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The QCD phase diagram at densities relevant to neutronrsta@ains elusive, mainly due to the fermion-sign
problem. At the same time, a plethora of possible phasesésss fredicted in models. Meanwhil&,-QCD,

for which theSU (3) gauge group of QCD is replaced by the exceptional Lie gr@ypdoes not have a sign
problem and can be simulated at such densities using sthtattce techniques. It thus provides benchmarks
to models and functional continuum methods, and it servestavel the nature of possible phases of strongly
interacting matter at high densities. Instrumental in us@dading these phases is tldat-QCD has fermionic
baryons, and that it can therefore sustain a baryonic Farrface. Because the baryon spectrunGafQCD
also contains bosonic diquark and probably other more estdies, it is important to understand this spectrum
before one can disentangle the corresponding contritaitiorihe baryon density. Here we present the first
systematic study of this spectrum from lattice simulatiahslifferent quark masses. This allows us to relate
the mass hierarchy, ranging from scalar would-be-Golastwsons and intermediate vector bosons taihe
nucleons and deltas, to individual structures observelddndtal baryon density at finite chemical potential.

PACS numbers:

. INTRODUCTION

Understanding neutron stars requires to understand thiébeigum properties of nuclear and hadronic matter [1, 2]aw
temperature and high density. This is essential in evegesstarting from neutron star formation and cooling to raustar
mergers, and hence ultimately to understanding the syistoethe heavy elements. A serious technical obstacle gygtocess
is the infamous fermion-sign problem, which prevents effitinumerical simulations of the underlying theory of nueled
hadrons, QCD [3-5]. Although substantial progress has bekieved with models and functional continuum methods-{8].6
input from lattice simulations remains indispensable.

There have been several approaches to circumvent the sidptepr, e.g. analytic continuations from imaginary [9-14] o
isospin [12, 13] chemical potential which fail, however, emhphase transitions are encountered. Another possikslity
combine strong-coupling and hopping expansion technitpudsrive an effective theory for heavy quarks [14, 15] whas®e
of applicability must then be assessed. Further alterestmight be provided by stochastic approaches [16], butasiget
unclear whether they will eventually solve the problem inC

A complementary strategy is to use QCD-like theories witresign problem. This strategy serves two aims. One is to
provide numerical benchmarks for model building [1, 6] amdttuum methods [7, 8], for continuations from imaginary o
isospin chemical potential, and equally so for the effeckattice theories for heavy quarks. The other is to gaiminsinto the
genuine properties of gauge theories other than QCD at @ieriteities, and to exploit analogies with other physicaiesys such
as ultracold fermionic quantum gases. Such QCD-like tlesdriclude two-color QCD [17-23] and adjoint QCD [17, 24-26]
However, neither of these directly compare well with QCD ofeolor QCD with fundamental quarks does not have fermionic
baryons [17, 18], while adjoint QCD is known to behave rattifferently from QCD already in the quenched case [27].

We have recently added another such replacement th&gr)CD [28, 29], and shown that it is possible to simulate this
theory at finite density and temperature. This permittedsa iew of the full phase diagram 6#.-QCD. We will discuss the
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properties of this theory in detail in Section Il. Here, iffaes to state that it can be simulated without fermion-gigrblem at
finite density, it does have fermionic baryons, and its prigein the quenched case are very similar to QCD as welle&afty
this last observation has quite interesting implicatiarsiie role of the center symmetry in QCD. A brief review anédguo
the literature is given in [30].

In order to better understand the physical picture behiagttase diagram of this theory, however, one needs to uaddriss
hadronic spectrum. In [29] we studied a few low-lying stategive a rough estimate of the scales involved in the sinoriat
To firmly identify the properties of various finite densistygses, we need a much clearer picture of the hadron massédseand
corresponding hierarchy of mass scales. These can be dkftooethe spectrum of hadronic states in the vacuum. To deter
mine this spectrum from lattice Monte-Carlo simulationthis main purpose of the present article. We discuss thedtiear
foundations of (lattice) spectroscopy f6k-QCD in Section IIl. While the lattice determination of theestrum is in principle
straightforward, it is a rather challenging task, when ines to the details which we describe in Section IV. The redoit
spectra obtained with two different quark masses are predém Section V.

To show that this information is indeed relevant for underding the phase diagram we relate these results in an axptor
way to the dependence of the quark density on their chematahgial in Section VI. We thereby observe various struesur
corresponding to the hierarchy of scales in the spectruengdy the baryon masses per quark number. Especially, werfind a
onset at half the would-be-Goldstone mass, a stepwisedsetia density at half the intermediate vector boson madsa aapid
further growth setting in at around one third of the nucléanass which is characteristic of their fermionic nature arfdch
might be a manifestation @, nuclear matter. The results indeed suggest that the thesramich phase structure, and that
baryon-dominated regions of the phase diagram exist bétfierdensity is eventually dominated by quarks and lattitiéaats
at large chemical potentials. This is of significant impoce, as it might indeed point towards the presence of a barjr@mmi
surface, making=2-QCD a viable model to understand generic features of thiefiténsity phases of the strong interaction.

Our results are summarized once more together with our asioels in Section VII. Note that some preliminary materiabw
already presented in [30].

Il.  GENERAL PROPERTIES OF G2-QCD

The action ofV; flavour QCD with arbitrary gauge grogpin Minkowski space-time is given by

S :/d4xtr{—iFle’“’+
Ni B (1)
Z o (i7"(0n — gAu) —m) ‘I/n} )
n=1

with A,, an element of the corresponding gauge alggbr&or QCD, the gauge group is SU(3), but here we will use imstea
the exceptional Lie groufrs. For the sake of completeness, we will briefly review the tmiesion of the gauge grou@s in
Section Il A, reviewing parts of Ref. [28], before we turn mas the quark sector. The most important ingredient is tinecD
operator, to be discussed in Section 11 B, and the realimaifachiral symmetry discussed in Section Il C. BecaGsés a real
group, chiral symmetry breaking and the concept of baryanbyer require special attention, as described in Section 11D

A. Construction of the gauge groupG»

G- is the smallest of the five exceptional simple Lie groups anslalso the smallest simple and simply connected Lie group
which has a trivial center. ASU(3), the gauge group of the strong interactions, it has earnkhe fundamental representations
are7-dimensional and4-dimensional, the latter coinciding with the adjoint reggetation. The elements 6%, can be viewed

as elements afO(7) subject to seven independent cubic constraints forilenensional matrices representing the Lie algebra
of SO(7) [28, 31],

Tabc = Tdef 9da Jeb Gfc (2)

whereT is a totally antisymmetric tensor. There are tijs= 7 quark colors and 14 gluons (..
The constraints (2) reduce the number of generators bfor SO(7) to 14 for the groupG». In addition,G is connected
to SU(3) through the embedding &fU (3) as a subgroup aF- according to [32, 33]

Go/SU(3) ~ SO(7)/SO(6) ~ S°. 3)



This means that every eleméitof G, can be written as

U=S-V with SeGy/SU3)

and Ve SU(3). @

In the pureG, gauge theory [34—36] this decomposition is in fact beinglusespeed up the numerical simulations. Sigte
is a subgroup 06 0O(7), all representations are real and one can always choosélzasa for the Lie algebra. A possible real
representation for the 14 generators is given explicitiRéis. [37, 38].

B. The spectrum of the Dirac operator

For lattice Monte-Carlo methods to be applicable, the deitgaint of the Euclidean Dirac operator has to be non-negalilie
continuum Dirac operator is given by

DIA, m, u] = 1€" (0 — gAu) — m + Yot 5)
where the Euclidean gamma matrices are Hermitian. As in QGBisfies
D(u)' 45 =75 D(—p*) (6)

and the fermion determinant is real at imaginary chemic&migal. In addition, however, th&, Dirac operator also satisfies
the relation

D(w)*T=TD(p*) with @)
T=Cys, T"T=-1, T'=T71

whereC' is charge conjugation matrix. If such a unitary operatoexists then the eigenvalues of the Dirac operator come
in complex conjugate pairs and all real eigenvalues are Igaiggenerate [17, 18], analogous to the Kramers degenefacy
time-reversal invariant spin Hamiltonians. Therefore

det D[A;m,u] >0 for ueR. (8)

This property of the fermion determinant makes Markov ctMonte-Carlo techniques applicable even at finite densikies
cause the path integral meas@é,, det D[ A, m, u] e =& then essentially provides a probability distribution.

C. Chiral symmetry

In [17], the chiral symmetry of different gauge groups hasrbmvestigated. Here we review the details ¢4y, see also [28].
Under charge conjugation the matter part of the Lagrangsigemansforms, up to boundary terms, as

‘C[\IJCaAvm] :E[\I/,—AT,’ITL], (9)
with & = (U4, ..., ¥y,). Therefore, the charge conjugated spifidr fulfills the same equations of motion &sif the gauge
field obeys the condition

AI =-A,=-AT,. (10)

Since every representation 6%, is real, the generatof, of the algebray; can be chosen as anti-symmetric real-valaed7
matrices and hence Equation (10) holds.
It is then possible to write the matter part of the action Eaaum ove?2 Ny Majorana spinors.,
L[P, A] =P (i7" (9 — gAu) —m) ¥

- (11)
=A(17"(Ou — gAu) —m) A

with A = (x,71) = (A1,..., \an;). Here) obeys the Majorana conditiot = CAT = )\, A\ = —ATC~! = ), and itis related
to the Dirac spinor as

_X-in, (12)



Therefore, it follows thatzo-QCD possesses an extended flavour symmetry as compared3p-QUD.
The action is invariant under th&0 (2 N¢)y vector transformations

PSP (13)
with a real and antisymmetrj¢ € so(2N¢), and under the axial transformations
A 0@ ) (14)

with a real symmetric matrix. These do not form a group, but the transformations withatiady form the groug/(1)2"r and

those witha: oc 1 among them generate the axia{1). Due to the Majorana constraint left- and right-handed@itannot be

rotated independently. The general transformation is goomition of an axial- and a vector transformation,
A POLEI®5 ) = Y (, B)A

V:U(Oé,ﬂ)(gPL—FU*(OZ,B)@PR, (15)

with an U (2N¢)-matrix U (o, B) = e”el®, in agreement with the results in [28]. Following the sanguarents as in QCD it
is expected that the axial(1) is broken by the axial anomaly such that only an exten§i€@d2N;) x Z(2)g chiral symmetry
remains.

D. Chiral symmetry breaking and baryon number

In the presence of a non-vanishiBirac mass tern{or a non-vanishing chiral condensate) the theory is nodomyariant
under the axial transformations. Therefore the non-anousathiral symmetry is expected to be broken explicitly (@orga-
neously) to its maximal vector subgroup,

SU(2Nf) ® Z(2)s = SO(2N¢)y @ Z(2)g, (16)
leading toN¢(2Nf + 1) — 1 (would-be) Goldstone bosons.
The (baryon)hemical potentiafor a Dirac fermion enters the partition function as an affgponal term in Majorana flavor
space,

L=V (ilﬁ—m—l-ivou)\ll
_<>‘<) (iID—m 90 ) (X) (17)
n) \ —ivop iP—m)\n)

With chemical potential but vanishing Dirac mass the reingiichiral symmetry is thus the same as in QCD,

SU(2Nf) ® Z(2)g >

(18)
SU(N¢)a ® SU(Nf)y @ U(1)g/Z(Ns).
Form # 0 the remaining chiral symmetry is further broken as
SU(Nf)a ® SU(N¢)y ® U(1)g/Z(Ng) 5" (19)

SU(N¢)y @ U(1)g/Z(Ny).

If one first introduces a mass and only afterwards a chemmt&inpial then one naotices, that far# 0 the Lagrangian is off-
diagonal in the Majorana basis such that is not possiblatsform the Majorana components of a Dirac spinor indephde
Therefore, the vector symmet80O(2Ns)y of the massive theory is further reduced to transformatibasdo not interchange
the Majorana spinors. But then also complex transformatiwa allowed, leading to the residudl ( N¢)y symmetry group.

The pattern of chiral symmetry breaking@#®-QCD is summarized in Figure 1. If chiral symmetry is spoetausly broken,
the axial chiral multiplet becomes massless according thisEane’s theorem. In contrast to QCD, because of the erténd
chiral symmetry group, already in the case of a single Dimafl it contains a non-trivigd U (2) and chiral symmetry breaking
is possible. This is one reason why in the following o6l-QCD with a single Dirac flavouN; = 1 is investigated. The chiral
symmetry is then given by

SU(2) ® Z(2)g. (20)
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FIG. 1: Pattern of chiral symmetry breaking @#-QCD.

The corresponding creation operators for the Goldstonerizoare given by

d(07F) =xy5m = U5 — U U,
_ 1, _ _ = =
d(0*™) G (XX — 5m) = UCy50 + Uy UC.
As usual, baryon numbers is here defined as the transformation behaviour of an opevatder thel/ (1) subgroup of the
vector chiral transformation,

(21)

U elmey, (22)

such that a quark has baryon numhgr= 1 and an anti-quarkg = —1. With this definition of baryon number the Goldstone
bosons haveg = 2. They are scalar diquarks instead of pseudoscalar mesam€&D.

lll. SPECTROSCOPY FOR Nt =1 G2-QCD

The possible quark and gluon content of (colorless) bouatdsis determined by the tensor product&efQCD. Quarks inz5
transform under th&-dimensional fundamental representation, gluons undet4ldimensional fundamental (and at the same
time adjoint) representation. The decomposition of tesoducts of the lowest-dimensional representations imezlucible
representations is given by

(M& (M) =01)a(7) e (14) ® (27),
MM (M =0)®4-(7)®2-(14)®3-(27) D2 (64) ® (77,
()14 =0 (14)® (27) @ (T7) @ (77, (23)
MWel)ed)=0ae(Maes5-14)e3-27)e---,
Mol (1)e(14)=>0)a

Thus we expect to find bound states for every integer quarkyeunny. Mesons have,q = 0, diquarksng = 2, and nucleons
nq = 3. In addition, there are more exotic bound states of gluodsyaarks, for example a hybrid witly, = 1. Especially the
latter state would be important, as the nucleons will onlstadle in the chiral limit, if the hybrid is heavier than thacteon.
Of course, more complicated states with higher baryon nusnéoe possible, as well as glueballs, but are expected yonpla
role either in the vacuum, or at the moderate densities westigate here.

In the following we give an overview over our implementatiminpossible bound states fo¥; = 2, see Tables I-IV. The
subset of states of thieflavour model, treated numerically below, are easily redoed.

In all tablesO is the interpolating operator used to extract the mass imlsitions, 7" the behaviour of the wave function
under change of position, spin, colour and flavour (S staadsyimmetric, A for anti-symmetric), and the spif)( parity (P)
and charge conjugatiod’{ quantum numbers. States with baryon numband3 are also present in QCD while the others are
additional states off'5-QCD.

In our simulations the states of tReflavour model are included by partial quenching, that meaasare dealing with two
valence quark flavours, but only one sea quark flavour. In QBB,is a surprisingly good approximation, see e. g. [39} an
there is no obvious reason why this should be differeidirQCD.



Nameg O T
s uysd |SASS
uysu | SASS
ud |SASS
uu | SASS
Uy,d |SSSA
Uyu |SSSA

Uysyud| SSSA

Uysyuu | SSSA

o
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TABLE I: Bound states of72-QCD with 2 flavours and baryon numbeg = 0. For details see text.

Name O T J|P|C
N’ T (Gaysdy)ue | SAAA|LR|+]+
A T (Gayuup)ue | SSAS|3/2| |+

Hybrid| eapcaerou® FL FIc FI| SSSS|1/2[£]+

TABLE II: Bound states with baryon numbeg = 1. For details see text.

There is one particular caveat, which is due to the limitattocomputational resources for this project. The diquarkeda-
tion function that we measure on the lattice is given by

Calz,y) ={(d(0*")(z) d(0T1) ()
={d(0"7)(x)d(07) ()
|

| —
= <>‘<(x)75x(x) X(@)7s, x(y)>

(24)

showing that the diquark masses are degenerate and itdatimmefunctions contain only connected contributionke Ifor
example the correlation function for the pion in QCD. Theresponding correlation function for themeson reads

Co(z,y) = (n(z)n'(y))

- <x(lx)75x(x) X(y)75x(y)> T Cuay)

(25)

The difference between thgand the diquark correlation function is only the disconadaontribution. Therefore, uncertainties

in the treatment of the disconnected contribution can lhadine between the and the diquarks.
Analog relations lead for the partially quenched calcolatiperformed here to some relations between flavour sidigjeark
masses and flavour non-singlet meson masses,
Ma(o+) =Mx(0-)
Myo-) =Myg
da(0-) (0+) (26)
Mai+) =Mp(17)
Md(1=) =Mp(1+)-

Thus, for every diquark there is a flavour non-singlet mesith the same mass but opposite parity.

Name @ T |J|PIC
d(0*") a“ysu + c.c. SASS0|+|+
) Uysu — c.c. SASSO[+|-
d(0~") u“u + c.c. SASY0|[- |+
d(0™7) w“u — c.c. SASSO0[-]-
dA™)| @ vyud — dyuu+cc. |SSSAL|+|+
dAT)| @“vyud — d*yuu —cc. |SSSAL|+]-
d(1™ M) [a%ysyud — d“ysyuu + c.c. |SSSAL| - [+
d(1™ ) [a“ysvyud — d“y5y,u — c.c. |[SSSA L] -] -

TABLE Ill: Bound states with baryon numbeg = 2. For details see text.



Name [0) T JTPIC
N | T%(aSsdy)u. |SAAA[12[ £ | £
A [T (aSy,up)ue | SSAS|3/2[ £ | £

TABLE IV: Bound states with baryon numbeg = 3. For details see text.

IV.  ALGORITHMIC CONSIDERATIONS

In our lattice simulations we use a Hybrid Monte-Carlo aithon [40] to generate the probability distribution. Our ilemen-
tation is based on [35], where the algorithm was applied4eYang-Mills-Higgs theory.
For the gauge action we choose the tree-level improved Szilkngauge action [41-44]

S = % {COZtr(l — Reln) +
¢ O

c1 Ztr (1- RGUDD)} .

0d

(27)

Here,U stands for the plaquette variable &gy for a rectangular path around two plaquettes. The paramatergiven by
co = 1 — 8¢y, ¢c1 = —1/2. Note that our convention is to factorize the number of cofoosm 5.

For the fermion part, we use the ordinary Wilson action withiomprovements [3]. Though we cannot expect good chiral
properties in this case, we can avoid rooting for staggeradibn. Using unrooted staggered fermions, and thus foun\izs,
would on the one hand create far too many Goldstone bosodsyanld possibly put the theory too close or in the conformal
window, according to the two-loof-function. Fermion implementations with better chiral peaties are unfortunately beyond
our numerical resources.

For the fermion determinant we use pseudo-fermions togetlie a rational approximation of the inverse fermion matri
(RHMC algorithm) [45]. In the case of Dirac fermions the pattegral is given by

Z = / DUDUDY e~ SUI-tr T DV
=N / DU det (D[U]) e~ U] (28)
=N/DUdet (M[u]%) e~ S,

whereD is the fermion operator amt! = D' D is a Hermitian and positive operator. IntroduciNgs complex-valued pseudo-
fermionsg [46], one can write the partition function as

Z:/DUngeXp{—SB[U,QS]} with

SelUd, 6] = SIU| +tr Y LM ¢,
p=1
whereSg is the bosonic action anglis given byg = ﬁ Inthe RHMC dynamic3d/ ~? is replaced by a rational approximation
according to
r(z) =z qzao—i-?;x_i_ﬁr (30)

For any rational numbey the coefficientsy and/ can be calculated with the Remez algorithm [47]. The nuragdccuracy
of the approximation in the intervdl = [xmin, max] depends on the number of terfg in (30) and the numerical accuracy

1 Below, tr denotes the integral ovelrdimensional space-time and the trace over all internalegegof freedom.



8

of the coefficientsy and 5. In the followingrs(x), S = {I, ¢, ¢} denotes a rational approximation of the functior? with
e = sup ||r(z) —2~9]].
I

e
In order to obtain an exact update algorithm, the bosoniomcs written in the form

SB[uad)] :S[u] +Smd(M)+Sacc(M)+Srw(M)a (31)
where the different contributions are given by
Npr
Smd =tr Z ¢I)Tsmd (bpa
p=1
Npp
Sace =11 Y _ ¢} (s, (M) = 15,,(M)) ¢y, (32)
p=1
Npr

Srw =tr Z (bL (M_q — TSaee (M)) ¢p .
p=1

The sumS[U] + Sma(M) is used in the calculation of the HMC molecular dynamics,shen S[if] + Sima (M) + Sacc (M) in
the Metropolis acceptance step of the HMC algorithm andaketermsS,,, (M) in a reweighting step to assure an exact update
algorithm.

In practice, the reweighting step is not necessary sincertdre efficient to chooss, . such that it approximate®/ —¢ up
to machine precision. For the generation of the pseudoiferirelds from a Gaussian distributed vector the squareabdf ¢
is needed as well. This is achieved by an approximatigii\/) ~ M%/2, To obtain an exact update algorithm, the following
choices are made,

rs, (M) ={I 2 5(M),107"%, —¢/2},
Isue (M) ={I 2 2(M),107°, g},

whereX (M) = [Amin, Amax] iS the spectral range of the Hermitian operatbr In most of the simulations, an approximation for
the pseudo-fermion and acceptance step approximatiorgoéed’r = 25 is used in an interval = [10~7, 10].

The free parameters left to optimize the algorithm are thegiration scheme used in the molecular dynamics and theeegr
and approximation range of the molecular dynamics ratiaparoximatiorrs_, (M). The inversions of the matriX{ in the
rational approximations are calculated with a multiplesmeonjugate gradient solver (MMCG) [48] which is able to poite
all terms of (30) within a single inversion of the fermion miat)/.

(33)

A. Symplectic integration and multiple time scales

In order to speed up our simulation, we use integration dieriht time scales in an HMC trajectory. The simplest pdssib
integration scheme is the leap-frog scheme [49]. The tinodugon 7" from 7 = 0 to 7 = tpymc With step sizedyT = t“TMC with
the leap-frog time evolution operat®yr can be written as
T(tumc, 07) =Tir(07)"
1 1 (34)
TLF((ST) :T5(§57’) Tz,{((ST) T5(55T) 5

whereTs describes time evolution for the momenta dngdfor the fields. An improved second-order integrator is gilgrihe
Sexton-Weingarten scheme [50],

Tow(57) =Ts( ) Tu( o)
20T oT oT (35)
XTS(T) Tu(j) TS(@)-
A fourth order integrator is given by [51]

Ta(67) = Ts(pd7) Ty (A6T) Ts(067)

<Ty((1— 2 5 T5((1 — 206 + ))or)
oT (36)

XTi((1 = 2X) ) T (097)

X Ty (AOT) Ts(poT),



with parameter values

p =0.1786178958448091,
0 =0.06626458266981843 and (37)
A =0.7123418310626056.

Higher order integrators are constructed in [52]. Furthgsriovement can be achieved by integration on multiple tinsdes
[53]. For this purpose an arbitrary integrafir (here s stands for the integration scheme) is written as eiftmof the basic
time evolution operator§s and7;, and the integration step side, T, = T¢(T’s, Ty, 07).

If the action can be written as a sum of contributiéhsi.e. S = S; + S2 + ..., then multiple time scale integration can be
defined by the recursion relation

T (Ts;, Tu, 07;) =
Tsi (TSjv [Tj_l(Tijl s Tu, 67']'/71]‘) ]nj ) 67—.7') )

Sj—1

(38)

whereS; denotes the subset of the action that should be taken intuatm the computation of the ‘force’ on thjeth time
scale with step sizér;. Here, we often use a two time-scale integration, which ismldnation of the Sexton-Weingarten
scheme with the leap-frog scheme,

0 0
T(67) =T, (5) Tow(Ts,, Tua, 67) Ts, ()

oT ot 5_7'

:Tso(g)Tsl(E)Tu( 5 ) (39)

< T, (3 T 5 T, (5F) T (5,

2 6 2
Here, the ‘force’ according t§; has to be calculated twice as often as the ‘force’ belongirfgyt
Another scheme often used is the combination of a fourthrdrdegrator with the Sexton-Weingarten scheme or with the
simple leap-frog scheme. Multiple-time-scale integnaii® efficient if parts of the action with large contributianthe HMC
‘force’ are cheap in computation time.

B. Optimization of the RHMC algorithm

The efficiency of the RHMC algorithm depends crucially onltwest eigenvalues entering the condition number Amax/ Amin

of the Hermitian operator used in the rational approxinmatithe number of total inversion steps for a given precisign: (the
inversion precision for the lowest mass, i.e. the lowesiealf 3,.) in the MMCG solver increases significantly with decreasing
values of the constant. in the rational approximation. Fortunately, the force citmttion in the RHMC algorithm is for small
constants also significantly lower than for larger contéttite reason is that,. decreases also with decreasf#)g. Only in the
case of very small eigenvalues, the force from these lowigehenodes becomes more important.

This feature of the RHMC algorithm can now be used to optintime algorithm with respect to computation time. Two
different strategies are useful: The firstis to integragetéiims with smalles,. on a coarser time scale than the terms with larger
G-, i.e. larger force. The second is to increase the lower bofitite approximation interval, resulting in larger valuégip and
a possibly smaller degree of the rational function usedtferholecular dynamics. This reduces the number of CG-steyss f
given inversion precisiohy, ., significantly.

Further optimization can be achieved by increasing theigimts ... used for the inversion, leading also to a significantly
reduced number of CG-steps. The best choice of course deperitie given problem and is in general a combination of both
strategies. Further optimizations implemented includmewdd preconditioning [54] as well as an exact computadfonfew
lowest eigenvalues in the MMCG solver. According to [55k thptimal number of pseudo-fermions is roughly given by the
condition number of the fermion matridge' ~ L Inx(M).

C. Fermionic correlation functions

For the computation of the connected part of the correldtioation, the fermion matrix is inverted on a point-like soelin

space and time at a randomly chosen lattice pgit¢ading to the point-to-all propagator. Heré, x N, (number of colours
times the dimension of the representation of the Cliffogblaka) inversions of the fermion matrix with the CG solveréto be
made.
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The disconnected diagrams, and for instance observakégthb chiral condensate or the quark number density, acalatéd
with the stochastic estimator technique (SET) [56, 57].e#ery element of the fermion propagator is calculated ansemble
average over a noisy estimatgr

Ay = lim <77;x1-> with

Nesr—00

x=An and i <77377j> = 0ij-

est—

(40)

In practice, the ensemble average is taken over a finite nuofildé.s;noisy estimators, where the sourges given by Gaussian
or Z(2) noise, satisfying the last equation in (40). The sink is mgaiculated with a CG solver, making a total8fs; matrix
inversions to obtain an estimator for every matrix elemdrihe propagator. In the case of local lattice averaged obbédss,
like the chiral condensate, a number/gfs; ~ 10 estimators is sufficient to get a reliable result. For theaimected part of
four-point correlation functions (many) more estimataes @ecessary.

We note that we extract masses from the correlaitirs by fits of the type

C(t) = acosh(mt) + bcosh(m™t), (41)

or with a singlecosh-fit, where a doubleosh fit was not possible. The quoted errors denote only the staisrror from a
simultaneous up- or down-shift of the correlation functignone standard deviation.

We identify the smaller of the two parametetsandm ™ in (41) as the ground state mass, and mark the next highenithss
an asterisk *'. We do not make any attempt to identify whetthese are genuine excited states or merely scatterirepstatd,
as noted in section Ill, we use a single operator per quantumber channel. We also do not attempt to identify whether the
lowest state is a genuine bound state or a scattering state jfét appears energetically favorable for them to de€ay.some
states we are also limited by statistics, and thus could matsure the mass of all relevant channels. This applies iefipeo
the hybrids. We therefore have to assume in the followingahkeast the ground states are reasonably stable states.

V. LATTICE SPECTROSCOPY RESULTS

In order to fix our parameters we compute the diquark massktharmproton mass for different parameters of the inversggau
coupling and the hopping parameteon a83 x 16 lattice. We make here the implicit assumption that the rarcis (quasi-)
stable, i. e. it is not energetically favorable or possiloleif to decay into a hybrid and a diquark. Since the hybridsaneo
noisy to obtain reliable results, we could not check thisiagstion.

25 T T T T T T

aMgo+y F—x—i

. *%***********************
Fe

15 * -
10| - i

05 | %,

0.0 L 1 1 1 1 1
0.60 0.70 0.80 0.90 1.00 1.10

B

FIG. 2: Mass of the pseudo Goldstone boson as a functighfof x = 0.147.

To assess the distance from the chiral limit, we first comfi@&oldstone sector to the nucleon sector. In Figure Z{be)
mass is shown as a function of the inverse gauge coupliiog a fixed value of the hopping parameterin Figure 3 the proton
mass is plotted for the same parameters.

Care has to be taken, é%-QCD possesses an unphysical lattice bulk phase at strarglieg where monopoles condense.
The critical inverse gauge coupling for the transition t® pinysical weak coupling phase depends on the hopping ptrarRer
k = 0.147 it is located aroung ~ 0.90. We observe that in the bulk phase the lattice diquark masslysweakly dependent
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amproton H——*—

3.0 | g

2:0: Pt 1
15| : %HJ[
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0.90 0.95 1.00 1.05 1.10

FIG. 3: Mass of the proton as a function gffor k = 0.147.

on the gauge coupling and therefore the lattice spacing doedepend orf. Above the transition, the lattice diquark mass
decreases with increasing inverse gauge coupling. Sircbulk transition is a crossover (at least for infinitely heguarks
[34, 58]) we have to choose a gauge coupling for our simulatibat is far above the transition point. For our spectmpgco
results we have checked that the monopole density is alwelgsvtbne percent of the monopole saturation density in thie bu
phase.

12 T T T T
aM gty ——k—

* am g+
10| * 4

09 | * g
0.8 |- ]
0.7 | -
0.6 | % 4
0.5 | % ]
0.4 | ¥ % .

03 | _

0.2 1 1 1 1
0.148 0.152 0.156 0.160

K

FIG. 4: Mass of thed™ and thel ™ diquark as a function of for 5 = 0.96.

Ensemble g8 K |mgona| mna |mge+) [MeV]| a[fm] a1 [MeV][MC
Heavy |1.05(0.147] 0.59(2) | 1.70(9) 326 0.357(33) 552(50) | 7K
Light |0.96]0.159 0.43(2) |1.63(13) 247 0.343(45) 575(75) |5K

TABLE V: Parameters for two different ensembles. All results arefa®® x 16 lattice.

For heavy quarks the ratio of diquark and proton mass shaiRi®while it should go to zero in the chiral limit. A second
mass ratio to fix the bare parameters is the ratio of0thend thel™ diquark. For heavy quarks only the number of quarks
is important and the ratio should be one while in the chiraitlithe spin zero diquark becomes massless while the spin one
diquarks stay massive. The results for the masses are shadkigure 4 as a function of and fixeds. Indeed we see that for
smaller Goldstone masses the ratio increases. In the fiolfpwe discuss two different ensembles with parameters show
Table V. In the following, we will set our mass scale by thetpromassmy = 938 MeV.

The mass spectrum for the heavy quark ensemble is shown i Fithe diquark masses are almost degenerate. Alsg the
has essentially the same mass as the diquarks. For the nadlemre is almost no mass splitting between parity even ddd o
states.
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FIG. 5: Mass spectrum of the heavy ensemble
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FIG. 6: Mass spectrum of the light ensemble

In the light ensemble, shown in Figure 6, the diquark masses@longer degenerate. We observe a significant massraplitt
between parity even and odd states as well as between sodlaeeator diquarks. Especially, the Goldstone boson besdhee
lightest state, with the also being somewhat heavier. This mass difference comeslgritom the disconnected part of the
meson correlation function in (25). For the nucleons we alsgerve different masses for parity even and odd stateshaend t
spin 1/2 and spin 3/2 representations. Thus, the spectrimdégd consistent with spontaneous chiral symmetry bngali
accordance with quenched [27] and previous results [29]e&ially, we find three clearly different scales in the lighectrum:

A Goldstone scale, an intermediate boson scale set by themerg diquarks, and the nucleon scale set byXhand A.

VI. G2-QCD AT ZERO TEMPERATURE AND FINITE BARYON DENSITY

A. Scales at finite density

In [29] we already provided an overview over the full phassgdam ofG>-QCD as a function of temperature and baryon density.
We will now show that the different hadronic scales obseiwetie spectra in Figs. 5 and 6 reflect themselves in the sireict
of the finite density phase diagram.

The first scale, the Goldstone scale, must be related to et tansition to baryonic matter, since the Goldstonay carark
number. This follows immediately from the silver blaze peay of quantum field theories [59] at zero temperature aritefin
density.

To investigate this regime, we have calculated the quarkosumensityn, given by

10InZ
In [29] we observed that for small values of the chemical ptité the system remains in the vacuum, i. e. the quark number
density vanishes, which is expected due to the silver blaapgsty. When increasing the chemical potential furtherdbark
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number density starts rising, indicating that baryonicteras present and the system is no longer in the vacuum skdte.
even larger values qi the quark number density saturates. The value of the smmnatatches the theoretical prediction of
Ng max = 2Nc = 14 [29]. This is depicted in Fig. 7.

The same figure shows the dependence of the Polyakov loopeochtfmical potential fromy = 0 up to saturation. The
decrease of the Polyakov loop close to saturation alsoatekcthat the system enters a quasi-quenched phase, wh enettk
dynamics freezes out[19, 29]. This emphasizes thatfor 1 lattice artifacts start to dominate the system. Howevés isifor
both ensembles at an already high quark chemical potefigdlaut 550 MeV, corresponding to a nucleon chemical paéatfi
1.65 GeV.

14 N ¥ X X
12
* 4 15
10 |
n P
q8 | ¥ < )
41
6 L
¥
4r { os
¥
2r ¥
0 g ¥ Ok * T 1 1 1 i 0
00 02 04 06 08 10 12 14 16 18 20
ap

FIG. 7: The quark number density (red) and the Polyakov loop (grasm)function of chemical potential are shown.
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0.25 |- o .

0.20 |- % —
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FIG. 8: The onset transition observed in the quark number densiigrigpared to half of the mass of the lightest state ptheliquark, for
different gauge couplings, and thus different quark masses.

A closer look into this phase diagram at zero temperaturerstioat the quark number density already jumps, or very dyick
rises, to a very small but nonzero value already at a verylsthaimical potential. In Figure 8 this onset transition isngp@red
to half of the mass of the lightest baryon, the Goldstonediquark. For various values gf very good agreement is found.
This is the expected manifestation of the silver blaze pityder baryon chemical potential, i. e. half of the mass & kightest
bound state carrying baryon number is a lower bound for tisetamansition to a non-vacuum state

For larger values of the chemical potential a series of plaalevelop where the quark number density is almost cdnstan
see Figure 9 for the heavy ensemble and Figure 10 for thedigb¢mble. In both cases, we observe at intermediate chlemica

2 Note that a finite lattice is strictly speaking never at zeraperature, and therefore the silver blaze property isreatly realized. However, such violations
are expected to be exponentially suppressed by the spaliimhe, which effectively determines the residual tempeeatWe do indeed observe such artifacts.
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FIG. 9: Shown is the quark number density compared to baryon magkediby baryon number for tHeeavy ensemhble
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FIG. 10: Shown is the quark number density compared to baryon magkediby baryon number for tHeght ensemble

potential interesting structures, which will be discusbetbw. At aroundiu = 0.6 for the heavy ensemble amgh = 0.55 for
the light ensemble the quark number density starts inargagiain and no further plateau is observed.

It is quite interesting to compare these transitions to tlasgas of the diquarks and baryons normalized by their baryon
number.

For the heavy ensemble, in addition to the silver blaze ttiansdue to the diquark states we find good agreement ofthe
mass with the point where the quark number density increakseut building a plateau.

For the light ensemble the two transitionsaat ~ 0.22 anday ~ 0.32, each followed by a plateau, see Figure 10, can
be related to the observation of the splitting of theand0~ diquark masses. Again the transitionaat ~ 0.55 is in good
agreement with thé\ mass divided by three.

For both ensembles our observation is thus that transiiithe quark number density coincide with hadron massedeli/by
their baryon number. For a bosonic hadron a plateau is foaftedthe transition while for a fermionic hadron the quaukiber
density increases further with increasing chemical paaerin both ensembles we observe also a transitienat 0.52 (heavy
ensemble) andu ~ 0.38 (light ensemble) that does not coincide with any of our sscbpic states. Since this transition is
followed by a plateau we speculate that this state mightladsa bosonic hadron. A possible candidate could for exangpée b
bound state of four quarks. However, this may also relateneesof the known states, if their masses turn out to be signifig
dependent on the chemical potential. It is also possiblesitiditional collective excitations arise, if any of the plaa sustain a
Bose-Einstein condensate, as has been argued for the lesibdphase in two-color QCD [17-23].

This question is not simple to decide, as it is not clear howetmbly and unambiguously determine the mass of (quasi-)
particles at finite density in lattice simulations. Howevewill be crucial to understand it in the future.
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B. Free fermions

Further interesting insights can be gained by comparingehelts with the corresponding ones for non-interactirsjesys of
fermionic particles. On the one hand, this can test whetieeidea of (quasi-free) fermions or fermionic quasi-p#eticlescribe

the theory adequately at some densities. On the other hhadsaturation effects should also yield a quasi-free behavi
indicating the onset of lattice artifacts. We will only cdéaesr here the heavy ensemble, as for the light ensemble teptance

rate dropped seriously in the rangeqi = 0.7 to ap ~ 1.5, and we can therefore not really assess the intermediate and
saturation regime yet.
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FIG. 11: Fit of the quark number density for the heavy ensemble wighdinsity for free lattice fermions.

We begin with the fermion density for a theory of free latt{@éilson) fermions with mass: = m + d = 1/(2«). It can be
derived in analogy to the staggered result of [18] and isrghae

e, i) =

> 21 /1 —pg (32 P — 1) (43)

7 A+t =20 Y, B (L, — 1)

where the sum extends over all lattice momenta

2 1
Do = €O8 (ﬁi (ko + 5) - iu) and

- 27 kl . (44)
;= th
Pi = COS ( N ) Wi

S

ko=1...N; and k;=1...Nq.

When we tried to fit our data for the heavy ensemble to this édamvith fitting parameters (which entersn) andn$® we
observed that the behaviour changes at araynet 1, see Figure 11. Aboveu = 1 the best fit for the data yields = 0.162
andng® = 14.4. This is in good agreement with the values for free quarks ef 0.147 andng® = n$* = 14. Although we
expect that for very large values pthe theory is exactly described by free quarks, in this metiate region the Polyakov loop
is not constant, and also the contribution of gluons to tke Energy has not yet reached its quenched limit [29]. Thgghmi
explain deviations from the exact values. Still, the ratheod fit suggests strongly that fap, > 1 lattice artifacts become
important.

Below ap = 1 the data are very good describedby= 0.211 andnf® = 4.02. The theoretical value for the saturation of a
lattice gas of free\-baryons is:$2t = 4. This suggests that betweep ~ 0.6 anday ~ 1.0 the main contribution to the quark
number density may come from fermionic baryons, in agreemiéh our findings in the last section. Somewhat surprigingl
these fermionic baryons would behave very much like a ndgrécting gas. One should note, however, that formally:thalue
yields a negative mass. This is a consequence of using Wigsorions. In principle we would have to correct for the adit
mass shift. However, we do not yet knewiica to do so. Determining it will require substantial amountgalculation time,
currently beyond our reach.
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VIl. CONCLUSIONS

We have presented a detailed study of the hadronic spectr@sn-QCD. We found that for sufficiently small quark masses a
splitting of the spectrum is observed into a Goldstone seatointermediate bosonic sector, and a nucleonic seatibe sjmilar
to the situation in ordinary QCD. The spectrum also showanstevidence of spontaneous chiral symmetry breaking ttike
emergence of the aforementioned Goldstone bosons, or theemeneracy of parity partners. Therefore, the hadrdmysips
appears to be qualitatively similar to QCD, even tough tlaeeemany more states in the spectrum. Unfortunately we amtld
reliably determine the mass of the lightest hybrid, though tvould be crucial in assuring that the nucleon dynamiceuiy
similar to QCD. This will require a much more sophisticatpdatroscopy analysis in the future.

We have also shown that the scale hierarchy of the vacuunct®ftself in the phase structure at finite densities. We dicaun
number of transitions, particular for light quark mass, ethtorrelate with the scales of the hadron spectrum. Infeefound
even an additional transition. This already indicates & vieh phase structure of the theory at finite densities. \8e &hd
some hints that a phase dominated by fermionic hadrons mstyagxjuark chemical potentials of about 300-600 MeV.

Besides understanding in more detail the already obserradepstructure, the next logical step is to go to smalleicéatt
spacings. This would ensure that we can disentangle thsitiamoccurring at the nucleon scale from possible lattidé#acts.
Also, larger volumes will be necessary to reduce artifagisfthe residual temperature. Both steps are necessaryto sh
whether a genuine nuclear matter phase is present, whickdvbeuof central importance for a qualitative understandihg
fermionic effects in finite density QCD, and eventually neuntstars.
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