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1 IntrodutionA long standing and yet unsolved problem is proving quark on�nement in QCD. Animportant �rst step in this diretion would be to show on�nement of stati quarks. Inthis way the problem redues to understanding the behaviour of eletri ux strings in pureSU(N) gauge theories (without dynamial quarks). The relevant observables are produtsof Wilson-loop operators [1℄. At �nite temperature the operators related to Polyakov-loopsan be used to disriminate between the on�ning and deon�ning phases [2℄.A rigorous onstrution and investigation of gauge theories in (3+1) dimensions is beyondpresent days knowledge. (1+1) dimensional models are muh simpler and an be used asa testing ground to get more insight into gauge theories on a sound mathematial basis.In partiular, the unique and ambiguity-free gauge �xing desribed below an be extendto QCD4 [3℄.Pure Yang-Mills theories in (1+1) dimensions are prototypes of (almost) topologial �eldtheories without propagating degrees of freedom. Nevertheless they have interesting fea-tures, partiularly in the large N limit or/and on multiple onneted spae-times [4℄. Thepartition funtions depend on g2V , where g is the oupling onstant and V the volume ofspae-time, as well as invariants of the gauge group and topologial invariants of spae-time.Polyakov-loops an be omputed in both the strong and weak oupling phase and the twophases are related by duality. It has been shown, that the strong oupling expansion anbe rewritten as a lower dimensional string theory [7℄. When de�ned on Riemann surfaeswith non-zero genus they have degrees of freedom related to the gauge group holonomy onthe homology yles of the surfae. On ylindrial spae-time they an be solved expliitlyand posess quantum mehanial degrees of freedom orresponding to the eigenvalues of theWilson loop operator whih is winding about the ompat spae diretion [8℄. Suh modelsare also onneted with one dimensional integrable quantum systems [9℄.The free energy e��F = Tre��H at �nite temperature T = 1=� is given by a path integralover gauge �elds on some manifolds S1�M with Eulidean time x0 identi�ed with x0+�.(For disussion of the path integral formulation of �nite temperature gauge theory see[10℄.) Relevant gauge invariant order parameters are Polyakov-loop operatorsP (x1) = Tr�(P (�; x1)); where P(x0; x1) = P exp �i x0Z0 A0(�; x1)d��: (1.1)Here � is the representation of the gauge group whih ats on the fermioni �elds. Forexample, the two-point funtione��F (x1;y1) = hP (x1)P y(y1)i� (1.2)yields the free energy F (x1; y1) in the presene of a heavy quark (in the fundamental rep-resentation) at x1 and a heavy antiquark at y1. In the on�ning phase F (x1; y1) inreasesfor large separations of the quark-antiquark pair and thus hP (x1)P y(y1)i ! 0. In thedeon�ning phase the free energy reahes a onstant value for large separations and thushP (x1)P y(y1)i ! onst 6= 0. Inferring lustering we see that hP i� vanishes in the on�ning1



phase but not in the deon�ning one. In other words, it is an order parameter for on-�nement. If we inlude massless dynamial fermions, the generating funtional gains as afator the determinant of the Dira operator. As a onsequene gauge �eld on�gurationswhih support fermioni zero modes do not ontribute to the partition funtion or to ex-petation values of Polyakov-loops. Therefore, the question of the number of zero modesfor a given gauge �eld on�guration is an important �rst step from pure to full QCD.In this paper we examine Yang-Mills theories on two dimensional tori. They orrespondto �nite temperature gluodynamis on a spatial irle. As shown by Grignani, Semeno�and Sodano in an interesting paper [11℄4, orrelators of Polyakov-loop operators an beomputed as orrelators in partiular one dimensional models. For the ase of pure gaugetheories (and Polyakov-loop operators in an arbitrary representation) one an expliitlysolve these quantum mehanial models. In ontrast to other approahes we diretly al-ulate, after an appropriate gauge �xing, the partition funtion and the orrelation funtionhP (x1)P y(y1)i for arbitrary semi-simple gauge groups. This will be a starting point forfurther investigations onerning QCD4 [3℄.In this paper we quantise Lie-algebra valued gauge �elds (non-ompat QCD2),whereas in[4, 5℄ the group valued �elds are quantised (ompat QCD2). As Hetrik has shown [6℄, thenon-ompat theory has additional spetral values onneted with states, whih lie on theboundary of a Weyl hamber. (Sine these states lie in more than one hamber, they mustbe added with an appropriate weight.) In the ompat version these states are projetedto zero-dimensional haraters and are missing in the spetrum. If these states are addedto the partition funtion alulated in [4, 5℄, the results for the partition funtion Z andexpetation values of produts of Polyakov loop operators agree. Due to this di�erenebetween ompat and nonompat QCD2, the numerial value of the string tension for thestati quark potential is di�erent, but the physis is qualitatively the same.In addition we go beyond these results in that our approah leads to a simple relationbetween the winding numbers and the number of fermioni zero modes.In the �rst setion we disuss the gauge �xing and topologial questions onneted withthe de�nition of gauge theories on T 2 (the orresponding results in 4 dimensions are brieyskethed). In the following two setions we alulate the partition funtion and the freeenergy of a stati quark-antiquark pair. In the last setion we derive a formula relatingthe number of fermioni zero modes to the winding numbers of the gauge-�xed A�. Inthe disussion we ompare our results with those of [4℄ and [5℄. The appendies ontainour Lie-algebra onventions and a proof onerning antiholomorphi transition funtionson the torus.2 Gauge FixingWe view the torus T d as Rd modulo a d-dimensional lattie, whose points are denoted bya; b; : : : with oordinates a� = n�L�; n� 2 Z (no sum). Matter �elds and gauge potentials4after we ompleted this work, Grignani et. al revised their paper, see [12℄2



on Rd an be put on the torus if they are (anti)periodi up to gauge transformations [13℄ (x+ a) = (�1)n0�(U�1a (x)) (x);A(x+ a) = U�1a (x)A(x)Ua(x) + iU�1a (x)dUa(x); (2.1)where the fator (�1)n0 enfores the �nite temperature boundary onditions for fermions(L0 = � = 1=T ). Sine  ((x + a) + b) =  ((x + b) + a), the transition funtions Ua mustobey the oyle onditions [13℄Ua(x)Ub(x+ a) = Ub(x)Ua(x + b)Zab; Zab = Z�1ba ;where the twists Zab are in the kernel of �, i.e. �(Zab) = 1l. This kernel is a subgroup ofthe enter Z of G. For fermions in the fundamental representation no twists are allowedwhereas for fermions in the adjoined representation the twists an be any element of theenter of G.Performing a (not neessarily periodi) gauge transformation with V (x), the new transitionfuntions for the transformed �elds are~Ua(x) = V �1(x)Ua(x)V (x + a) (2.2)The ~Ua ful�ll the oyle ondition with the same Zab as the Ua. Thus the twists are gaugeinvariant. Note that the Polyakov-loop operators (1.1) transform asP (~x) �! ~P (~x) = TrfV (0; ~x)V �1(�; ~x)P(�; ~x)g; where x = (x0; ~x) (2.3)and are only invariant if V (x) is periodi in time. A twisted G-bundle over T d is uniquelyharaterized by the transition funtions modulo gauge transformation (2.2).In the following we shall onsider 2-dimensional gauge theories. In 2 dimensions and forsimply onneted gauge groups G the G-bundles over T 2 are trivial 5 (all Chern lasses arezero [16℄). Thus, in the untwisted ase (Zab = 1l) the transition funtions an be hosen tobe the identity. With twists this is not true, but writing a twist as Z01 = Z = exp(�2�iT ),we an always hoose the transition funtions asU� = 1l and UL = e�2�iTx0=�; (2.4)where U� relates the �elds at x0 and x0 + � and UL those at x1 and x1 + L.In expliit alulations we must �x the gauge. The �eld-dependent gauge transformationwhih transform an A� into the gauge �xed form may be non-periodi and thus lead tonontrivial transition funtions.After these general remarks we now disuss the expliit gauge �xing. Sine Polyakov-loopsonly depend on A0, we shall hoose a gauge for whih A0 is as simple as possible. Atually,5This is not true, for example, for U(1) or SO(3)-bundles over T 2 [15℄.3



with our �xing A0 will deouple in the path integral and the expetation values of produtsof Polyakov-loops an easily be alulated6. Below we prove that there is a (non-periodi)gauge transformation whih transforms any A� intoA0 = A0 = 2�Hx1V + Aper0 (x1) , H 2 L� and �Z0 A1(x0; x1)dx0 = C; (2.5)where V = �L is the volume and we have introdued the following disrete lattie in theCartan-subalgebra H: L� � nH 2 Hj�( exp(2�iH)) = 1lo: (2.6)In partiular, for the fundamental and adjoint representations � = f and � = adj we haveLf = nH 2 Hj exp(2�iH) = 1lo , Ladj = nH 2 Hj exp(2�iH) 2 Zo: (2.7)In (2.5) A is that part of A whih lies in the Cartan subalgebra, Aper0 is periodi in x1 andA1 periodi in x0. Below the onstant C and R dx1Aper0 are further restrited suh that thegauge �xing (2.5) beomes unique.Note that the gauged �xed �elds are not periodi in x1. Indeed, the transition funtionsfor the gauged �xed on�gurations are~U�(x) = 1l and ~UL(x0) = exp(�2�iH x0� ) with H 2 L�: (2.8)Hene, the periodiity property of A1 is given byA1(x0; x1 + L) = e2�ix0� HA1(x0; x1)e�2�ix0� H : (2.9)Only A1 2 H is periodi in x1.To prove, that (2.5) an be ahieved we perform a gauge transformation withV (x0; x1) = P(x0; x1)P�x0=�(�; x1)W (x1); (2.10)where P(x0; x1) has been de�ned in (1.1) and W diagonalizes P(�; x1), i.e.P(�; x1) = W (x1) expf2�iH(x1)gW�1(x1): (2.11)This representation allows one to take powers of P(�; x1) and (2.10) beomesV (x0; x1) = P(x0; x1)W (x1) exp �� 2�ix0� H(x1)�: (2.12)6similar �xings have been studied in [14℄. After we disovered the gauge �xing used in this work J.Fuhs pointed out to us that E. Langmann et.al. found a very similar �xing.4



Now it is easy to see that the gauge transformed A0 reads~A0 = 2�� H(x1) (2.13)and hene depends only on x1 and lies in the Cartan subalgebra.By onstrution the gauge transformations (2.10) are periodi in time so that the Polyakov-loops are unhanged, as required, and the transition funtion in the time diretion, ~U�,remains the identity, see (2.8). To �nd ~UL we useP(x0; x1 + L) = exp(2�iT x0� )P(x0; x1) (2.14)from whih follows, thatexpf2�iH(x1 + L)g = expf2�i(T +H(x1)g and W (x1 + L) = W (x1) (2.15)or equivalently that H(x1 + L) = H(x1) +H with H 2 L�: (2.16)With (2.13) and the onsisteny ondition we end up with the form (2.5) for A0. The newtransition funtion ~UL is easily alulated from (2.2), with UL from (2.4), V from (2.12)and V (x1 + L) from (2.14,2.15). The result is the transition funtion ~UL given in (2.8).We have not yet �xed the gauge freedom ompletely. Indeed, the residual gauge transfor-mations are V (x) = w � exp n2�i(Hper(x1) +H0x0� +H1x1L )o; (2.17)where all H's are in the Cartan subalgebra and in addition Hper is periodi in x1, Hi 2 Lfand w is an element of normalizer(H)=entralizer(H) �=Weyl-group [17℄. More expliitly,w� ats on a generator H� in H asw�1� H�w� = H���; (2.18)where �� is the Weyl reetion related to the root �. The Hper part in (2.17) is �xed byimposing the seond ondition in (2.5). The Hi-parts are �xed if we further impose�L LZ0 Aper0 dx1 � �L ~C 2 2�H=L� and L� �Z0 A1dx0 � L�C 2 2�H=L�: (2.19)It remains to �x the Weyl-transformations w in (2.17). This an be done by imposingthe ondition, that ~C is in the �rst Weyl-hamber. However, the Weyl group is a �nite5



group and permutes transitively and freely the Weyl hambers, so the integration over the~C, subjet to (2.19), is a multiple of the integration over the �rst Weyl hamber. If weonsider normalised observables, this overounting anels with that in the normalisation.For later purposes it is important to note that the transition funtions for the gauge�xed on�gurations possess abelian winding numbers. This an be seen as follows: Sine�( ~UL(x0)) = �( ~UL(x0 + �)) the mapx0 �! �(UL(x0)); (2.20)is a map from S1 to S1� : : :�S1 (r=rank(G) fators) and thus allows for r integer windingnumbers.3 The funtional integralIn the following we deompose the Lie algebra valued gauge potential (for onventions seethe appendix) as followsA0(x) = X�2� p�(x)H� + X'2�+ a'(x)E' + X'2�+ �a'(x)E�'A1(x) = X�2� q�(x)H� + X'2�+ b'(x)E' + X'2�+ �b'(x)E�';where �;�+ and �� denote the simple, positive and negative roots, respetively and H�is the generator in the Cartan subalgebra H belonging to the simple root �.The gauge �xing onditions (2.5) readTrE'A0 = TrE�'A0 = TrH�(�0A0 � 1� Z dx0�1A1) = 0: (3.1)For the gauge �xed on�gurations (see (2.5)) we �nd for the �eld strengthF01 =X� ( _q � p0)�H� � iX' [M'b'E' � (M'b')�E�'℄; M' = (i�0 +X� K'�p�) (3.2)is hermitean. Correspondingly the gauge �xed ation readsS = 18g2 Z dx0dx1 Tr F��F �� = 14g2 Z n( _q � p0; C ( _q � p0)) +X' 4'2 (b';M2'b')o; (3.3)where C = (C��) is the symmetri Coxeter matrix and the r-omponent real vetor �elds pand q have entries p� and q�, respetively. The last salar produt ontaining the operatorsM' is a omplex one, (b; ) = �b � . To alulate the Fadeev-Popov determinant we observethat the gauge variation of the gauge �xings Tr(E�'A0) = 0 areÆ�TrE�'A0 = 2i'2M'�' and Æ�TrE'A0 = � 2i'2 (M'�')� (no sum). (3.4)6



Vanishing variations imply vanishing �' and then the variation of the remaining gauge�xings simpli�es toÆ�TrH���0A0 + 1V Z dx0�1A1� = �C����20 + 1� Z dx0�21)�� (3.5)Now we see, that for simply laed groups (for whih the length of all roots an be takento be 2) the �eld-dependent Fadeev-Popov determinant oming from the �' anel exatlyagainst the funtional integral over the non-Cartan �elds b'. Thus we obtain the followingpartition funtionZ = N R Dq(x)Dp(x1) Æ(F(A)) det(C) det(��20 � 1L R dx0 �21)r� exp n 14g2 R ( _q � p0; C( _q � p0))o (3.6)with a normalization fator N . Here Æ(F(A)) indiates the implementation of the zeromode �xings (2.19). Sine A1 is periodi in x0 and A0 depends only on x1, the integrationover q� deouples ompletely and we end up withZ = N 0 Z Dp(x1) exp(� �4g2 Z (p0; C p0) dx1) : (3.7)For simpliity we restrit ourselves to � = f (fermions in the fundamental representation),G = SU(N) with rank r = N � 1 and hoose the basisEi = E�i = Ei;i+1 and Hi = [E�i ; E��i ℄ for simple �i; (3.8)where Ei;j is the N�N -matrix whose only non-zero entry is a 1 in the i'th row and j'th ol-umn. The step-operators belonging to the non-simple roots are obtained by ommutationof the Ei. The enter onsists of the N 'th roots of unity and is generated by theT� = �N diag(1; 1; : : : ; 1�N); � = 0; 1; : : :N � 1: (3.9)Then C = K has 2's on the diagonal and �1 on the two o�-diagonals above and below thediagonal. We an deompose the p = (p1; : : : ; pr); pi = p�i as followsp(x) = 1� [ ~p(x) + h℄ + 2�nV x (x = x1); (3.10)where we have separated the onstant part h = (h1; : : : ; hr) of the periodi piee, so thatthe ~pi are periodi in x and integrate to zero. Sine �(exp[2�~n �H℄) = 1l, the ~n lie in Zrfor matter in the fundamental representation and ni 2 �=N + Z for matter in the adjointrepresentation. In the expliit alulations below we assume that there are no twists. Weshall give the orresponding results for the twisted ase at the end of the next setion.7



Inserting the deomposition (3.10) we �nd for the partition funtionZ � Z D~p drh exp n 14g2� Z (~p;K�21 ~p)dxo � X~n2Zr exp n� �2g2V (~n;K~n)o: (3.11)Due to the �xing of the time dependent residual gauge freedom (2.17) the hi-integrationsare restrited to the interval [��; �℄.Using zeta-funtion regularisation the Gaussian integration over ~pi yields det0 "�K�22g2� #!�1=2 = det1=2 K2�L2g2 :After a Poisson-resummation in (3.11) we end up withZ � X~m2Zr expf�g2V (~m;K�1 ~m)g (3.12)with the inverse of the Cartan matrix(K�1)ij = 1N (N � j)i; for i � j; (K�1)ij = (K�1)ji: (3.13)4 Calulation of Polyakov-loopsFor the gauge �xed on�gurations and � = f the Polyakov-loops (1.1) simplify toP (x) = Tr exp fi� p(x) �Hg = NXk=1 exp ni�[pk(x)� pk�1(x)℄o ; (4.1)where p0 � pN � 0. We get for the expetation value of the produt of two Polyakov-loopshP (x)P y(y)i= 1Z Z D~p drh X~m exp(� �2g2V (~m;K~m) + 14g2� Z (~p;K�2~p))P (x)P y(y):(4.2)After integration of the hi only the diagonal elements in the double sum (oming from the2 Polyakov-loop operators) ontribute andhPP yi = 1Z NXk=1X~m exp(� �2g2V (~m;K ~m) + 2�imk� � 2�imk�1�)Z D~p exp( 14g2� Z (~p;K�2~p)dx+ i[~pk(x)� ~pk(y)℄� i[~pk�1(x)� ~pk�1(y)℄) ;where we have introdued � = (x� y)=L (reall that x � x1). To alulate the funtionalintegral over the ~pi we need the zero mode trunated Greens funtion of �1=2g2� � K�2whih isG(x; y) = K�1�(x; y); where �(x; y) = g2V ��2 � j�j+ 16� for � 2 [�1; 1℄: (4.3)8



Now we perform a Poisson resummation of the N�1 sums and alulate the Gaussian fun-tional integral over the periodi ~pi. We emphasize that there are no zero mode problems,as it must be for a omplete gauge �xing. The result ishP (x)yP (y)i = 1Z Xk;~m exp n�g2V �mi � �[Æik � Æi(k�1)℄�K�1ij �mj � �[Æjk � Æj(k�1)℄�oexp�N � 1N [�(x; y)��(0; 0)℄� (4.4)where K�10i = K�1Ni = 0. Thus the expetation value of the produt of two Polyakov loopsreadshP (x)P y(y)i = 1Z Xk;~m exp��g2V �~m;K�1 ~m� 2�mi hK�1ik �K�1i(k�1)i+ j�jN � 1N �� (4.5)for � 2 [�1; 1℄. For SU(2) this simpli�es tohP (x)P y(y)i = 2Z Xm2Z exp(�g2V2 hm2 � 2�m+ j�ji) : (4.6)The free energy for the stati quark-antiquark pair in the fundamental representation isgotten from (1.2). Z is given by hP (x)P y(x)i = 1. For large separations of the pair we�nd for the free energy for SU(N)limL!1F (x; y) = g2N � 1N jx� yj: (4.7)We onlude this setion with the analogous results for the free energy of a stati quark-antiquark pair in the adjoint representation, for whih adj[exp(2�iH)℄ = 1l. In this asethe gauge �xed A0 has the deompositionA0 =X pkHk with pk(x) = 1� [ ~pk + hk℄ + 2�V (k �N +mk)x; � = 0; : : : ; N � 1 (4.8)and the Polyakov-loop isP (x) = Tr �adj  exp i Z �0 A0(�; x)d�!! = Tr exp i Z �0 Ak0(�; x)��adj(Hk)d�! :where �� is the Lia algebra representation indued by �. Now one proeeds as in theuntwisted ase. One obtains with ~m = Plmll and � 2 [�1; 1℄hP (x)P y(y)i = 1Z 24r2 + 2N rXp=1 pXj=1X~m exp8<:�g2V 0�~mK�1 ~m� 2� pXi=jmi1A9=;exp n�g2V j�j2(p� j + 1)o 1Xn=�1 ÆnN; ~m# : (4.9)9



For SU(2) (4.9) simpli�es tohP (x)P y(y)i = 1 + 4Z Xm exp n�2g2V �m2 � 2m� + j�j�o : (4.10)For large separations of the pair we get for the free energy in the twisted ase for SU(N)limL!1F (x; y) � � 1� 2Nr2 rXp=1 pXj=1 exp n�g2�jx� yj2(p� j + 1)o : (4.11)For 1g2� � jx� yj � L the free energy beomes zero and due to the luster deompositiontheorem the expetation value of one Polyakov-loop operator is one in agreement with [5℄.5 Zero Modes of the Dira-operatorIn this setion we haraterize and ount the number of zero modes (in the fundamentalrepresentation) of D/ for gauge theories on T 2. We will show that the number of fermionizero modes for gauge �xed on�gurations A� with transition funtions (2.8) is justn0 = TrjHj: (5.1)The analogous result on S2 has been derived in [18℄. To prove (5.1) we introdue theomplexi�ation G of G and assign to eah gauge �xed A (in the gauge (2.5)) the set ofG-valued prepotentials GA = fg(z; �z) 2 Gj Az = ig�1�zgg (5.2)with Az := 12(A0 � iA1) and z = x0 + ix1. Sine the G-bundles over T 2 are trivial eahgauge �xed A is a gauge transform of a periodi potential Ap,Az = V �1A ApzVA + iV �1A �zVA (5.3)and the prepotentials belonging to A areGA = ng(z; �z) = h(�z) � gA(z; �z)VAj gA(z; �z) = P exp fi 0Zz duApz(u; �z)go: (5.4)>From the periodiity of Ap and the known transition funtions (2.8) of A one an read o�the nonperiodiity of the V :VA(x0 + n�; x1 +mL) = VA(x0; x1)e�2�imHx0=� (5.5)10



Now we lassify the non-periodiity of the prepotentials g in (5.2,5.4). Sine Ap is periodiit follows thatg(z + n� + imL; �z + n� � imL) = hnm(�z)g(z; �z)e�2�imx0� H (5.6)The antiholomorphi hnm are transition funtions of homomorphi vetor bundles over the2-dimensional torus7 and must obey the oyle onditionshnm(�z + p� � iqL)hpq(�z) = hpq(�z + n� � imL)hnm(�z): (5.7)To ontinue, we note that if g 2 GA has transition funtions hnm(�z), then h(�z)g 2 GA hastransition funtions ~hnm(�z) = h(�z + n� � imL)hnm(�z)h�1(�z): (5.8)Using this gauge freedom we an always �nd a representative in GA suh that hn0(�z) = 1l.To see that we write the hn0 ashn0 = P exp ni �z+n�Z�z d�u a(�u)o: (5.9)Then h(�z) = P exp ni 0Z�z d�u a(�u)o (5.10)transforms the hn0 into the identity, as required.It follows from the oyle onditions (5.7) that the remaining nontrivial transition fun-tions must be periodi in time, h0m(�z + n�) = h0m(�z): (5.11)In the appendix B we shall prove, that the h0m an be written ash0m(�z) = V m2L � e2�im �z�HA � P exp ni �z�imLZ�z d�u bp(�u)o; (5.12)where bp is periodi in x0, HA lies in the Cartan subalgebra and is quantized, exp(2�iHA) =1l, and VL = e�L�HA and [HA; bp(�u)℄ = 0: (5.13)7e.g. g = gAVA has transition funtion hnm(�z) = P exp�� i 1R0 Apz�� �(n� + imL); �z� � (n� + imL)d�	:11



Now we make a further gauge transformation withh(�z) = P exp fi 0Z�z d�u bp(�u)g: (5.14)The new transition funtions hnm readhnm(�z) = V n� � V m2L � e2�im �z�HA with V� = P exp ni 0Z� bp(�u)d�uo: (5.15)Setting V� = ev� we an fatorize g asg(z; �z) = ev�x0=�e�HA(x1)2=V ~g(z; �z):The non-periodiity of ~g is simply~g(z + n� + imL; �z + n� � imL) = e2�imx0� HA � ~g � e�2�imx0� H :In terms of ~g the gauge �xed potential readsAz = ~g�1�i�z + AI�~g; where AI = �x1V HA + i2� v� (5.16)is an abelian instanton potential, [AI ; v�℄ = 0.Now it is easy to see that the Dira-operatorD/ (A) an be related to the one in the instantonbakground asD/ (A) = ~GyD/ (AI) ~G; ~G =  ~gy�1 00 ~g ! ; D/ (AI) = 2 0 �z � iAI��z � iAyI 0 ! : (5.17)It follows at one that  0 = ~G�1 ~ 0 (5.18)is a zero mode of D/ (A) if ~ 0 is a zero mode of D/ (AI).Let us alulate the left-handed (5 = �1) zero modes in the instanton bakground AI .Comparing AI with the general gauge �xed form (2.5) we see that HA � H. The Dira-eqation reads (�z � i�x1V H + 12�v�) ~ 0 = 0and is solved by the spinor �elds~ 0(x0; x1) = e��(x1)2H=V �iv�x1=��(�z): (5.19)12



The zero modes must ful�ll the boundary onditions (2.1) with transition funtion (2.8)so that � must be antiperiodi in time and�(�z � iL) = e2�iH�z=�+L(�H�iv�)=��(�z): (5.20)Thus � an be expanded as �(�z) =Xn e�i(2n+1)�z=�an; (5.21)where the Fourier-oeÆients an transform aording to the fundamental representationof G. To proeed we use the fat that H ommutes with the Dira-operator and an bediagonalized, Han = man. Sine v� ommutes with H it leaves the subspae on whihH = m invariant. On this subspae (5.20) translates intoan = e�(m�1�2n)L=�e�iv�L=�an�m: (5.22)Now we see that we an hoose the vetors a1; : : : ; am freely, so that there arem�(degenerayofm) normalizable zero modes ifm is positive. Repeating the same proedure for the right-handed zero-modes, for whih m must be negative, we end up with the following formulafor the number of zero-modes n0 = TrjHj: (5.23)The expliit zero modes are given by (5.18,5.19,5.21) where the an are determined bythe reursion relations (5.22). This way one �nds, that the zero modes in the instantonbakgrounds are theta-funtions ( similar to the abelian Shwinger model [15℄).6 DisussionIn this paper we have given a simple derivation for the expetation value of Polyakov-loops in QCD2 at �nite temperature. For the simplest ase, G = SU(2) and matter inthe fundamental representation, i.e. with untwisted gauge �elds, the interation energybetween two widely separated external soures isF (x; y) L!1! g22 jx� yj: (6.1)If we twist the gauge �elds and thus introdue magneti ux quanta we getF (x; y) L!1! � 4� expf�2g2�jx� yjg (6.2)A similar behaviour is found for the higher groups and maximally twisted and untwisted�elds. In the untwisted ase we get a on�ning potential, whereas in the twisted ase13



the potential F (x � y) deays exponentially to a onstant, whih is to be interpreted assreening of the external harges. In �gure 1 we show F (x; y) for abitrary jx�yj=L 2 [0; 1℄for SU(2) in the untwisted ase. In �gure 2 we show F (x; y) for SU(2) in the twisted ase.For large volume F (x; y)=V tents to zero everywhere.The string tension (4.7) in non-ompat QCD2 on the torus is di�erent from the one inompat QCD2 [4, 5, 12℄. For example, for the partition funtion (for SU(2)) the twoquantisations di�ers on the n = 0 ontribution inZ =Xn n2�2ge�g2V n2In [19℄ it has been argued, that the n = 0 term is absent for g 6= 1, but on the torus thereis no way to deide, whih of the two quantisations is the orret one. Sine in our pathintegral quantisation we do not need to �x the Weyl symmetry, we get twie the resultof non-ompat QCD2. Therefore the 'zero representation' of Hetrik [6℄ must be addedto the partition funtion of ompat QCD2 with a fator 1/2. Another argument for afator 1/2 is, that the orresponding state lies on the boundary of the Weyl hamber andhene belongs to two hambers simultanously. In order to avoid double ounting, we needthe fator 1/2. These weights are also present in the alulation of expeation values ofPolyakov loops.To hek the luster deomposition theorem one must ompute the expetation value ofone Polyakov-loop operator for the twisted and untwisted ase. We get hP if = 0 andhP iadj = 1. This agrees with alulations of expetation values of homologially nontrivialWilson-loops on genus one Riemann surfaes done in [5℄.In a seond part we derived an expliit formula relating the r winding numbers of thegauge �xed on�gurations to the total number of zero modes. Indeed, the number of zeromodes is just the produt of the winding numbers. This is a nontrivial result and webelieve it is new. It goes muh beyond the well known index theorem, whih is trivial intwo dimensions.We would like to point out, that the gauge �xing introdued in setion 2 has a naturalextension to higher dimensions. For example in 4 dimensions the generalization of (2.5)readsA0 = 2�H0 x1L0L1 + ~A0; A1 = ~A1; A2 = 2�H2 x3L2L3 + ~A2; A3 = ~A3 (6.3)where the Cartan-piees of the ~A� are onstrained by~A0 = C0(x1; x2; x3) , R dx0 ~A1 = C1(x2; x3)R dx0dx1 ~A2 = C2(x3) , R dx0dx1dx3 ~A3 = C3: (6.4)The onstant parts of the C� 2 H are further restrited to avoid Gribov opies. Atuallya slight modi�ation of this gauge �xings an be ahieved in all instanton setors forG = SU(N > 2) and in the setors with even instanton numbers for SU(2) [3℄.14
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Figure 1:g2V =1: , g2V � 1: ����, g2V = 0: � � � � �Interation energy of two external harges for SU(2), untwisted ase.
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Figure 2:g2V =1: , g2V � 1: ����, g2V = 0: � � � � �Interation energy of two external harges for SU(2), twisted ase. F=V = 0 forg2V =1. 18


