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Using covariant methods, we construct and explore the Wetterich equation for a non-minimal
coupling F (φ)R of a quantized scalar field to the Ricci scalar of a prescribed curved space. This
includes the often considered non-minimal coupling ξφ2R as a special case. We consider the trun-
cations without and with scale- and field-dependent wave function renormalization in dimensions
between four and two. Thereby the main emphasis is on analytic and numerical solutions of the
fixed point equations and the behavior in the vicinity of the corresponding fixed points. We deter-
mine the non-minimal coupling in the symmetric and spontaneously broken phases with vanishing
and non-vanishing average fields, respectively. Using functional perturbative renormalization group
methods, we discuss the leading universal contributions to the RG flow below the upper critical
dimension d = 4.

I. INTRODUCTION

The renormalization group (RG) method is a flexible
and powerful tool to study Quantum Field Theory in
curved space-time. The traditional perturbative formu-
lation was initiated in the papers [1–3] and is reviewed
in [4]. Unfortunately, this formulation is essentially re-
stricted to the Minimal Subtraction scheme of renormal-
ization which hinders its applicability to infrared scales.
Hence its applications to physical situations such as infla-
tion or acceleration of the present-day universe require a
great amount of phenomenological settings. This means
that in many cases we are unable to derive the most rele-
vant part of the quantum corrections, and therefore have
to rely on general arguments based on covariance and
dimension (see, e.g., [5] for a review).

The quantized scalar field coupled to gravity has al-
ways attracted a certain amount of interest. Recently
this topic has again become interesting due to the role
that gravitational effects might have on the Higgs de-
cay, which could explain the stability of the Higgs poten-
tial at high energies (see, e.g., [6] for the latest situation
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and further references). Another important motivation
is the growing interest on the effective potential of the
Higgs field itself and its application to cosmology. De-
spite the limitations of the standard perturbative RG-
methods in curved space-time, such a potential can be
useful for consistently describing inflation [7, 8]. In par-
ticular, it is known that the first- and second-loop cor-
rections to the potential enable us to impose restrictions
on the mass of the Higgs particle [7, 8]. This means
that the Higgs inflation, taking the opportune RG cor-
rections into account, can provide falsifiable predictions
for observational cosmology [9]. The importance of the
higher-loop corrections and the sensitivity of the results
to infrared effects indicate that it may be worth employ-
ing a non-perturbative method of renormalization, espe-
cially to investigate the non-minimal coupling between
the Higgs field and the scalar curvature.

Some well-known non-perturbative methods can be ap-
plied to curved space-time (see the reviews [10, 11]).
Among these methods we include the functional renor-
malization group (FRG) approach [12] which has been
much developed over the past decade, but has still been
very little used to study quantum field theories in a
curved background space. Exceptions are [13], in which
the critical behavior of scalar field theories on spherical
and hyperbolic spaces in the local potential approxima-
tion has been studied, and [14], in which the symme-
try restoration in de Sitter space has been investigated
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within the same approximation. Most papers adopting
FRG methods to investigate the renormalization of mat-
ter fields in curved spaces considered scalar fields coupled
to quantum gravitational fluctuations [15–21] to demon-
strate that quantum gravity coupled to matter is a viable
asymptotically safe theory with a non-trivial UV-fixed
point as originally conjectured by S. Weinberg [22].

In the present paper we consider the functional RG
method in a curved space-time and focus on a quantized
scalar field φ coupled to a background with classical met-
ric gµν . As we are mainly interested in the matter sector,
our attention will be mostly concentrated on the running
of a non-minimal coupling function F (φ) which directly
couples to the scalar-curvature through the interaction
F (φ)R. This truncation generalizes the more familiar
scalar-curvature interaction ξφ2R, which was previously
explored with non-perturbative methods in [24]. The
generalization leading to F (φ)R and, in general, to non-
polynomial self-interactions is interesting and was pre-
viously discussed in [26] in the framework of effective
quantum field theory. The FRG approach offers a natu-
ral framework for dealing with such a truncation of the
effective action.

It is well-known that in the conventional perturbative
approach, the renormalization of a scalar theory with
ξφ2R - interaction has the following properties:

• The presence of a term ∝ ξφ2R is necessary for
renormalizability of the theory. In particular, this
means that the β-function for ξ is non-zero, ex-
cept at the fixed point. In one-loop order of per-
turbation theory the fixed point value is ξ∗ = 1/6
in four dimensions (see, e.g., [4]). This value cor-
responds to the local conformal symmetry of the
classical theory, and for the d-dimensional space
the same symmetry requires ξ∗ = (d− 2)/(4d− 4).
Let us note that the conformal fixed point is known
only in four dimensions, because, for instance, in
odd-dimensional spaces the one-loop beta-functions
vanish and the results at two loops are not avail-
able. In the two-dimensional case ξ∗ = 0 is a fixed
point.

• In all orders of the loop expansion the β-functions
for the coupling constants of the theory (such as
λ in the λφ4-interaction case) do not depend on
ξ, while the β-function for ξ is given by a polyno-
mial expansion in these coupling constants corre-
sponding to the expansion in loops. In the Min-
imal Subtraction scheme-based RG the β-function
for ξ is mass-independent. But a dependence on the
mass is seen in the momentum-subtraction scheme
of renormalization [27].

• The renormalization of the parameters of the vac-
uum action (depending on the background gµν) de-
pends on coupling constants and on ξ, while the
inverse dependence is not seen.

In other words, in the loop expansion there is a hierarchy

of the renormalization as follows:

minimal terms → non-minimal terms → vacuum terms.

Furthermore, beyond the one-loop order and in 4 dimen-
sions the β-function for ξ is not proportional to the dif-
ference ξ − 1/6. It is certainly interesting to see whether
these features can be reproduced in a non-perturbative
setting based on the FRG. In this work we employ the
Wetterich equation, which probably is the most explored
among all the currently known functional RG equations.

The paper is organized as follows. In Sect. II we for-
mulate the FRG-equations for a scalar field theory with
non-minimal interaction function F (φ) and briefly de-
scribe the method of calculations. Since the method is
quite similar to the one which was explained in the pre-
vious work on F (φ) = ξφ2 [24], we need not present
many details here. The section ends with the explicit
form of the flow equation in any dimensions in the local
potential approximation (LPA). In section III we study
the solution of the fixed point equations and discuss the
peculiarities in different dimensions. Thereby the main
emphasis is on the fixed point equations for the non-
minimal coupling. Analytical solutions in 2 dimensions
and numerical solutions in d > 2 dimensions are pre-
sented and discussed in section IV. In the following sec-
tion V the flow equations for the non-minimal coupling
function with scale-dependent wave function renormal-
ization Zk is derived. (the more complex equations with
scale- and field-dependent wave function renormalization
Zk(φ) are given in appendix A). This latter improvement
includes, in particular, the anomalous dimension of the
field as the logarithmic scale derivative of Zk and goes un-
der the name of improved LPA or LPA’. The results with
Zk 6= 1 are relevant in the spontaneously broken phase
with non-vanishing expectation value of the scalar field.
Finally, in section VI we study the perturbative RG in
the vicinity of 4 dimensions based on the truncation with
scale and field dependent wave function renormalization.
In leading order of the ε-expansion we calculate the crit-
ical exponents for a scalar field coupled non-minimally
to gravity. In section VII we draw our conclusions and
discuss some perspectives for further work on the FRG
in curved space.

II. SCALAR FIELD IN CURVED SPACE WITH
NON-MINIMAL COUPLING

The classical action of a single real scalar field in a
curved space has the form

S =

∫ √
g

{
−1

2
φ∆gφ+RF (φ) + V (φ)

}
+ Sgrav[g] .

(1)
Here and in what follows we assume Euclidean signature
for the metric gµν , denote the covariant Laplace operator

with ∆g, and use the notation
∫ √

g =
∫

dnx
√
g(x). Our

purpose is to explore the quantum effects of a scalar field,
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while the metric will be regarded as a classical external
field. The classical action (1) involves a non-minimal
term, which is known to be necessary for renormalizabil-
ity in curved space. In the present paper we are mainly
interested in the non-perturbative running of the non-
minimal coupling function F (φ).

The ansatz for the scale dependent effective action is

Γk =

∫ √
g
{
− 1

2
Zk(φ)φ∆gφ+RFk(φ) + Vk(φ)

}
+Γgrav

k [g] , (2)

and it includes a scale dependent effective potential
Vk(φ), a scale-dependent non-minimal coupling function
Fk(φ) and a scale-dependent wave function renormaliza-
tion Zk(φ). Indeed, only in section VI and appendix A
we do allow for a field-dependent Zk, which in general has
a rather lengthy flow equation. Therefore we will derive
the flow equations first in the LPA’-approximation with
scale-dependent but otherwise constant Zk. The lengthy
calculation for the case of a nonconstant wave-function
renormalization is separated into appendix A.

Due to the above mentioned hierarchy of renormaliza-
tion, we expect that the RG flow of the non-minimal func-
tion Fk does not depend on the parameters in Γgrav

k [g]
and can be explored separately. Of course, the purely
gravitational contribution, which is not considered in the
present work, is of relevance for the intensively studied
asymptotic safety scenario [15, 17].

As invariant cutoff action we choose

∆Sk =
1

2

∫ √
g φRk(−∆g)φ

with Rk(−∆g) = Zkrk(−∆g) . (3)

Rk must have the well-known properties of a cutoff func-
tion [12] and will be specified later (note that differently
from the scalar curvature R, the cutoff-function Rk is al-
ways shown with the subscript k). Next we introduce the
anomalous dimension

ηk = −k∂kZk
Zk

= −∂tZk
Zk

, where t = log
k

Λ
. (4)

The left hand side of the flow equation

∂tΓk[φ] =
1

2
tr

(
∂tRk

Γ
(2)
k [φ] +Rk

)
(5)

is simply given by

∂tΓk =

∫ √
g
{1

2
ηkZk φ∆gφ+R∂tFk(φ) + ∂tVk(φ)

}
+∂tΓ

grav
k [g]. (6)

In the flow equation we also need the second functional
derivative of the effective action (2) with respect to the
scalar field

Γ
(2)
k = −Zk∆g +RF ′′k (φ) + V ′′k (φ) , (7)

and the variation of the cutoff

∂tRk = Zk (∂trk − ηkrk) . (8)

Thus for our truncation the r.h.s. of the flow equation
takes the form

1

2
tr

(
∂tRk

Γ
(2)
k [φ] +Rk

)
(9)

=
1

2
tr
{ Zk(∂t − ηk)rk(−∆g)

−Zk∆g +RF ′′k (φ) + V ′′k (φ) + Zkrk(−∆g)

}
.

To compare with the l.h.s. of the flow equation in (6) we
expand this expression in powers of the scalar field and
curvature. Therefore we set

Vk(φ) = Vk(0) +
V ′′k (0)

2
φ2 +Wk(φ) ,

V ′′k (φ) = V ′′k (0) +W ′′k , (10)

where Wk(φ) contains cubic and higher powers of the
field. Then we arrive at the following form of the r.h.s.,

1

2
tr

(
∂tRk

Γ
(2)
k [φ] +Rk

)
=

1

2
tr

Bk(−∆g)

Pk(−∆g) + Σk
, (11)

where, following [24], we introduced the abbreviations

Bk(−∆g) = ∂trk(−∆g)− ηkrk(−∆g) , (12)

Pk(−∆g) = −∆g + rk(−∆g) +
V ′′k (0)

Zk
, (13)

Σk(φ,R) =
1

Zk

[
RF ′′k (φ) +W ′′k (φ)

]
. (14)

We will expand the r.h.s. on (11) in a power series in
Σk and thereby use [Bk, Pk] = 0. However, for a inho-
mogeneous field and curvature the spacetime-dependent
Σk does not commute with Bk and Pk. But we still can
write down the Neumann series

tr
{ Bk
Pk + Σk

}
=
∑
m≥0

(−1)m tr
{
Qk,1

(
P−1
k Σk

)m }
,

Qk,m =
Bk
Pmk

. (15)

To simplify the notations we skip the argument −∆g of
Bk, Pk and Qk,m as well as the arguments φ and R of Σk.

The traces appearing in (15) can be computed via the
heat kernel of the covariant Laplacian. The details of this
procedure were described in [23, 24] and we just present
the result for the optimized regulator function rk(s) =
(k2 − s)θ(k2 − s) [25]. The expression for the trace in
Eq. (15) is

Qk,m(s) =
2k2 − (k2 − s)ηk

∆m
k

θ(k2 − s),

∆k = k2 +
m2
k

Zk
. (16)
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Let us now consider the asymptotic small-t expansion of
exp(t∆g),

et∆g =
1

(4πt)d/2
(
A0 + tA1 + t2A2 + . . .

)
, (17)

where the Schwinger-DeWitt coefficients have the well-
known form,

A0 = 1, A1 =
1

6
R, (18)

A2 =
1

180

(
RµναβR

µναβ

−RµνRµν + 6∆gR+
5

2
R2
)
. (19)

With the help of the asymptotic expansion (17) the
operators defined Qk,m in (15) (the reader may consult
[24] for more details), one arrives at the series expansions
in position space,

〈x|Qk,m(−∆g)|x〉 =
2

(4π)d/2
1

∆m
k

(20)

×
∑
n≥0

kd−2n+2

Γ(d/2− n+ 1)

(
1− ηk

d− 2n+ 2

)
An(x) ,

where ∆k has been introduced in (16). Note that for
even d the series terminate since 1/Γ has zeros on the
set of non-positive integers. At the same time our linear
in curvature approximation is such that only the terms
n = 0, 1 are relevant.

A. Local potential approximation

In a first step we consider the local potential approx-
imation (LPA) with constant φ and constant scalar cur-
vature R. Later we shall see how space-time dependent
fields may modify the results. In the LPA no terms with
derivatives of the field φ appear in the r.h.s. of the flow
equation and hence ∂tZk vanishes in this approximation.
The generalization to theories with Spontaneous Symme-
try Breaking and non-trivial wave-function renormaliza-
tion will be dealt with later on.

In the approximation considered Pk commutes with Σk
and the Neumann series (15) simplify to

tr

(
Bk

Pk + Σk

)
=

∞∑
m=0

(−1)m trQk,1P
−m
k Σmk

=

∞∑
m=0

(−1)m trQk,m+1Σmk . (21)

Inserting the expansion (20) with ηk = 0 for the oper-
ators Qk,m+1, one obtains a double sum over m and n.
The sum over m can be carried out and provides as in-
termediate result

1

2
tr

(
Bk

Pk + Σk

)
(22)

=
1

(4π)d/2

∑
n≥0

kd−2n+2

Γ(d/2− n+ 1)
tr

(
An

∆k + Σk

)
.

In the given truncation only the terms with n = 0 and
1 contribute, such that the relevant part of the r.h.s. of
the flow equation is

1

2
tr

(
Bk

Pk + Σk

)
= µdVol

( kd+2

∆k + Σk
+

d

12

kd

∆k + Σk
R
)

+ . . . , (23)

where Vol denotes the space-time volume. In addition
we introduced the geometric factor

µd =
1

(4π)d/2Γ(d2 + 1)
,

e.g., µ2 =
1

4π
, µ3 =

1

6π2
, µ4 =

1

32π2
. (24)

Expanding (∆k + Σk)−1 in Eq. (23) in powers of of the
Ricci scalar, only the two leading terms contribute in our
truncation, and we get

1

2
tr

(
Bk

Pk + Σk

)
= kdµdVol

[
k2
( 1

k2 + V ′′k

− RF ′′k
(k2 + V ′′k )2

)
+

d

12

R

k2 + V ′′k

]
+ . . . . (25)

Comparing with the l.h.s. of the Wetterich equation in
(6) yields

∂tVk = µdk
d k2

k2 + V ′′k
, (26)

∂tFk = µdk
d

(
d

12

1

k2 + V ′′k
− k2F ′′k

(k2 + V ′′k )2

)
. (27)

The first of these equations is exactly the same as in
flat space-time, while the second one has no analogs in
the flat-space limit. It is easy to see that these two flow
equations imply that for even functions VΛ(φ) and FΛ(φ)
at the UV-cutoff the scale dependent functions Vk and
Fk stay even at all scales k.

Note that the flow of the effective potential Vk(φ) is
independent of the non-minimal coupling function Fk(φ)
and is exactly the same as in flat space-time. However
it determines the running of the non-minimal coupling
function Fk(φ).

III. FIXED POINT SOLUTIONS

To localize the fixed points of the RG flow we introduce
the dimensionless field χ, potential vk(χ) and coupling
function fk(χ):

φ = k(d−2)/2 χ, Vk(φ) = kd vk(χ) ,

Fk(φ) = kd−2fk(χ). (28)

As a rule we denote dimensionful parameters and poten-
tials by capital letters and the corresponding dimension-
less quantities by small letters. The only exception is φ
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and χ. By means of the identities

∂2
φ = k2−d∂2

χ ,

∂tVk = kd
(
∂tvk + dvk −

d− 2

2
χ∂χvk

)
, (29)

and similarly for ∂tFk, the flow equations for the dimen-
sionless quantities take the form

∂tvk + dvk −
d− 2

2
χv′k =

µd
1 + v′′k

, (30)

∂tfk + (d− 2)fk −
d− 2

2
χf ′k

=
d

12

µd
1 + v′′k

− µdf
′′
k

(1 + v′′k )2
. (31)

Scaling solutions for the effective potential and the non-
minimal coupling function are k-independent global solu-
tions v∗ and f∗ of (30) which generalize the notion of a
RG fixed point. We shall denote these fixed point solu-
tions by a star in the following. The fixed point equations
are

v′′∗ =
2µd

2dv∗ − (d− 2)χv′∗
− 1 , (32)

f ′′∗ =
d

12
(1 + v′′∗ ) +

d− 2

2µd
(1 + v′′∗ )2 (χf ′∗ − 2f∗) . (33)

If the vk and fk are even functions at the cutoff, then they
are even at any scale. Thus we assume the expansions

f∗(χ) = f∗(0) +
ξ∗
2
χ2 + . . . ,

v∗(χ) = v∗(0) +
m2
∗

2
χ2 + . . . . (34)

The constant term f∗(0) relates to the dimensionless
gravitational constant which feeds into the purely grav-
itational sector, which is not considered in the present
work. Later we shall see that the fixed point value ξ∗
depends on this constant.

Inserting these expansions into the flow equation (31)
(not the equation (33) where we solved for f ′′∗ ) with
∂tv∗ = ∂tf∗ = 0 and comparing coefficients of χ0 relates
ξ∗ ≡ f ′′∗ (0) to m∗ and f∗(0),

ξ∗ =
d

12
(1 +m2

∗)−
d− 2

µd
(1 +m2

∗)
2 f∗(0) . (35)

Comparing coefficients of χ2 relates ξ∗ to the fourth
derivatives of v∗ and f∗,(

ξ∗ −
d

24
(1 +m2

∗)

)
v′′′′∗ (0) =

1 +m2
∗

2
f ′′′′∗ (0) . (36)

For even functions v∗, f∗ the fixed point equation (33)
implies that f ′′′′∗ (0) is proportional to v′′′′∗ (0). Using this
relation in (36) gives rise to the simpler result (35).

A. Gaussian fixed points

In all dimensions there exist Gaussian fixed point solu-
tions of (32) and (33) with constant scaling potential v∗.
Then m∗ and v′′′′∗ (0) both vanish and (36) does not yield
information about ξ∗, but instead implies f ′′′′∗ (0) = 0.
We conclude that at a Gaussian fixed point the non min-
imal function f∗ is a polynomial of degree 2. The relation
(32) determines the constant v∗ and (33) determines the
coefficients of the quadratic polynomial f∗:

v∗(χ) =
µd
d
, f∗(χ) =

ξ∗
2
χ2 + f∗(0),

ξ∗ =
d

12
− d− 2

µd
f∗(0) . (37)

Only in two dimensions is the non-minimal parameter
independent of the normalization f∗(0). In higher di-
mensions f∗(0) shifts the value of ξ∗

B. Non-Gaussian fixed points

Let us assume that there exists an interacting (non-
Gaussian) fixed point with non-vanishing self-coupling
v′′′′∗ (0) and truncate the non-minimal function f∗ to an
even polynomial of degree 2 as in (37). Then f ′′′′∗ (0) = 0
and (36) determines ξ∗ which we insert into (35) to find
f∗(0):

ξ∗ =
d

24
(1 +m2

∗), (38)

f∗(0) =
dµd

24(d− 2)(1 +m2
∗)
, if f ′′′′∗ (0) = 0, d > 2 .

Two dimensions are special since (35) yield for any fixed
point – interacting or non-interacting – the simple rela-
tion

ξ∗ =
1

6
(1 +m2

∗), d = 2, (39)

independent of f∗(0). Then (36) implies that at a non-
Gaussian fixed point with non-vanishing v′′′′∗ (0) the non-
minimal function f∗ can not possibly be a polynomial of
degree 2.

In dimension higher than two a truncation with
quadratic f∗ is inconsistent if f∗(0) = 0. In other words
f∗(0) and f ′′′′∗ (0) cannot both vanish at a non-trivial fixed
point. The truncation to a quadratic polynomial f∗(χ)
has been discussed in detail for d = 4 in [24]. Let us now
discuss the non-trivial fixed points which are expected
to exist in 2 ≤ d < 4 dimensions in more detail. Actu-
ally for dimensions 3 ≤ d < 4 there exists one fixed point
and below 3 dimensions we expect a proliferation of fixed
points with decreasing d.

a. 4 dimensions: If there would exist an interacting
fixed point in 4 dimensions (which probably is not the
case) then we have for the truncation f∗ = f∗(0)+ξ∗χ

2/2
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according to (38)

ξ∗ =
1

6
(1 +m2

∗), (40)

which may deviate from the classical value 1/6. This
should be compared with the prediction of the standard
Minimal Subtraction scheme-based one-loop RG for ξ,
where a mass-dependence is not seen. Let us note that
the mass-dependent β-functions are encountered in the
physical (e.g., momentum-subtraction) renormalization
schemes, including the non-minimal parameter ξ. In
principle, starting from 3 loops the beta-function for ξ
is not proportional to ξ − 1/6, as is known from [30].

b. 3 dimensions: The fixed point equation (32)
takes the form

v′′∗ =
1

3π2

1

6v∗ − χv′∗
− 1 , (41)

and admits a nontrivial scaling solution. Indeed, a nu-
merical study reveals that only for the initial condition
v′′∗ (0) = m2

∗ = −0.18605 a non-trivial global solution of
the (singular) differential equation exists [11, 31]. As a
result the critical ξ∗ in (38) is slightly smaller than the
classical value 1/8 (corresponding to the conformal cou-
pling of a scalar field to gravity),

ξ∗ =
1

8
(1 +m2

∗) = 0.10174 < ξclassical = 0.125 . (42)

c. From 3 to 4 dimensions: In four dimensions there
is probably only the Gaussian fixed point solution for a
scalar field [32]. In LPA it has constant potential

v∗ =
1

128π2
and ξ∗ =

1

3
− 64π2f∗(0) . (43)

Let us see what happens when we approach the upper
critical dimension d = 4 from below. Since the FRG
can be formulated in arbitrary space-time dimensions,
we may continuously increase d from 3 to 4 and study
the limit of ξ∗ when d→ 4. In all dimensions 3 ≤ d < 4
there exists one non-trivial fixed point solution v∗(χ) with
non-vanishing v′′′′∗ (0) and m2

∗ < 0. Following [33, 34] we
numerically solved the singular fixed point equation (32)
for the dimensions given in Table I with the shooting
method. An even solution depends only on its initial
value v∗(0) or equivalently on its initial curvature v′′∗ (0) =
m2
∗. For a wrong initial condition m2

∗ the solution of
the singular differential equation (32) becomes singular
at a finite value χmax of the field. We fine-tuned the
mass-parameter m2

∗ such that the solution extends to a
maximal value of χmax. If one continues with this fine-
tuning then χmax finally increases until one (in principle)
obtains a globally well-defined potential. After the global
solutions v∗ is known one can proceed with solving the
regular differential equation (33). The approximate fixed
point values of m2

∗ and ξ∗ are listed in Table I.
For calculating the non-minimal coupling ξ∗ we used

the relation (38) which applies to interacting fixed points

in a truncation with quadratic f∗. These values are de-
picted in Figure 1, where we also plotted the classical
conformal couplings and the interpolating polynomials
of degree two for the calculated mass parameters and
non-minimal parameters, given by

ξ∗(d) = −0.0084105 d2 + 0.123892 d− 0.194295 ,

m2
∗(d) = −0.10973 d2 + 0.95288 d − 2.05629 .

(44)

In 4 dimensions the interpolating polynomials yield the
values ξ∗ = 1.667 and m∗ = −4 · 10−4. The value for ξ∗
agrees with the prediction (40) for an interacting fixed
point with m∗ = 0 or with the prediction (43) for a Gaus-
sian fixed point with f−1

∗ (0) = 384π2.

classical ξ∗

m2
∗, ξ∗

d
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

FIG. 1. The numerically determined values m2
∗ = v′′∗ (0)

(marked by •) with corresponding non-minimal parameters
ξ∗ (marked by ×) in dimensions ranging from 3 to 4. The
solid curve shows the classical conformal coupling. The dot-
ted curves are fits by polynomials of degree 2.

From the calculated values at d = 4 − ε with small
ε ≤ 0.3 we extracted via an interpolation by a polynomial
of degree 2 the following ε-expansions:

ξ∗(4− ε) ≈ 0.166669− 0.055753 ε− 0.010395 ε2 + . . .

≈ 1

6
− ε

18
− ε2

96
+ . . . ,

m2
∗(4− ε) ≈ 3.2497 · 10−7 − 0.083448 ε− 0.093580 ε2 + . . .

≈ − ε

12
− 468ε2

5000
. (45)

The ε-expansion with scale and field-dependent wave
function renormalization is reconsidered in section VI.

IV. EXACT AND NUMERICAL SOLUTIONS

Using the fixed point equation (32) for v∗, the differ-
ential equation (33) for f∗ can be written as

f ′′∗ =
2µd

2dv∗ − (d− 2)χv′∗

[
d

12
+

(d− 2)(χf ′∗ − 2f∗
2dv∗ − (d− 2)χv′∗

]
.

(46)
This form is convenient for numerical studies.
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d 3 3.1 3.2 3.3 3.4 3.5 3.6
m2
∗ -0.18605 -0.15662 -0.13002 -0.10609 -0.08462 -0.06544 -0.04843

ξ∗ 0.10174 0.10894 0.11600 0.12291 0.12968 0.13629 0.14274
d 3.7 3.8 3.9 3.95 3.98 3.99 3.999
m2
∗ -0.033457 -0.020430 -0.009283 -0.004406 -0.0017053 -0.0008430 -0.00008343

ξ∗ 0.149009 0.155099 0.160992 0.163858 0.165551 0.166110 0.166611

TABLE I. The curvature of the scaling potential with corresponding non-minimal parameter ξ∗ in various dimensions between
3 and 4. The results are plotted in Fig. 1.

A. Analytic solutions in 2 dimensions

In two dimensions there exist an infinite set of non-
perturbative fixed points solutions of the fixed point
equation [35]

v′′∗ =
1

8π

1

v∗
− 1 . (47)

Multiplying with v′∗ we immediately find a first integral.
For an even scaling potential it reads

1

2
v′ 2∗ (χ) =

1

8π
log

v∗(χ)

v∗(0)
− (v∗(χ)− v∗(0)) . (48)

For a real potential the left hand side is non-negative
which implies

log
v∗(χ)

v∗(0)
− 8π (v∗(χ)− v∗(0)) ≥ 0 . (49)

By inspection one sees that for a positive initial value
v∗(0) the left hand side vanishes at two positive values
v∗(χ) and is positive between these two nodes only. This
means that for a positive v∗(0) the potential v∗(χ) is
bounded from below and from above. There are two
possibilities [35],

m2
∗ > 0 =⇒ v∗(0) ≤ v∗(χ) ≤ v∗max,

−1 < m2
∗ < 0 =⇒ v∗min ≤ v∗(χ) ≤ v∗(0) . (50)

The fixed point equation (47) relates the potential and
its curvature at the origin,

v∗(0) =
1

8π

1

1 +m2
∗
, (51)

such that v∗(0) varies between 0 and 1/8π for the first
class of solutions in (50) and is bigger than 1/8π for the
second class. These bounded solutions show an oscilla-
tory behavior. On the other hand, for a negative v∗(0)
the left hand side of (49) has only one node and v∗(χ)
is negative for all χ and unbounded from below. This
unstable solutions will be discarded on physical grounds.

The inverse function χ = χ(v∗) of a solution v∗(χ) of
(47) is given by the integral [33]

χ(v∗) =
√

4π

∫ v∗

v∗(0)

du√
log u/v∗(0)− 8π(u− v∗(0))

.

(52)

In 2 dimensions the fixed point equation (33) for f∗ sim-
plifies considerably and can easily be solved in terms of
the scaling potential. Even solutions have the form

f∗(χ) =
χ2

12
+
v∗(χ)

6
+ f∗(0), (53)

with scaling potential given in (52). Each fixed point
comes with its own periodic scaling potential v∗, non-
minimal coupling function f∗ and positive non-minimal
parameter,

ξ∗ ≡ f ′′∗ (0) =
1

6
(1 +m2

∗) =
1

48π v∗(0)
∈ [0,∞] . (54)

The classical conformal coupling in two dimensions is
ξ∗ = 0 and it is attained for m2

∗ = −1. According to (50)
this is the value for which the periodic scaling solutions
with m2

∗ > −1 cease to exist and one encounters the
unstable scaling solutions with m2

∗ < −1. Two typical
solutions of the flow equation (47) with associated f∗
in (53) are depicted in Fig. 2. We normalized f∗ by
setting f∗(0) = 0. The potential v∗ in the upper figure
has positive curvature m2

∗ at the origin and the one in the
lower figure has negative m2

∗. Note that the asymptotic
form of f∗ for large values of the field is independent of
the scaling potential.1

Note that in 2 dimensions we did not truncate f∗(χ)
to a quadratic polynomial. Without wave function renor-
malization we observe a continuum of scaling potentials
in two dimensions and correspondingly any value of ξ∗
between 0 and ∞ seems to be possible. But we expect
sizable corrections to the fixed point solutions if we in-
clude a wave function renormalization. With wave func-
tion renormalization one finds a discrete set of scaling
potentials and correspondingly a discrete series of fixed
point values ξ∗, see section V.

B. Three and four dimensions

As discussed earlier, in three dimensions there is one
non-trivial even scaling potential v∗ characterized by its

1 This corresponds to the fact that the d = 2 theory in a usual
perturbative approach is renormalizable for any functions v and
f .
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m2
∗ = 5

χ
1
8π

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

0.1

0.2

0.3

v∗

f∗

m2
∗ = −0.6

χ

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

0.1

0.2

0.3

1
8π v∗

f∗

FIG. 2. Two periodic scaling potentials v∗(χ) in two di-
mensions (without wave function renormalization) with cor-
responding coupling function f∗. We set f∗(0) = 0 in (53).

(fine-tuned) mass-parameter. First we solved (41) for
the scaling potential and in a second step obtained the
fixed point coupling function f∗ from (46), which in 3
dimensions reads

f ′′∗ =
1

3π2

1

6v∗ − χv′∗

(
1

4
− 2f∗ − χf ′∗

6v∗ − χv′∗

)
. (55)

The numerical (even) solutions of the coupled system
of differential equations (41,55) with initial condition
f∗(0) = 0 are depicted in Fig. 3. According to (35)

m2
∗ = −0.18605

χ

0 0.1 0.2 0.3 0.4
0

0.02

0.04

0.06

0.08

4v∗

f∗

FIG. 3. The scaling potential v∗(χ) in three dimensions (with-
out wave function renormalization) and the corresponding
coupling function f∗ with initial condition f∗(0) = 0.

the non-minimal parameter ξ∗ depends on the unspeci-
fied fixed point value of the dimensionless gravitational
constant f∗(0)

ξ∗ =
1

4

(
1 +m2

∗
) (

1− 24π2
(
1 +m2

∗
)
f∗(0)

)
, (56)

and thus is not determined by v∗ alone.
In four dimensions the fixed point equation for v∗ ad-

mits only a constant solution belonging to the Gaussian
fixed point. The corresponding even solution in (37) con-
tains one free parameter,

f∗ =
χ2

6
+ f∗(0)

(
1− 32π2χ2

)
. (57)

Thus at the Gaussian fixed point the solution f∗ is a sum
of a constant and the quadratic term. The constant term
f∗(0) belongs to an induced Einstein-Hilbert term, and
the quadratic term is required to provide perturbative
renormalizability of the theory in curved space-time.

V. INCLUDING THE WAVE FUNCTION
RENORMALIZATION Zk

We have seen that there is no wave function renor-
malization in the truncation (2) if an even potential Vk
is expanded in powers of the field. But expanding in
powers of the field may be inappropriate. For exam-
ple, the potential at intermediate scales and the scaling
solution need not be convex, contrary to the full effec-
tive potential Vk→0. Indeed, in most cases the scaling
solution v∗ is non-convex. Since the flow is driven by
fluctuations about the minimum φ0,k of the effective po-
tential it should be advantageous to expand both sides
of the flow equation in powers of δφk = φ − φ0,k rather
than in powers of φ. Since for an even classical poten-
tial one finds odd powers of δφk one should allow for
odd powers in the flow equation. Then we expect a wave
function renormalization already in the truncation (2).
Actually it is well-known that without considering the
anomalous dimension η∗ at the fixed point one misses in-
teresting scaling solutions in two-dimensional systems in
flat space-time [36].

For systems with running Zk (and therefore non-
vanishing anomalous dimension) one easily reinstalls the
Zk and ηk dependence in the right hand side of the flow
equations. Looking at the last expression in (9) we see
that Vk and Fk must be divided by Zk. Going back to
(20) we conclude that the n’th term in (22) is multiplied
with the factor 1−ηk/(d−2n+2). This way one obtains
the flow equations with (field independent) wave function
renormalization,

∂tVk = µdk
d k2

k2 + V ′′k /Zk

(
1− ηk

d+ 2

)
,

∂tFk = µdk
d

(
d

12

1

k2 + V ′′k /Zk

(
1− ηk

d

)
− k2F ′′k /Zk

(k2 + V ′′k /Zk)2

(
1− ηk

d+ 2

))
. (58)

For Zk = 1 and ηk = 0 they simplify to the previously
considered flow equation (26) and (27).
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A. Scaling solutions

To study the fixed-point solutions we introduce the
dimensionless “renormalized” field χ and functions vk, fk
according to

χ = k(2−d)/2Z
1/2
k φ, vk(χ) = k−d Vk(φ)

fk(χ) = k2−dFk(φ) . (59)

The flow equations for the dimensionless quantities take
the form

∂tvk + dvk −
d− 2 + ηk

2
χv′k =

µd
1 + v′′k

(
1− ηk

d+ 2

)
,

(60)

∂tfk + (d− 2)fk −
d− 2 + ηk

2
χf ′k

=
d

12

µd
1 + v′′k

(
1− ηk

d

)
− µdf

′′
k

(1 + v′′k )2

(
1− ηk

d+ 2

)
. (61)

For η∗ = 0 one recovers the flow equations (30) and (31)
in the LPA. Compared to the flow equations without
anomalous dimension the “effective space-time dimen-
sion” appearing in the geometric terms on the left hand
side is d+ ηk instead of d. Note that it is the anomalous
dimension ηk – not the wave function renormalization
Zk – that enters here as free parameter. It will be deter-
mined in a later stage when we find an algebraic equation
which includes ηk.

The flow equations give rise to the fixed point equa-
tions within the LPA’:

dv∗ −
d− 2 + η∗

2
χv′∗ =

µd
1 + v′′∗

(
1− η∗

d+ 2

)
, (62)

(d− 2)f∗ −
d− 2 + η∗

2
χf ′∗

=
d

12

µd
1 + v′′∗

(
1− η∗

d

)
− µdf

′′
∗

(1 + v′′∗ )2

(
1− η∗

d+ 2

)
.(63)

The flow and fixed point equation for the potential in flat
space has been studied extensively in the literature (see
for example [33, 36]) and hence we focus especially on
the non-minimal coupling to gravity.

In passing we note that in 2 dimension the differen-
tial equation (63) turns into a first order equation for f ′∗
which can be integrated. The solution with f ′∗(0) = 0
has the form

f ′∗(x) =
1

3

2− η∗
4− η∗

eQ(x)

∫ x

0

dy e−Q(y)
(
1 + v′′∗ (y)

)
,

Q(x) =
8πη∗

4− η∗

∫ x

0

dy y
(
1 + v′′∗ (y)

)2
. (64)

In the symmetric phase the non-minimal coupling is

ξ
(s)
∗ = f ′′∗ (0). In the broken phase, where the field fluc-

tuates about the minimum of the effective potential, it is
more reasonable to characterize the coupling of the quan-
tum field to space-time curvature by f ′′k (minimum of vk).
Thus below we consider the quantities

ξ
(s)
∗ = f ′′∗ (0) and ξ

(b)
∗ = f ′′∗ (χ0∗) , (65)

defined at the origin and the minimum χ0∗ of the fixed
point potential v∗. Both are given by a generalization of
(35)

ξ
(s,b)
∗ =

(
d

12

(
1 + v

′′ (s,b)
∗

)(
1− η∗

d

)
(66)

−d− 2

µd

(
1 + v

′′ (s,b)
∗

)2

f
(s,b)
∗

)(
1− η∗

d+ 2

)−1

,

where v
′′ (s,b)
∗ and f

(s,b)
∗ in this equation denote v′′∗ and

f∗ at the origin and the minimum of v∗ respectively. Re-
lation (66) yields a definite value only in two spacetime
dimensions where it will be used below.

In higher dimensions the unknown initial values f
(s,b)
∗

enter (66) and thus we seek a relation generalizing (36)
which unambiguously fixed ξ∗. Comparing the second
order terms in an expansion about the origin or minimum
of (63) yields the relation

(
ξ

(s,b)
∗

(
1− η∗

d+ 2

)
− d

24

(
1 + v

′′ (s,b)
∗

)(
1− η∗

d

))
v
′′′′ (s,b)
∗ =

1 + v
′′(s,b)
∗ )

2

(
1− η∗

d+ 2

)
f
′′′′ (s,b)
∗ − η∗ ξ

(s,b)
∗

2µd

(
1 + v

′′ (s,b)
∗

)3

,

(67)

with v′′′′∗ and f ′′′′∗ evaluated at the origin or the minimum.
Truncating f∗ to polynomials of degree two yields(
ξ

(s,b)
∗

(
1− η∗

d+ 2

)
− d

14

(
1 + v

′′ (s,b)
∗

)(
1− η∗

d

))
v
′′′′ (s,b)
∗

= −η∗ ξ
(s,b)
∗

2µd

(
1 + v

′′ (s,b)
∗

)3

, (68)

which does not depend on an unspecified initial value for
f∗. In numerical investigations it maybe advantageous
to express the fourth derivative of v∗ at the origin or
minimum by derivatives of lower order via the fixed point
equation of v∗. To close the system of equations we need
an equation for the anomalous dimension. This will be
discussed next.
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B. Flow equation for Zk

To find an equation for the anomalous dimension one
must admit an inhomogeneous field in the right hand
side of the flow equation. We have argued earlier that
in the given truncation and for an even potential a wave
function renormalization only arises in a phase with bro-
ken symmetry. In the broken phase we set φk(x) =
φ0,k + δφ(x), where φ0,k is a scale dependent minimum
of the effective potential, i.e. V ′k(φ0,k) = 0. Although a
better choice would be to take the (in general inhomo-
geneous) minimum of Vk(φ) + Fk(φ)R, in the following
we shall take the minimum of Vk and this is justified for
|FkR| � |Vk|. The only term in the series (15) which
produces a term proportional to δφ∆gδφ is the one with
m = 2. The effect of the nonminimal term on the position
of the minima can be taken into account perturbatively
[37], but this issue is beyond the scope of the present
work. Since only the part V ′′k /Zk of Σk contributes to
the running of Zk it is sufficient to consider the first term
on the right hand side of

1

2
tr

(
Qk,1Σk

1

Pk
Σk

1

Pk

)
=

1

2Z2
k

tr

(
Qk,2V

′′
k

1

Pk
V ′′k

)
+O(R) . (69)

When we expand about the minimum of Vk then V ′′k (0)
in (13) is replaced by V ′′k (φ0,k). To project the first term
on the r.h.s. onto

∫ √
g φ(−∆g)φ we note that its depen-

dence on the spacetime geometry only enters via the co-
variant Laplacian in Qk,2 and Pk. Thus we may take the
result in flat space time [11, 12, 38] and just replace the
Laplacian by the covariant Laplacian, in accordance to
what has been explained also in the Introduction. With

V ′′k (φk) = V ′′k (φ0,k) + V ′′′k (φ0,k)δφ + . . . (70)

one obtains

V ′′′2k (φ0,k)

Z2
k

tr

(
Qk,2δφ

1

Pk
δφ

)
(71)

= µdk
d+2 V ′′′ 2k (φ0,k)/Z2

k

(k2 + V ′′k (φ0,k)/Zk)4

∫ √
g δφ∆gδφ+ . . . ,

where the dotted terms do not contribute to the running
of Zk. Comparing with (4) finally yields

ηk ≡ −
∂tZk
Zk

= µdk
d+2 V ′′′ 2k (φ0,k)/Z3

k

(k2 + V ′′k (φ0,k)/Zk)4
. (72)

In terms of the dimensionless quantities in (59) this equa-
tion reads

ηk = µd
v′′′ 2k (χ0,k)

(1 + v′′k (χ0,k))4
, (73)

such that

η∗ = µd
v′′′ 2∗ (χ0∗)(

1 + v′′∗ (χ0∗)
)4 , (74)

and it has been studied in detail in [33, 34]. The last
expression yields the anomalous dimension at criticality
which enters the expression (67) and (68) for the non-
minimal couplings to the Ricci scalar.

C. Numerical evaluation of ξ∗ in LPA’

In our numerical studies we followed [33, 34] and first
solved the fixed point equation (62) for v∗ with an edu-
cated first guess for η∗. With the shooting method we
determined for this η∗ the (approximate) value of m2

∗ for
which the differential equation admits a global solution.
From the global solution we extracted the corresponding
value of η∗ according to (68). Then we used this value
as improved guess for the shooting method. This process
is repeated until the values of η∗ converge and one ob-
tains a self-consistent solution of the flow equation and
the equation determining η∗. Then one calculates the
value of ξ∗ from this self-consistent solution.

a. Two dimensions: We analyze the fixed point cor-
responding to the critical Ising model coupled non-
minimally to gravity. From the known values of η∗ and
v′′(0) in the Ising and Tri-Ising class [34] we calculated
v′′(χ0∗) and the corresponding values ξ∗ from (66):

ξ
(s)
∗ =

1

6
(1 + v′′∗

(
0)
)1− η∗/2

1− η∗/4
,

ξ
(b)
∗ =

1

6
(1 + v′′∗

(
χ0∗)

)1− η∗/2
1− η∗/4

. (75)

The results for the Ising and Tri-Ising classes are listed
in Table II.

b. Three dimensions: Here we assume the trunca-
tion in which f∗(χ) is a polynomial of degree 2, such that
we may use (68) to calculate ξ∗ for fluctuations about
the origin and about χ0∗. With the known values η∗
and v′′(0) from [34] we solved the fixed point equations
numerically and extracted v′′(χ0∗) and v′′′′∗ (χ0∗). These
then yield the values of the minimal couplings given in
Table II. In the same Table we also included the cor-
responding values for ξ∗ calculated in the LPA approx-
imation with η∗ = 0. In three dimensions the classical
conformal coupling ξclass = 0.125 lies between the values
extracted for fluctuations about the origin and about the
minimum of the scaling potential. This holds true in the
LPA and in the LPA’ approximations.

VI. UNIVERSALITY AND PERTURBATION
THEORY IN d = 4 − ε

In this section we concentrate on the scheme-
independent (universal) contribution to the flow of (2)
with field dependent potential Vk(φ), non-minimal cou-
pling Fk(φ) and wave function renormalization Zk(φ).
These contributions correspond to the RG flow induced
by the subtraction of the 1/ε poles of dimensional regular-
ization (MS scheme) below the upper critical dimension



11

¡ universality class η∗ v′′∗ (0) v′′∗ (χ0∗) ξ
(s)
∗ ξ

(b)
∗ ξclass

d = 2 Ising class LPA’ 0.4364 −0.3583 1.2489 0.0939 0.0182 0.0000
d = 2 Tri-Ising class LPA’ 0.3119 +0.2597 0.7534 0.1922 0.0078 0.0000
d = 3 Wilson-Fisher LPA 0.0000 −0.1859 0.4571 0.1018 0.1821 0.1250
d = 3 Wilson-Fisher LPA’ 0.1120 −0.1356 0.3093 0.0895 0.1302 0.1250

TABLE II. The anomalous dimensions, second derivative of the fixed point potentials at the origin and the minimum and the
non-minimal couplings at criticality defined at the origin and at minimum of the scaling potential. The last column contains
the classical conformal couplings.

d = 4 of a φ4 model which is non-minimally coupled to a
curved geometry.

We study the leading universal contributions in the
ε-expansion using the approach introduced by O’Dwyer
and Osborn in [39] which was later further refined and
named functional perturbative RG in [40]. The functional
perturbative flow is fully equivalent to the flow induced
by standard coupling’s perturbation theory with minimal
subtraction in the ε-expansion. In fact, all perturbative
beta functionals can be derived by means of standard
renormalization of the same Feynman diagrams which
in the standard approach renormalize the coupling and
generate anomalous operators’ scaling dimensions.

In the present work we find it more instructive to de-
tect which contributions are universal by extracting the
logarithmic scaling terms of the non-perturbative flow
of the full system Vk(φ), Fk(φ) and Zk(φ). A complete
representation of the flow of this system for arbitrary cut-
off can be found in appendix A. In the same appendix
we also briefly explain which techniques are used to ex-
tract the universal contributions and further elaborate on
other universality classes coupled to a curved geometry.

The leading universal part that is extracted from the
non-perturbative RG flow in d = 4 at the second order
of the derivative expansion given in appendix A is

∂tVk =
1

(4π)2

(V ′′k )2

2Z2
k

, ∂tFk = − 1

(4π)2

V ′′k
Zk

(
1

6
− F ′′k
Zk

)
,

∂tZk =
1

(4π)2

1

Z2
k

(Z ′′kV
′′
k + Z ′kV

′′′
k ) .

(76)

In the limit of small deformations of Zk(φ) around
Zk(φ) = 1, this flow can be checked against the flat-
space case obtained in [39, 40]. Specifically, the flow of
Vk(φ) entails the one-loop leading renormalization of the
φ4 or Ising’s universality class. Furthermore, the flow of
the wave function can also be checked against the results
of the derivative expansion, which also appear in [39, 40].

Let us denote the constant part of the wavefunction
as Zk,0 = Zk(0), which we now decorate with an addi-
tional label to distinguish it from the full field-dependent
Zk = Zk(φ). As in Eq. (59) we define the dimensionless

field φ = kd/2−1Z
−1/2
k,0 χ, the dimensionless functions vk

and fk and, in addition, the dimensionless wave function
renormalization

zk(χ) = Z−1
k,0Zk(φ) (77)

in d = 4−ε. The rescaling of Zk(φ) ensures the boundary
condition zk(0) = 1. The perturbative RG flow of these
functions is

∂tvk = −4vk + χv′k + ε

(
vk −

1

2
χv′k

)
+

1

2
ηkχv

′
k +

1

(4π)2

1

2

(v′′k )2

z2
k

,

∂tfk = −2fk + χf ′k + ε

(
fk −

1

2
χf ′k

)
+

1

2
ηkχf

′
k −

1

(4π)2

v′′k
zk

(
1

6
− f ′′k
zk

)
,

∂tzk = ηkzk + χz′k −
ε

2
χz′k +

1

2
ηkχz

′
k

+
1

(4π)2

1

z2
k

(z′′kv
′′
k + z′kv

′′′
k ) . (78)

The anomalous dimension ηk can be determined enforc-
ing the boundary condition zk(0) = 1, but it is nonzero
only at two-loops [39, 40], thus it yields a correction of
order ε2, as expected from standard perturbation theory.
Since our results are limited to the leading order of the
ε-expansion, we shall neglect it for the remainder of this
section.

The perturbative setting simplifies the study of k-
independent solutions of (78) considerably. As expected,
we find two interesting fixed points: The non-trivial fixed
point is

v∗(χ) =
1

(4π)2

ε

3

χ4

4!
, f∗(χ) =

1

6

χ2

2!
, z∗(χ) = 1 ,

(79)
while the generalization of the Gaussian fixed point

v∗(χ) = 0 , f∗(χ) =
1

6

χ2

2!
, z∗(χ) = 1 . (80)

In both cases the non-minimal coupling ξ takes the ex-
pected value 1/6 in d = 4. It is interesting that the
nontrivial fixed point does not exhibit the expected ana-
lytic continuation of the formula ξ = (d− 2)/(4d− 4) =
1/6 − ε/36 in d = 4 − ε, which makes it more difficult
to interpret it as the perturbative analog of (45).2 Writ-
ten in this form, this result is scheme independent and

2 One possible point of view to understand this fact goes as follows:
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therefore fully independent of any cutoff choice that was
made throughout the rest of this paper, thus intuitively
we could think of (40) as barring some explicit cutoff de-
pendence which is ignored by the perturbative analysis.

The scaling analysis of (78) around the nontrivial fixed
point (79) is also very simple. In d = 4−ε, for arbitrarily
small ε, the mixing of the operators is selected by the
mass dimension. More precisely, we can parametrize an
arbitrary deformation of the fixed point solution as

vk(χ) = v∗(χ) +
λn
n!
χn , zk(χ) = 1 +

ζn−4

(n− 4)!
χn−4 ,

fk(χ) = f∗(χ) +
ξn−2

(n− 2)!
χn−2 , (81)

for a given natural number n. The implicit condition
is that only polynomial interactions are allowed λm =
ξm = ζm = 0 if m is a negative number [42]. This im-
plies, for example, that the first two monomials of vk
cannot mix, and that the first nontrivial mixing occurs
between φ2 and R. This pattern continues up to the
point in which all functions are mixed together starting
with the (almost) marginal operators φ4, φ2R and (∂φ)2.
The stability matrix in the basis (λn, ξn−2, ζn−4) must be
diagonalized at the fixed point (79). The negative of the
eigenvalues of the stability matrix are the spectrum of
scaling (critical) exponents θn,i of the theory. We label
three sets of eigenvalues

θn,1 = 4− n− 1

6

(
6− 4n+ n2

)
ε for n ≥ 0 ,

θn,2 = 4− n− 1

6

(
18− 8n+ n2

)
ε for n ≥ 2 ,

θn,3 = −1

6
(n− 4) (6 + (n− 6)ε) for n ≥ 4 .

(82)

For almost all values of n the degeneracy of the criti-
cal exponents is lifted and, following the standard argu-
ments of perturbation theory, we could interpret the op-
erators corresponding to the above three sets as (normal

ordered) generalizations of φn, φn−1R and φn−4(∂φ)2 re-
spectively. In the flat-space limit, these results agree with
those on the renormalization of the composite operators
of the form φn, which are known by several means (see
for example [39] and references therein).

One can also see that the use of the invariance under
reparametrizations of the wavefuction has the effect that
there is exactly one marginal operator θ4,3 = 0, roughly
corresponding to the kinetic term [44]. The eigenvalues of
the stability matrix reveal some mixing among the con-
sidered operators. For n ≥ 6 the operators φn, φn−1R
and φn−4(∂φ)2 begin mixing with higher derivative oper-
ators. This includes in particular those with four deriva-
tives as discussed in [40]. We recommend [45, 46] for more
details on the renormalization of composite operators in
the functional approach and [47] for very non-trivial ap-
plications of those results.

VII. SUMMARY AND CONCLUSIONS

We have discussed and explored functional renormal-
ization group (FRG) equations for the non-minimal cou-
pling F (φ)R of a quantized scalar field to a classical back-
ground geometry with Ricci scalar R. We showed that –
similarly as in standard perturbation theory – the cou-
plings in the matter sector enter the flow equation for
the scale dependent non-minimal coupling function Fk(φ)
but not vice-versa. The flow of the effective potential and
field-dependent wave function renormalization are inde-
pendent of Fk. In all truncations and dimensions con-
sidered the function Fk fulfills an inhomogeneous linear
differential equation with coefficient functions depending
on the scale dependent effective potential Vk. It is re-
markable that the β-function for the dimensionless non-
minimal coupling function fk and the corresponding non-
minimal coupling ξk = f ′′k (0) is reproducing further im-
portant features of the standard perturbative RG, which
can be observed beyond one-loop order. In particular,
the FRG-based β-function in d dimensions

β(ξ) = ∂tξk = 2µd
v′′′′k (0)

(1 +m2
k)3

(
ξk

(
1− ηk

d+ 2

)
− (1 +m2

k)
d+ ηk

24

)
− µd

f ′′′′k (0)

(1 +m2
k)2

(
1− ηk

d+ 2

)
,

with m2
k = v′′k (0) ,

(83)

Strictly speaking, the standard ε-expansion uses the renormaliza-
tion group to trade a scaling limit in the critical coupling(s) at
the fixed point for a perturbative expansion in the parameter
ε. In this sense, all critical properties at the non-trivial fixed
point in d = 4 − ε, including in particular fixed points and criti-
cal exponents, can be understood as being built from assembling

data from the Gaussian theory in d = 4. Differently from what
happens for the Wetterich’s RG flow of the previous sections,
we could argue that the dimensionally regulated theory is thus
never genuinely in a dimension smaller than four. We under-
stand, however, that this argument might not find full consensus;
for a rather different point of view on the topic and for an espe-



13

following from the flow equation (54) in LPA’, does not
necessarily lead to a conformal fixed point at ξ∗ = 1/6 in
four dimensions, as predicted by one-loop perturbation
theory [4]. In addition, at a Gaussian fixed point with
vanishing v′′′′∗ (0) we necessarily have f ′′′′∗ (0) = 0. In LPA’
and the symmetric phase we do not observe a renormal-
ization of the wave function. This mirrors the same prop-
erty in flat spacetime. On the other hand, in the broken
phase a non-zero wave function renormalization changes
the fixed point solutions for the non-minimal coupling
function f∗ and the corresponding non-minimal coupling
ξ∗, exactly as we have described in the introduction on
general grounds. Finally, Eq. 84 show the IR decoupling,
that was described in the momentum-subtraction scheme
of renormalization in curved space [48].

In two dimensions the equations and solutions simplify
considerably. Both in LPA and LPA’ we could solve the
fixed point equation for f∗ analytically in terms of the
fixed point potential v∗. In both truncations there is an
unambiguous prediction for the non-minimal coupling,
given in (54) and (75), respectively. In LPA’ one recovers
all minimal models in the Landau classification of two-
dimensional conformal field theories. From numerical so-
lutions of the flow equation for v∗ with self-consistently
determined anomalous dimensions one can extract the
non-minimal couplings ξ∗ at criticality for this class of
model. We presented the results in the symmetric and
broken phases both for the Ising and tri-Ising class.

For a sequence of dimensions between dimensions 3 and
4 we determined ξ∗ for the non-Gaussian fixed points.
From an interpolation of the corresponding values as a
function of the dimension d = 4 − ε we could numeri-
cally extract the ε-expansion of ξ∗(ε) in LPA. The same
has been achieved in the framework of the so-called func-
tional perturbative RG, applied to non-minimally cou-
pled scalars in d = 4− ε dimensions with field and scale
dependent wave function renormalization. Besides the
flow of the fixed point potential and wave function renor-
malization we calculated the flow of the non-minimal cou-
pling function in order ε from the FRG. The contribution
of order ε to the non-minimal coupling – calculated nu-
merically in LPA and analytically in the functional per-
turbative RG – are different. Future numerical efforts
with a less crude truncation may improve the situation.
A first step would be to recalculate the values in Table I
in a truncation with wave-function renormalization and
self-consistently determined η∗.

In LPA’ the non-minimal coupling function fk obeys a
non-singular linear inhomogeneous differential equation.
Thus parity-even fixed point solutions depend only on
one initial condition, say f∗(0), which is not quantized.
For d 6= 2 this free parameter enters the equation for
ξ∗ and this ambiguity is apparently fixed by a suitable

cially careful discussion on how to correctly analytically continue
in d we suggest reading [41].

polynomial truncation of f∗. It maybe interesting to see
how the inclusion of the purely gravitational contribution
Γgrav
k [g] could lift this degeneracy.
We have also discussed the universal contributions to

the flow of the system which appear as the logarithmi-
cally scaling terms of the renormalization group flow and
which are in one-to-one correspondence with the renor-
malization induced by subtracting 1/ε poles of dimen-
sional regularization. These contributions offer a differ-
ent perspective on the results in d = 4 − ε and specif-
ically on their interpolation from the four dimensional
limit in terms of universal contributions. The universal
results show the role that the cutoff has in estimating the
critical coupling ξ and the critical properties in dimen-
sions lower than four. While a dependence on the cutoff
function is a generally unwanted feature, it is also true
that only with the Wetterich equation and the scaling
solutions’ approach one can obtain a realistic numerical
estimation of the critical exponents of the scalar theory
in a dimensionality that is genuinely lower than four.

A natural extension of the present work would be to
determine the running of Fk in a non-minimal term of
the form ∫ √

g Fk(φ,R) (84)

in the scale dependent effective action. Such a term has
been investigated in [18] with the inclusion of metric fluc-
tuations and the emphasis on the asymptotic safety sce-
nario. It is generated during the FRG-flow from the
ultraviolet to the infrared and has been considered in
studies of Higgs inflation (see, for example, [49]). More
demanding and maybe even more interesting would be
the calculation of the dominant non-local contributions
to Γgrav

k within the FRG-approach [50, 51].
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Appendix A: Field-dependent wave function
renormalization

In this appendix we present the integral form of the
non-perturbative RG flow of the effective action that in-
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cludes a field dependent wave function renormalization
Zk(φ) as in (2). The field dependence in the coefficient of
the kinetic term makes the flow considerably more com-
plex, which is why we provide it in the form of a momen-
tum space integral and only discuss some of its features
with more detail.

There are two main strategies to compute the flow of
the functions Vk(φ), Fk(φ) and Zk(φ). On the one hand,
one can use the heat kernel of the Laplacian operator
∆g to give a computable representation of the functional
trace (5) as it is done in section II of the main text. On
the other hand, one can obtain the same RG flows by ap-
plying a vertex expansion to (5). In the latter case, the
flows of Vk(φ), Fk(φ), and Zk(φ) are seen respectively
from the zero-point function, the two-point function of
the scalar field, and the one-point function of hµν , where
hµν is a small deformation of the metric around a flat Eu-
clidean background gµν = δµν+hµν . In this appendix we
shall present the results derived with the vertex expan-
sion methods described in [52]. It is a rather non-trivial
check that they coincide with those coming from the heat
kernel which we derive and use in the main text, espe-

cially in the case of the one-point function of hµν .
In order to condense the notation, let us first define a

modified field dependent propagator

Gk ≡ Gk(q2;φ) =
(
Zk(φ)q2 + V ′′k (φ) +Rk(q2)

)−1
,

(A1)
which is evaluated in momentum space and at a constant
field configuration φ. The modified propagator differs
from the standard propagator of the field by the presence
of the cutoff kernel Rk(∆g), which in flat space becomes a
simple function of the momentum square q2 in agreement
with its covariant form (3). Let us also use primes to
denote the first and second derivatives of Gk with respect
to the momentum square argument

G′k = ∂q2Gk(q2;φ) , G′′k = ∂2
q2Gk(q2;φ) . (A2)

Ideally, the cutoff kernel is assumed to be at least twice
differentiable, but meaningful formulas can be found for
optimized cutoffs such as (16) used in the main text. For
a generic cutoff function, we find the following integral
representations of the flows

∂tVk =

∫
q

1

2
Gk∂tRk ,

∂tFk =

∫
q

{d− 2

24

1

q2
Gk∂tRk −

1

2
G2
k∂tRkF ′′k

}
,

∂tZk =

∫
q

{[
G′kG2

k∂tRk +
2

d
q2G′′kG2

k∂tRk
]
(V ′′′k )2 − 1

2
G2
k∂tRkZ ′′k

+
[
2G3

k∂tRk + 2
(

1 +
2

d

)
q2G′kG2

k∂tRk +
4

d
q4G′′kG2

k∂tRk
]
Z ′kV

′′′
k

+
[(

2 +
1

d

)
q2G3

k∂tRk +
(

1 +
4

d

)
q4G′kG2

k∂tRk +
2

d
q6G′′kG2

k∂tRk
]
(Z ′k)2

}
.

(A3)

The momentum space measure is normalized by includ-
ing all factors of (2π) as∫

q

=
1

(2π)d

∫
ddq =

1

(2π)d

∫
dq qd−1dΩd−1 . (A4)

We used rotational and translational invariance to ar-
range all integrands of (A3) so that they are manifestly
functions of q2. The angular integration is thus decou-
pled and one could already use the volume of the d-sphere
to obtain the results of the main text. More precisely it
is necessary to switch to the integration variable z = q2

and use the definition of µd (24)∫
q

=
1

(2π)d
2π

d
2

Γ(d2 )

∫
dq qd−1 =

1

(4π)
d
2

1

Γ(d2 )

∫
dq2(q2)

d
2−1

=
2µd
d

∫
dzz

d
2−1 (A5)

to recover the integrations of section II.

Using the system (A3), it is possible to derive all the
RG flows given in the main text. The flows in the LPA
given in (26) and (27) can be obtained by setting Zk(φ) =
1 and choosing the cutoff Rk(q2) = (k2 − q2)θ(k2 − q2).
The flows in the LPA’ given in (58) can similarly be ob-
tained by setting Zk(φ) = constant and choosing the cut-
off Rk(q2) = Zk(k2 − q2)θ(k2 − q2). In the latter case,
the flow of the wave function Zk depends only on the first
two terms of ∂tZk in (A3) which are generally evaluated
at the minimum of the potential, being it the field config-
uration that represents the ground state of the quantum
theory.

We can also use the system (A3) to study the lead-
ing universal perturbative features of the RG flow close
to some interesting upper critical dimensions3 in the ap-

3 In statistical physics, the upper critical dimension is generally
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proach that goes under the name of functional perturba-
tive RG [40]. These universal contributions to the RG
do not depend on the cutoff Rk and can be either seen as
coming from the subtraction of logarithmic divergences
or alternatively as the terms scaling with “momentum to
the power zero” in the beta functions (see for example
the appendix of [40]). They are completely equivalent to
what one would obtain from minimal subtraction of di-
vergences in dimensional regularization. Given a certain
value for the dimension which plays the role of upper crit-
ical dimension, the simplest strategy to find the monomi-
als corresponding the the perturbative flow is to choose
a mass cutoff Rk = k2 (the simplest cutoff) and deter-
mine from the non-perturbative flow which terms scale
as k0, while neglecting all other relevant and irrelevant
contributions.

As an illustrative example, let us derive the functional
perturbative flow for the potential in d = 4 in the LPA.
We expand Eq. (A3) in powers of V ′′(φ) and notice that

∂tVk =
µ4

4

∫
dq2q2 k2

Zkq2 + k2
(V ′′)2 + . . . , (A6)

where in the dots are hidden the terms that either di-
verge in the limit k → 0 (UV irrelevant) or k → ∞
(UV relevant). By construction, standard dimensional
regularization is insensitive of the same terms, because
it lacks a momentum scale that is necessary to give a
nonzero value to those integrals (a role that is played by
k in this context). The perturbative part of the flow can
be obtained by simply eliminating all the terms hidden
in the dots. Upon elimination we find

∂tVk =
1

(4π)2

1

2

(V ′′)2

Z2
k

, (A7)

which coincides with the result given in section VI. It
is very simple to follow the same strategy for the flow of
the other two functions and obtain the full system (76).

The functional perturbative RG is fully equivalent to
the standard perturbation theory that is obtained by
minimal subtraction of the 1

ε poles of dimensional reg-
ularization [39, 44, 53]. We discuss the perturbative re-
sults for the full system of functions Vk(φ), Fk(φ) and
Zk(φ) in d = 4 − ε dimensions in section VII. Interest-
ingly, however, the non-perturbative flow (A3) is suitable
to find the perturbative contributions in proximity of two
additional interesting upper critical dimensions, namely

defined as the highest dimensionality in which the system has a
nontrivial second order phase transition. From the point of view
of the RG, above the upper critical dimension fluctuations are
weak, and thus the phase transition is controlled by the Gaus-
sian fixed point while the critical properties coincide with their
mean field estimates. Below the upper critical dimension the
phase transition is instead controlled by a nontrivial fixed point,
and the scaling analysis receives sizeable corrections from the
fluctuations of the field.

d = 2 and d = 6. We display all further results us-
ing the convention that renormalized fields are obtained
by rescaling the full field-dependent wavefunction Zk(φ).
This procedure does not change the spectrum of scaling
operators; for a more detailed analysis that includes the
full mixing of the wavefunction we refer to [39].

As shown in [40], the use of d = 2 as upper critical
dimension highlights RG equations for the Sine-Gordon
universality class. We find that leading universal contri-
butions to the flow in d = 2 are

∂tVk = − 1

4π

V ′′k
Zk

, ∂tFk = − 1

4π

F ′′k
Zk

, ∂tZk = − 1

4π

Z ′′k
Zk

.

The relation with the Sine-Gordon model is best seen in
the LPA by simply switching to dimensionless renormal-
ized variables vk(χ) = k−2Vk(χ) at η = 0 and solving the
fixed point equation for v∗(χ)

v∗(χ) = −m
2
∗

8π
cos
(√

8πχ
)
, (A8)

which uses the boundary condition v′′∗ (0) = m2
∗ and man-

ifestly displays the value
√

8π known as Coleman phase
(see also the discussion of [40]). The two dimensional
system thus hints at the existence of a generalization of
the Sine-Gordon universality class that is coupled to a
fixed geometry. The system could in principle be used
to estimate the central charge of the Sine-Gordon model
upon integration of the flow [54] from UV to IR, but the
flows of all functions are decoupled. We hope to come
back on this topic in the future.

In d = 6 the leading universal part of (A3) is only
slightly more involved.4 We find

∂tVk = − 1

(4π)3

1

6

(V ′′k )3

Z3
k

,

∂tFk =
1

(4π)3

(
1

6
− F ′′k
Zk

)
1

2

(V ′′k )2

Z2
k

,

∂tZk = − 1

(4π)3

1

6

(V ′′′k )2

Z2
k

(A9)

This system can also be checked against the leading one-
loop contributions in the flat space limit [40, 55]. Upon
moving to dimensionless renormalized variables χ, vk, fk
and zk defined in (77) with Zk,0 = Zk(0) in d = 6− ε, we
find that the system admits the non-trivial fixed point
solution for the dimensionless renormalized functions

v∗(χ) =
1

(4π)3/2

√
−2ε

3

χ3

3!
,

f∗(χ) =
1

5

χ2

2!
, z∗(χ) = 1 , (A10)

4 Actually the flow (A3) contains several more cutoff-independent
terms, but we consistenly display only the ones that are respon-
sible to the leading corrections in the ε-expansion.
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with anomalous dimension η = −ε/9 (at criticality the
model has negative η and does not satisfy the unitar-
ity bound). This fixed point corresponds to a Lee-Yang
universality class minimally coupled to the curved geom-
etry, as seen from the non-minimal coupling ξ∗ = f ′′∗ (0) =
(d−2)/(4d−4) = 1/5 in d = 6. Similarly to the case d = 4
discussed in section VII, we do not find ε-corrections to

the non-minimal coupling even though one would naively
expect ξ∗ = 1/5− ε/100 from expanding in d = 6− ε the
d-dependent formula for ξ∗. Notice however, that the
above statement on the absence of O(ε) corrections is re-
stricted to the leading order in the ε expansion, and the
inclusion of the next-to-leading two loops contributions
might as well result in new nontrivial contributions to ξ∗
at order ε2.
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