�! + z) � i=(�z � �w), and so the seond term in(B.2) dominates (provided z0 6= �!). Integrating yieldsg�(z; z0) � 1�2 ~V��f jz� wj�2 ~V=(2�) Z ~T2 d2y0G�(! � y0)e�2�2�(y0)G+(y0 � z0); (B.3)whih indeed deays orretly. Full agreement with (3.41) requiresg+(!; z0) = e2�2�(z0)�2 ~V�f Z ~T2 d2y0G�(! � y0)e�2�2�(y0)G+(y0 � z0): (B.4)To hek this one simply notes that away from z0 = �! the left and right hand sides areannihilated by the same di�erential operator, �i�z0 � 12�xjj � 2i�2�z0�(z0)� �i��z0 � 12xjj�. Itis simple to also hek that they agree in the neighbourhoods of z0 = �! whih ompletesthe proof.C Two instanton singularitiesConsider the 2-omponent row vetors v� = (1; �Q̂) whih are (formally) eigenvetors of	(0) in that v�	(0) = e�12 jQj (0)v�. We now make the deomposition (q1; q2) = �+v+ +��v� where the quaternions �� are not ompletely free sine q�1q2 � q�2q1 = Q. Theintegrand in the de�nition of � is~V�1n(z)ny(z) = j�+j2ejQj (0) �G+(�z)G�+(z)e�jQj (z) + G�(�z)G��(z)ejQj (z)� (C.1)30



+j��j2e�jQj (0) �G+(�z)G�+(z)ejQj (z) + G�(�z)G��(z)e�jQj (z)�+terms linear in �+��� and ����+,where we have employed the notationG�(z) = G1(z)�G2(z); (C.2)not to be onfused with the G�(z) introdued in setion 3.2! First, let us onsider thesingularity struture of the free Green's funtions G�(z) whih satisfy (�idz � x)G�(z) =Æ1(z) � Æ2(z): Now Æ21(z) and Æ22(z) are zero exept for all dual lattie points (z 2 ~�).However Æ21(z) + Æ22(z) is only singular at half of the lattie points, while Æ21(z) � Æ22(z) issingular at the remaining dual lattie points. This an be seen from the following identitiesÆ21(z) + Æ22(z) = 2 os �12(y1 � y2) � z� Æ2(z); Æ21(z)� Æ22(z) = 2i sin �12(y1 � y2) � z� Æ2(z):(C.3)Now sine 2(y1 � y2) 2 � it follows that 12(y1 � y2) � z = 12�n; n 2 Z for z 2 ~� whihmeans that either the sine or the osine must be zero for z 2 ~�. In partiular, we see thatunlike Æ21(z)+Æ22(z), Æ21(z)�Æ22(z) has no singularity at z = 0. Thus we onlude that G�(z)has no singularity at z = 0. In the neighbourhood of z = 0 we haveG+(�z)G�+(z) / 1jzj2 ; G�(�z)G��(z) non-singular. (C.4)We also require the behaviour of  (z) at z = 0,  (z) � �(~V=2�) log jzj. Near z = 0 wehaveG+(�z)G�+(z)e�jQj (z) / jzj�2+jQj~V=(2�); G+(�z)G�+(z)ejQj (z) / jzj�2�jQj~V=(2�): (C.5)The seond part of (C.5), i.e. G+(�z)G�+(z)ejQj (z) is non-integrable. However, this term isabsent in the j�+j2 ontribution to (C.1) and so if we make the hoie �� = 0 we do notenounter this singularity. The �rst part of (C.5) is an integrable singularity for jQj > 0.In fat if we take jQj~V > 4� the singularity disappears. However, then G�(�z)G��(z)ejQj (z)will beome non integrable. Aordingly, for the singularities in (2.40) to be integrable werequire �� = 0; and 0 < jQj~V < 4� whih implies (4.24) and (4.25).
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