
Chapter 5

2-dimensional Gauge

Theories

The response of physial systems to a hange of external onditions is of

eminent importane in physis. In partiular the dependene of expetation

values on temperature, the partile density, the spae region, the imposed

boundary onditions or external �elds has been widely studied [18℄. De-

spite all these e�orts we are still unable to understand, for example, the

mehanism leading to the spontaneous symmetry breaking of the SU

A

(N)

in low temperature QCD [43℄. Clearly suh subtle e�ets require a bet-

ter understanding of the non-perturbative e�ets and in partiular non-

perturbative the vauum setor of gauge theories. From our experiene

with 2-dimensional gauge theories [41℄ whih we suppose to mimi one-

avor QCD [35℄, we are lead to believe that gauge �elds with windings are

responsible for the non-vanishing hiral ondensate and in partiular its tem-

perature dependene. A related problem is how quantum systems behave

in a hot and dense environment as it exists or existed in heavy ion ollision,

neutron stars or the early epohs of the universe [43℄.

On another front there has been muh e�ort to quantize self-interating

�eld theories in a bakground gravitational �eld [5℄. For example, one is

interested whether a blak hole still emits thermal radiation when self-

interation is inluded. Due to general arguments by Gibbons and Perry

[25℄ this question is intimately onneted with universality of the seond

law of thermodynamis.

Rather than seeking new partial results for more general and realisti 4-

dimensional systems we have hosen an idealized 2-dimensional model with

self-interation to investigate the questions mentioned and others. It is a
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theory ontaining photons

1

, harged mass-less fermions, salars and pseudo-

salars in interation with themselves and a gravitational bakground �eld.

The model has the ation
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where F

��

is the eletromagneti �eld strength, the gamma-matries in

urved spae are related to the at ones as 
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is the generally and gauge ovariant derivative ontaining the U(1) gauge

potential and spin onnetion, �

��

=

p

�g �

��

denotes the totally antisym-

metri tensor and R the Rii salar. The gravitational �eld g

��

(or rather

the 2-bein e

a

�

, sine the theory ontains fermions) is treated as lassial

bakground �eld, whereas the 'photons' A

�

, 'eletrons'  , salars � and

pseudo-salars � are fully quantized. The lassial theory is invariant under

U(1) gauge- and axial transformations and orrespondingly possesses on-

served vetor and axial-vetor urrents. Despite its omplexity the general

model (5.1) is solvable for arbitrary lassial bakgrounds g

��

and allows for

an analytial treatment.

We have hosen this model sine it allows to address the above raised

questions and sine it relates to known soluble models for ertain values of

the oupling onstants. For example it ontains the gauged Thirring model,

the Shwinger model in urved spae time and the minimal models in onfor-

mal �eld theory as partiular limits. For �nite volumes the theory possesses

instantons whih minimize the Eulidean ation in a given topologial se-

tor. These instantons lead to a non-trivial vauum struture, i.e. to �-vaua

[10℄, and to hirality violating amplitudes. For example, a non-zero hiral

ondensate develops whih vanishes exponentially for temperature and ur-

vature bigger than the indued 'photon' massm

2



= e

2

=(�+

1

2

g

2

2

). This mass

is generated via the Shwinger mehanism and it the analog of m

2

�

0

in QCD

[23℄.

In two dimensions the eletri harge e has the dimension of a mass.

The other 3 ouplings are dimensionless. The physial role of the oupling

onstants is the following: The oupling of � to the transversal urrent

dereases the e�etive eletromagneti interation between fermions. For

example, the eletri harge beomes renormalized to

1

Although photons in 1+1 dimensions possess no transversal degrees of freedom we

still all them photons. However, through their interation with harged fermions they

may beome dynamial �elds as exempli�ed by the Shwinger mehanism.
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the hiral ondensate dereases as � (2�+g

2

2

)

�

1

2

. The mass in the bosonised

theory depends on g

2

.

For e = 0 all oupling onstants are dimensionless, the model has a

trivial vauum struture and beomes onformally invariant. It possesses

the Virasoro algebra extended by left-right U(1) Ka-Moody algebras as

symmetry algebra. The entral extensions, onformal weights and U(1)

harges all depend on g

2

. The oupling onstant g

3

ampli�es the Hawking

radiation whih remains thermal for the interating model. It is (3+24�g

2

3

)

times as strong as that of a free mass-less salar �eld. The entral harge and

onformal weights depend also on g

3

. Atually, the weights of the fermioni

�elds beome omplex for g

3

6=0. However, g

3

does not enter in the �nite size

e�ets. The oupling onstant g

1

to the longitudinal urrent weakens the

long range gauge invariant eletron-eletron orrelators in the one-instanton

setor (see 5.104). In the un-gauged setor it enters in expetation values

of loal operators and in partiular in the short distane expansions of the

fermioni �elds and energy momentum tensor. It does not inuene the

thermodynamis of the model.

Sine for partiular hoies of the oupling onstants the model redues

to well-known and well-studied exatly soluble models there are many ear-

lier works whih are related to ours. Some of them onentrated more on

the gauge setor and investigated the renormalization of the eletri harge

in the gauged Thirring model by the four-Fermi interation [30℄ or the non-

trivial vauum struture in the Shwinger model [41, 29℄. Others onen-

trated on the un-gauged onformal setor. Freedman and Pilh alulated

the partition funtion of the un-gauged Thirring model on arbitrary Rie-

mann surfaes [21℄. We do not agree with their result and in partiular show

that there is no holomorphi fatorization for general fermioni boundary

onditions. Also we deviate from Destri and deVega [16℄ whih investigated

the un-gauged model on the ylinder with twisted boundary onditions. We

shall omment on the disrepanies in setions 5:2 and 5:4:1. Other papers

whih are relevant and are dealing with di�erent aspets of ertain limiting

ases of (5.1) are [50℄, where the thermodynamis of the Thirring model has

been studied or [5℄ in whih the Hawking radiation has been derived.

This hapter is organized as follows: In setion 5:1 we analyze the las-

sial model to prepare the ground for the quantization. In partiular we

derive the general solution of the �eld equations, disuss the onservation

laws and investigate the limiting theories. By employing the graded stru-

ture we derive the lassial Poisson (anti) ommutators of the fundamental

�elds with the energy momentum tensor. In the following setion we quan-
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tize the �nite temperature model. To avoid infrared problems we assume

spae to be �nite. Together with the �nite temperature boundary onditions

we are lead to onsidering the theory on the 2-dimensional Eulidean torus.

Due to the twists in the fermioni boundary onditions, the non-trivial va-

uum struture and the assoiated instantons and fermioni zero-modes the

quantization is rather subtle. Atually we show that some of the results in

the literature are inorret. In subsetion 5:2:1 the general results are ap-

plied to derive the partition funtion of the gauged model. Its dependene

on the spatial size, temperature and gravitational �eld is expliitly found.

In subsetion 5:2:2 we show that the gauged model on urved spaetime an

be bosonised. It turns out that only the non-onstant parts of the urrents

an be bosonised and that the well-known bosonization rules of the Thirring

model are modi�ed. In the following setion the hiral symmetry breaking is

studied. The exat form of the hiral ondensate is found. On the at torus

the formula simpli�es to (5.96). Various limits, e.g. L!1; T ! 0, T !1

or g

2

! 1 are investigated. By omparing the temperature and urvature

dependene of the ondensate we derive an e�etive urvature indued tem-

perature. In setion 5:4:1 the thermodynamis of the un-gauged model is

studied. We derive the ground state energy and its dependene on the ou-

pling onstants, size of the system and boundary onditions. We ompute

the equation of state and our result does not agree with [50℄. In subse-

tion 5:4:2 we investigate the onformal setor of (5.1), that is the un-gauged

model in at spaetime. Besides the Virasoro algebra the model ontains an

U(1) Ka-Moody algebra. We alulate the important ommutators and in

partiular determine the onformal weights and U(1)-harges of the funda-

mental �elds from �rst priniples. Also we show that the �nite size e�ets

are in general not proportional to the entral harge as has been onjetured

by Cardy [12℄. The appendix A ontains our onventions and saling for-

mulas for the various geometrial objets. In appendix B we olleted some

useful variational formulas whih we have used in this hapter.

5.1 Classial theory

Equations of motion: The �eld equations of the model (5.1) are

i
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r

�

F

��

= e j

�

;

whih are the Dira equation for mass-less harged fermions propagating in

a urved spae-time and interating with the salar and pseudosalar-�elds,
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Klein Gordon type of equation and Maxwell equation. Here j

5�

is the axial

vetor urrent whih is de�ned by

j

5�

=

�
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 =�
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�

j

�

: (5.4)

When one deomposes the gauge �eld as

A
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�

�

' so that F

01
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(5.5)

and hooses isothermal oordinates for whih g

��

= e

2�

�

��

, then the gener-

alized Dira operator reads
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Hene, if  

0

(x) solves the free Dira equation in at Minkowski spae time,

then
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solves the Dira equation of the interating theory on urved spaetime. The

vetor urrents are related as
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The same relation holds for the axial vetor urrent. From

p

�gr
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j
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�

the onservation of the vetor and axial urrents follow at one,

r

�

j
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= r

�

j

5�

= 0 ;

expressing the lassial U(1) � U

A

(1) invariane of the model. Using these

onservation laws in (5.1) we onlude that

2r

2

� = �g

3

R and r

2

� = 0

(5.8)

or that there is no bak-reation from fermions onto salars. Finally the

onservation laws imply that the urrents are free �elds

r

2

j

�

= r

2

j

5�

= 0 ;

(5.9)

whih is the reason whih aounts for the solubility of the model [33℄, even

in the presene of photons and an external gravitational �eld. As is well-

known, for any gauge invariant regularization the axial urrent possesses an

anomalous divergene in the quantized model and (5.9) is modi�ed. Thus

the normal U

A

(1) Ward identities in the un-gauged Thirring model [30℄

beome anomalous when the fermions ouple to a gauge �eld.
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Solution to the equations of motion: In isothermal oordinates the

general solution of the �eld equations an be expressed in terms of 6 hiral

funtions as follows: Introduing light one oordinates x

�

=x

0

�x

1

so that

ds

2

=e

2�

dx

+

dx

�

, the solutions of (5.8) read
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and depend on 4 hiral funtions whih are �xed by the initial data on some

spae-like hypersurfae. The solutions of the free Dira equations depend

on 2 hiral funtions as
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:

In these oordinate system the Maxwell equations (5.3) an easily be inte-

grated and one �nds
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To go further we must �x the gauge. Conveniently one hooses the Lorentz

gauge suh that �=0 in (5.5) and thus � in (5.11) determines A

�

. We see

that in isothermal oordinates and this gauge the general solution of (5.3)

is given by (5.10), (5.11) and (5.7), that is in terms of 6 hiral funtions.

Energy-momentum tensor: Besides the urrents the symmetri energy

momentum tensor of the matter �elds

T

��

� �

2

p

g

ÆS

Æg

��

(5.12)

plays an important role in any theory in urved spae time. Applying the

variational identities in Appendix B one obtains after a lengthy but straight-

forward omputation
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where we have introdued the symmetrization A
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�

B

�

).

The �rst two lines are just the energy momentum of the eletromagneti
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�eld, harged fermions and free neutral (pseudo-) salars. The terms on-

taining seond derivatives of � are the improvement terms [9℄ whih are

always present when one ouples salars non-minimally to a bakground ur-

vature. The remaining terms reet the interation between the fermioni

and auxiliary �elds.

On shell T

��

is onserved as required by general ovariane. Using the

�eld equations for  and � its trae reads

T
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= g
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:

(5.14)

In partiular for g

3

=0 and A

�

=0 it vanishes, and the theory beomes Weyl-

invariant. As a onsequene it redues to a onformal �eld theory in the at

spaetime limit [22℄. It is remarkable that it an be made Weyl invariant

even when g

3

6=0. Indeed, without hanging the at spaetime limit we may

add a nonloal Wess-Zumino-type term to the ation, namely
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The trae of the modi�ed energy momentum tensor is now zero, and for

g

��

!�

��

the Lagrangian orresponds to a onformal �eld theory in Minkowski

spaetime.

Choosing the oupling onstants appropriately, the model redues to

various well known exatly solvable models:

� For g

3

=0 and g

2

1

=�g

2

2

=g

2

the fermioni setor redues to the gauged

version of the Thirring model [47℄ in urved spae time. To see that we

solve the Klein Gordon equations in (5.3) for the U(1) urrent whih

yields
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Inserting this into the Dira equation we �nd

i

�

r

�

 �

g

2

2

j

�



�

 = 0 ;
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whih is the �eld equation of the gauged Thirring model in urved

spaetime with Lagrangian

L

Thir
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If we further speialize to g = 0 we reover the Shwinger model in

urved spaetime [29℄.

� For the speial hoie g

1

= g

2

= e = 0 and for vanishing gauge �eld

the �- dependent part of (5.1) is just the Lagrangian of salar �elds

oupled to a bakground harge and and for imaginary g

3

desribes

the minimal models of onformal �eld theory [4℄.

Hamiltonian formalism and lassial onformal struture: In this

subsetion we investigate the Hamiltonian struture of the model (5.1) in

the onformal limit, i.e. in at Minkowski spae and for vanishing gauge

�eld. In the presene of both fermions and bosons it is onvenient to exploit

the graded Poisson struture [11℄. We reall, that the equal time Poisson

brakets are
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The sum is over all fundamental �elds O(x) in the theory . The sign is minus

if one or both of the �elds A and B are bosoni (even) and it is plus if both

are fermioni (odd) �elds. The momentum densities �

O

(x) onjugate to the

O-�elds are given by funtional left-derivatives

�

O

(x) =

�!

Æ S

Æ�

0

O(x)

:
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(5.17)

For the Hamiltonian we obtain
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(5.18)

It an be heked that the orresponding Hamiltonian equations are just

the �eld equations (5.3) with at metri and vanishing gauge potential, as

required. Sine T

�

�

= 0 (see 5.14) the only non-zero omponents of T

��

are the light-one omponents T

++

and T

��

. To ontinue it is onvenient

to introdue adapted light one oordinates x
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(5.19)

Using the equations of motion one shows expliitly that it is a hiral �eld,

i.e. depends only on x

�

. With (5.19) we an now �nd the onformal weights

of the fundamental �elds whih determine their transformations under in-

�nitesimal onformal symmetry transformations. For that we must alulate

the ommutator of the symmetry generators T
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Whereas � and  

+

are primary �elds, � is not. Atually, the non-primary

harater of � is very muh linked with the g

3

-dependent term in the trans-

formation of the Dira �eld. To see that more learly we note that under an

in�nitesimal left onformal transformation generated by
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y

+

(�

+

� ig

1

�

+

�) 

+

�

132



appearing in the ation is only onformally invariant beause � transforms

inhomogenously like a spin onnetion. It maybe surprising that the symme-

try transformations depend on the oupling onstant g

3

whih is not present

in the at spae time Lagrangian. Atually, the same happened for the

gauged WZNWmodels onsidered in the previous. Indeed, the g

3

-dependent

term in the energy momentum tensor (5.19) ontains seond derivatives of

the �eld � and is the analog of the improvement term Tr HJ

0

in (4.59) in

the onstrained WZNW theory.

The urrent transforms as

Æ

f

j

=

f�

�

j

�

+ j

�

�

�

f

(5.21)

and the energy momentum tensor as

Æ

f

T

��

= f�

�

T

��

+ 2T

��

�

�

f � g

2

3

�

3

�

f:

(5.22)

Realling that a primary �eld O with weight h transforms as

Æ

f

O = fO;T

f

g = f�

�

O + hO�

�

f

and omparing with the above results we have found the following struture:

� The pseudosalar �eld � is primary with h

�

=0. The salar �eld � is

only primary for g

3

=0 in whih ase h

�

=0.

� The Dira �eld  

+

is primary with h

 

+

=

1

2

(1� ig

1

g

3

). The onformal

weight is real for imaginary g

3

.

� The urrent is primary with weight 1.

� Already on the lassial level the energy momentum tensor is only

quasi-primary. The orresponding Virasoro algebra (5.22) has entral

harge =24�g

2

3

.

In the following setions we are lead to onsider the Eulidean version of

the model. Then one must replae the Lorentzian 

�

; g

��

and !

�

by there

Eulidean ounterparts. For example, with our onventions (see appendix

A) the relation (5.4) beomes

j

5�

= �i�

�

�

j

�

and as a onsequene the generalized Dira operator in Eulidean spaetime

beomes

D= = e

iF+

5

G�

3

2

�

�= � e

�iF+

5

G+

1

2

�

instead of (5.6). Also, to reover the Eulidean Thirring model as partiular

limit of (5.1) we must set g

3

= 0 and g

2

1

=g

2

2

=g

2

.
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5.2 Quantization of the generalized gauged Thirring

model

In this setion we quantize the general model (5.1) in urved spae-times.

The results are then applied in the following setions, where we alulate

the partition funtion, ground state energy, equation of state and ertain

orrelators of interest and their dependene on the hemial potential, vol-

ume of spae, temperature and bakground metri. To do that we ouple

the onserved U(1)-harge to a hemial potential �. We enlose the system

in a box with length L to avoid infrared divergenes. To investigate the

temperature dependene the time is taken to be purely imaginary in the

funtional approah [19℄. The imaginary time x

0

varies then from zero to

the inverse temperature � and we must impose periodi- and anti-periodi

boundary onditions for the bosoni- and fermioni �elds, respetively. Thus

to study the �nite temperature model we must assume that spae-time is

an Eulidean torus [0; �℄ � [0; L℄.

To see how the partition funtion and orrelators depend on the gravi-

tational �eld we assume that the torus is equipped with an arbitrary metri

with Eulidean signature or equivalently with a 2-bein e

�a

. The urved

gamma matries are 

�

= e

�a

̂

a

and in partiular 

5

= �

i

2

�

��



�



�

= �

3

is onstant (see appendix A for our onventions). We an always hoose

(quasi) isothermal oordinates and a Lorentz frame suh that

e

�a

= e

�

ê

�a

� e

�

�

�

0

�

1

0 1

�

g

��

= e

2�

ĝ

��

� e

2�

�

j� j

2

�

1

�

1

1

�

(5.23)

where � = �

1

+ i�

0

is the Teihmueller parameter and � the gravitational

Liouville �eld. Spae-time is then a square of length L and has volumeV =

R

L

0

d

2

x

p

g. We allow for the general twisted boundary onditions for the

fermions

 (x

0

+ L; x

1

) = �e

2�i(�

0

+�

0



5

)

 (x

0

; x

1

)

 (x

0

; x

1

+ L) = �e

2�i(�

1

+�

1



5

)

 (x

0

; x

1

):

(5.24)

The parameters �

i

and �

i

represent vetorial and hiral twists, respetively.

We ould allow for twisted boundary onditions for the (pseudo) salars as

well, e.g. �(x

0

+nL; x

1

+mL) = �(x

1

; x

0

) + 2�(m+n). However, to reover

the Thirring model for ertain values of the ouplings we assume that these

�elds are periodi. For � = 0, � = i�=L and �

0

= �

0

= 0 the partition

funtion has then the usual thermodynamial interpretation. Its logarithm

is proportional to the free energy at temperature T =1=�.
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Fermioni path integral: Twisted boundary onditions as in (5.24) re-

quire some are in the fermioni path integral. Indeed the fermioni de-

terminant is not uniquely de�ned when one allows for suh twists. The

ambiguities are not related to the unavoidable ultra-violet divergenes but

to the transition from Minkowski- to Eulidean spae-time. To see that

more learly let S

�

denote the set of fermioni �elds in Minkowski spae-

time with hirality �1. Sine both the ommutation relations and the ation

do not onnet S

+

and S

�

we an onsistently impose di�erent boundary

onditions on S

+

and S

�

. On the other hand, in the Eulidean path-integral

for the generating funtional

Z

F

[�; ��℄ =

Z

D 

y

D e

R

p

g  

y

iD= +

R

p

g (�� + 

y

�)

;

(5.25)

the Dira operator

D= =

�

0 D

�

D

+

0

�

exhanges the two hiral omponents of  , i.e. D= : S

�

! S

�

. Thus,

in ontrast to the situation in Minkowski spae the two hiral setors are

related in the ation. Of ourse, the eigenvalue problem for iD= is then

not well de�ned. This is the origin of the ambiguity in the de�nition of

the determinant. It is related to the ambiguities one enounters when one

quantizes hiral fermions [2℄. To solve this problem we shall analytially

ontinue the well-de�ned determinants in the untwisted setor � = 0 to

� 6=0. The resulting determinants do not fatorize into (anti-) holomorphi

piees and di�er from previous ones in the literature [21℄.

Let us now study the generating funtional for fermions in an external

gravitational and gauge �eld and oupled to the auxiliary �elds. For that

we observe that on the torus the deomposition (5.4) of the gauge potential

generalizes to

A

�

= A

I

�

+

2�

L

t

�

+ �

�

�� �

��

�

�

';

(5.26)

where the last 3 terms are reognized as Hodge deomposition of the single

valued part of A in a given topologial setor, that is the harmoni-, exat-

and o-exat piees. In arbitrary oordinates the toron �eld t

�

obeys the

harmonitiity onditions r

�

t

�

= t

[�;�℄

=0. It follows then that in isothermal

oordinates t

�

must be onstant. The role of the toron �elds has reently

been emphasized within the anonial approah [34℄. In the Hamiltonian for-

mulation they are quantum mehanial degrees of freedom whih are needed

for an understanding of the infrared setor in gauge theories. Also, in [45℄ it

has been demonstrated that the Z

N

-phases of hot pure Yang-Mills theories
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[46℄ should orrespond to the same physial state if one takes are of the

toron �elds.

The �rst term in (5.26) is an instanton potential whih gives rise to a

non-vanishing quantized ux � or integer-valued instanton number k:

� = e

Z

F

01

� e

Z

E = e

Z

E

I

= 2� k:

As representative in the k-instanton setor we hoose the, up to gauge trans-

formations, unique absolute minimum of the Maxwell ation in (5.1). It has

�eld strength eE

I

=

p

g�=V . As instanton potential we hoose

eA

I

�

= e

^

A

I

�

� � �

�

�

�

�

�; where e

^

A

I

= �

p

ĝ

^

V

(x

1

; 0)

(5.27)

is the instanton potential on the at torus with the same ux but �eld

strength

p

ĝ�=

^

V . The funtion � is then determined (up to a onstant) by

p

g

�

V

�

p

ĝ

�

^

V

=

p

g4�:

(5.28)

The solution of this equation is given by

�(x) = �

1

^

V

(

1

4

e

�2�

)(x) =

1

^

V

Z

d

2

y

q

g(y)G

0

(x; y) e

�2�(y)

;

(5.29)

where

G

0

(x; y) = hxj

1

�4

jyi =

X

�

n

>0

�

n

(x)�

y

(y)

�

n

(5.30)

is the Green-funtion belonging to �4. In deriving (5.29) we have used that

1

4

(�=V )=0 whih follows from the spetral resolution (5.30) for the Green

funtion in whih the onstant zero mode �

0

=1=

p

V of 4 is missing.

Note that 2-dimensional gauge theories are not sale or Weyl invariant

as 4-dimensional ones are. For that reason the instantons on onformally

at spaetimes are not just the 'at' instantons.

To be more expliit we relate G

0

to the Green-funtion

^

G

0

on the at

torus with the hatted metri [28℄

^

G

0

(x; y) = �

1

4�

log j

1

�(�)

h

1

2

+

�

0

L

1

2

+

�

1

L

i

(0; �)j

2

; where � = x� y:

(5.31)

For that we note that due to the missing zero-mode in (5.30) the usual at
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spaetime equations for the Green-funtions are modi�ed to

�4

x

G

0

(x; y) =

Æ(x�y)

p

g

�

1

V

; �

^

4

x

^

G

0

(x; y) =

Æ(x�y)

p

ĝ

�

1

^

V

:

Furthermore one sees at one that both Green funtions annihilate the or-

responding onstant zero modes

Z

d

2

y

q

g(y)G

0

(x; y) =

Z

d

2

y

p

ĝ

^

G

0

(x; y) = 0:

(5.32)

From these two equations one onludes that Green-funtion on the urved

torus is related to the at one (5.31) as

G

0

(x; y) =

^

G

0

(x; y) +

1

V

2

Z

d

2

ud

2

v

q

g(u)g(v)

^

G

0

(u; v)

�

1

V

Z

^

G

0

(x; u)

q

g(u)d

2

u�

1

V

Z

d

2

u

q

g(u)

^

G

0

(u; y)

(5.33)

and this replaes the in�nite spae relations G

0

=

^

G

0

[6℄.

Our hoie for the instanton potential (5.26,5.27) orresponds to a par-

tiular trivialization of the U(1)-bundle over the torus [41℄. In other words,

the gauge potentials and fermion �elds at (x

0

; x

1

) and (x

0

; x

1

+L) are ne-

essarily related by a nontrivial gauge transformation with windings

A

�

(x

0

; x

1

+ L)�A

�

(x

0

; x

1

) = �

�

�(x)

 (x

0

; x

1

+ L) = �e

ie�(x)

e

2�i(�

1

+�

1



5

)

 (x

0

; x

1

):

(5.34)

For the hoie (5.27) we �nd

e�(x) = �

�

L

x

0

:

Note that A is still periodi in x

0

with period L and  still obeys the �rst

boundary ondition in (5.24). Our trivialization di�ers from the one hosen

in [31℄ and so do our instantons and fermioni zero modes.

Similarly as for the gauge potential we must add a harmoni piee to the

auxiliary vetor �eld B

�

to whih the fermions ouple in (5.1), so that

B

�

=

2�

L

g

0

h

�

+ g

1

�

�

�� g

2

�

��

�

�

�

(5.35)

appears in the Dira operator in (5.1) on the torus. � and � ouple to

the divergene of the vetor and axial vetor urrents. The harmoni �elds

h

�

ouple to the harmoni part of the urrent and are needed to reover

the Thirring model in the limit g

2

0

= g

2

1

= g

2

2

. Also, we shall see that t

�
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and h

�

are essential to obtain the orret answer for the thermodynami

potential. Note that B

�

ontains no instanton part sine it ouples to the

gauge invariant fermioni urrent.

Finally we introdue a hemial potential for the onserved U(1) harge.

In the Eulidean funtional approah this is equivalent to oupling the

fermions to a onstant imaginary gauge potential A

0

[1℄.

Inserting the above deompositions and the hemial potential into the

Dira operator �nally yields in isothermal oordinates

D= = 

�

D

�

= e

iF+

5

(G+��)�

3

2

�

^

D= e

�iF+

5

(G+��)+

1

2

�

; where

^

D= = 

�

(�

�

+ i!̂

�

� ie

^

A

I

�

�

2�i

L

[H

�

+ �

�

℄); (5.36)

H

�

= e t

�

+ g

0

h

�

and �

�

= �i

�

0

L

2�

� Æ

�0

:

Here !̂ is the spin onnetion belonging to ê

�a

. It vanishes for our hoie of

the referene zweibein.

^

A

I

is the instanton potential (5.27) on the at torus.

The salar and pseudo salar funtions F , G and � have been introdued in

(5.6,5.29). In the hosen oordinates t and h and hene H are all onstant.

In [41℄ it has been shown that D= possesses jkj zero-modes of de�nite hirality

and their hirality is given by the sign of k. They are ruial in any orret

quantization. For example, if one would leave out instanton setors in whih

iD= has zero-modes then the luster property would be violated.

In a �rst step we quantize the fermions in the at instanton and har-

moni bakground and referene metri ĝ

��

, that is we assume D= !

^

D= in

(5.25). The dependene on the remaining �elds F;G; � and �, that is the

relation between Z

F

and

^

Z

F

, is then found by integrating the hiral and

trae anomalies [7℄ and exploiting the relation (5.36) between D= and

^

D= .

We expand the fermioni �eld in a orthonormal basis of the Hilbert spae

 (x) =

X

n

a

n

 

n+

(x) +

X

n

b

n

 

n�

(x)

 

y

(x) =

X

n

�a

n

�

y

n+

(x) +

X

n

�

b

n

�

y

n�

(x);

(5.37)

where a

n

; b

n

; �a

n

;

�

b

n

are independent Grassmann variables.

Topologially trivial setor: For k = 0 or vanishing instanton potential

we an immediately write down a basis

 

n�

(x) =

1

p

V

e

i(p

�

n

;x)

e

�

; (p

�

n

)

i

=

2�

L

(

1

2

+ �

i

� �

i

+ n

i

);

(5.38)

and e

�

are the eigenvetors of 

5

. The  

n+

and  

n�

must obey the S

+

and S

�

boundary onditions, respetively. These boundary onditions �x
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the admissible momenta p

�

n

in (5.38). Sine the Dira operator maps S

�

into S

�

the �

n�

must then obey the same boundary onditions as the  

n�

.

Thus �

n�

(x) is obtained from  

n�

(x) by exhanging p

+

n

and p

�

n

. It follows

then that

i

^

D= 

n�

= �

�

n

�

n�

(5.39)

with

�

+

n

=

2�

�

0

L

[��(

1

2

+ a

1

+ �

1

+ n

1

)� (

1

2

+ a

0

+ �

0

+ n

0

)℄

�

�

n

=

2�

�

0

L

[�(

1

2

+ a

1

� �

1

+ n

1

)� (

1

2

+ a

0

� �

0

+ n

0

)℄:

(5.40)

Here we have introdued a

�

� �

�

�H

�

��

�

. Substituting (5.37,5.39,5.40)

into the generating funtional (5.25) and applying the standard Grassmann

integration rules we arrive at

^

Z

F

[�; ��℄ = det i

^

D= e

�

R

��(x)

^

S(x;y)�(y)

; det i

^

D= =

Y

n

�

+

n

�

�

n

;

^

S(x; y) =

X

n

(

 

n+

(x)�

y

n�

(y)

�

+

n

+

 

n�

(x)�

y

n+

(y)

�

�

n

):

(5.41)

^

S is the fermioni Green funtion in the 0-instanton setor. Note that both

the 'eigenvalues' and the Green funtion depend on the Teihmueller param-

eter, harmoni potentials, twists and hemial potential.

We proeed to alulate the in�nite produt or generalized determinant

in (5.41). This is one of the entral points of this setion and for non-zero

hiral twists and hemial potential our result deviates from previous ones

[21℄. Atually the twists and hemial potential are related as one an see

from (5.39,5.40).

One may be tempted so identify

det(D

+

D

�

) �

Y

�

+

n

�

�

n

and detD

+

detD

�

�

Y

�

+

n

Y

�

�

m

(5.42)

and thus onlude that the determinant is a produt, f(�)

�

f(�), that is

fatorizes into holomorphi and anti-holomorphi piees (the overall fator �

1=�

0

L in the eigenvalues (5.40)) drops in the in�nite produt, sine the torus

has vanishing Euler number). However, the in�nite produt in (5.41) must

be regularized and the two expressions in (5.42) may di�er. In onformal

�eld theory [28℄ one is naturally lead to onsider the individual hiral setors

and thus �nds holomorphi fatorization. For Dira fermions one uses D=

2

to regularize the produt and this leads to the determinant of the produt

D

+

D

�

.
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To ontinue we reast the in�nite produt in the form

1

Y

�

+

n

�

�

n

=

Y

~n2Z

2

�

2�

L

�

2

ĝ

��

(

1

2

+ 

�

+ n

�

)(

1

2

+ 

�

+ n

�

)

where ĝ

��

is the inverse of the referene metri (5.23) and



�

= a

�

+ i�̂

�

�

�

�

; where (�̂

�

�

) = �

1

�

0

�

�

1

�j� j

2

1 ��

1

�

:

(5.43)

The point is that for real 

�

, that is for vanishing hiral twists �

�

and

hemial potential (see the de�nitions of a

�

below (5.40) and �

�

in (5.36))

the zeta funtion de�ned by

�(s) =

X

n

(�

+

n

�

�

n

)

�s

(5.44)

has a well de�ned analyti ontinuation to s<1 via a Poisson resummation.

An expliit alulation yields [41, 48, 8℄

det(i

^

D= ) � (

Y

n

�

+

n

�

�

n

)

reg

= e

��

0

(s)j

s=0

; where

�

0

(s)j

s=0

= � log

h

1

j�(�)j

2

�

h

�

1



0

i

(0; �)

�

�

h

�

1



0

i

(0; �)

i

:

(5.45)

However, for omplex 

�

the Poisson resummation is not appliable and

�

0

(0) annot be alulated by diret means. To irumvent these diÆulties

we note that the in�nite produt (5.44) de�ning the �-funtion for s>1 is a

meromorphi funtion in . Thus we may �rst ontinue to s<1 for real 

�

and then ontinue the result to omplex values. Using the transformation

properties of theta funtions the resulting determinant an be written as

det(i

^

D= ) = e

2�(

p

ĝĝ

��

�

�

�

�

�2i�

1

a

0

)

�

1

j�(�)j

2

�

h

�a

1

+ �

1

a

0

� �

0

i

(0; �)

�

�

h

��a

1

� �

1

�a

0

+ �

0

i

(0; �):

(5.46)

It an be shown that this determinant is gauge invariant, i.e. invariant un-

der �

�

! �

�

+1, but not invariant under hiral transformations, �

�

! �

�

+1,

as expeted. Furthermore it transforms ovariantly under modular transfor-

mations � ! � +1 and � ! �1=� . In other words, det i

^

D= is invariant under

modular transformations if at the same time the boundary onditions are

transformed aordingly. The exponential prefator is needed for modular

ovariane and is not present in the literature [21℄. It orrelates the two

hiral setors and will have important onsequenes.
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Topologially nontrivial setors: Before deriving hirality violating am-

plitudes one omment is in order. Due to the integrated Gauss law the

expetation value of the eletri harge must vanish in the fully quantized

theory, although it may be nonzero in the intermediate step where one treats

the gauge �eld as external �eld. This then implies that the partition fun-

tion and expetation values must be independent of the hemial potential

oupled to the eletri harge. For example, if the partition funtion would

depend on � then the expetation value of the harge would not vanish as

an easily be seen by di�erentiating the e�etive ation with respet to �.

Now we note that a hiral twists is equivalent to a hemial potential, and a

non-hiral twist to a harmoni gauge potential. Thus we onlude that the

partition funtion an not depend on the twists. This an be heked by

expliit alulation. For example, the normal twists are wiped out by the

toron integration. Thus we shall set the twists to zero for the gauged model

so that we have the same boundary onditions in the left and right handed

setors and the Dira operator beomes selfadjoint. In partiular we may

use eigenfuntions of the Dira operator to perform the path integral. The

twist will only be relevant for the un-gauged model whih we onsidered

later.

Let us now, for de�niteness, assume that the instanton number is posi-

tive, k > 0. Then i

^

D= possesses k zero-modes

^

 

p

0

, p=1; : : : ; k with positive

hirality. They must be inluded in an expansion of  in (5.37). The Grass-

mann integral over the variables belonging to the exited modes is performed

as in the trivial setor. Also, the integration over the Grassmann variables

aompanying the zero-modes an easily be done (see [41℄ for a areful dis-

ussion) and one obtains

^

Z

F

[�; ��℄ =

jkj

Y

p=1

(��;

^

 

p

0

)(

^

 

p

0

; �)det

0

i

^

D=e

�

R

��(x)

^

S

e

(x;y)�(y)

;

det

0

i

^

D= =

Y

�

n

6=0

�

n

;

^

S

e

(x; y) =

X

�

n

6=0

 

n

(x) 

y

n

(y)

�

n

:

(5.47)

Note that the exited Green funtion S

e

antiommutes with 

5

.

To alulate the determinant we observe that

D=

2

=

�

D

�

D

+

0

0 D

+

D

�

�

=

1

p

g

D

�

p

gg

��

D

�

�

1

4

R+

e

2

�

��

F

��



5

simpli�es in the instanton bakground

^

A

I

and on the at torus to

�

^

D=

2

= �ĝ

��

^

D

�

^

D

�

�

�

^

V



5

:

(5.48)

In other words, it is the same in the two hiral setors, up to the onstant
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2�=

^

V . This observation allows one to reonstrut the spetrum of �

^

D=

2

ompletely. For that we observe that the exited eigenmodes of the Dira

operator ome in pairs with opposite eigenvalues, sine 

5

antiommutes with

D= . Sine 

5

ommutes with the squared Dira operator the hiral projetions

P

�

 

n

of these modes are eigenmodes of

^

D=

2

. Thus the exited modes of the

squared Dira operator ome also in pairs and two partners have the same

energies but opposite hiralities. Earlier we have seen that there are exatly

k-zero modes with hirality +1 (we assumed k > 0). Beause of (5.48)

they are at the same time exited modes of �

^

D=

2

with energy 2�=

^

V and

hirality �1. Due to the pairing there are then k exited modes with the

same energies 2�=

^

V but hirality +1. This proedure may now be iterated

and one ends up with the following spetrum of �

^

D=

2

:

�

2

n

=

�

0 degeneray = k

2n�=

^

V degeneray = 2k:

With the expliit spetrum at hand we an ompute the zero-mode trunated

determinant with zeta-funtion methods and �nd [41℄

det

0

(i

^

D= ) =

�

�

^

V

�

�

�=4�

:

We proeed with omputing the zero modes of

^

D=

2

. For that we note that

the operator ommutes with the time translations whih leads to the ansatz

~�

p

= e

2�i

p

x

0

=L

e

2�iH

1

x

1

=L

�

p

(x

1

) e

+

; 

p

=

1

2

+ p;

where we have assumed k > 0. The hoie of 

p

is ditated by the time-

like boundary onditions in (5.24). Inserting this ansatz into the zero mode

equation

~

D=

2

~�

p

= 0 yields

(j� j

2

d

2

dy

2

�

�

2

L

4

y

2

� 2i�

1

�

L

2

y

d

dy

� i�

�

L

2

)�

p

= 0;

where y = x

1

+

L

k

(

p

�H

0

):

(5.49)

This is just the di�erential equation for the ground state of a generalized

harmoni osillator to whih it redues for � = i�

0

. The solution is given by

�

p

= exp

h

�

�

2i��L

2

fx

1

+

L

k

(

p

�H

0

)g

2

i

:

These funtions do not obey the boundary ondition (5.34), but the orret

eigenmodes an be onstruted as superpositions of them. For that we

observe that

~�

p

(x

0

; x

1

+L) = e

�i�x

0

=�

e

2i�H

1

~�

p+k

(x

0

; x

1

)
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so that the sums

^

 

p

0

=

(2k�

0

)

1

4

q

j� j

^

V

�

X

n2Z

e

�2i�(n+p=k)(

1

2

�H

1

)

~�

p+nk

e

+

;

(5.50)

where p=1; : : : ; k, obey the boundary onditions and thus are the k required

zero-modes. The overall fator normalizes these funtions to one. Modes

with di�erent p are orthogonal to eah other, so that the system (5.50) forms

an orthonormal basis of the zero-mode subspae. For k<0 the zero-modes

are the same if one replaes e

+

by e

�

.

Integrating the hiral and trae anomalies: To relate the determi-

nants of i

^

D= and iD= we introdue the one-parameter family of Dira operators

D=

�

= e

� [iF+

5

(G+��)�

3

2

�℄

^

D= e

� [�iF+

5

(G+��)+

1

2

�℄

(5.51)

whih interpolates between

^

D= and D= [39℄. The � -derivative of the orre-

sponding determinants is determined by the hiral and trae anomaly. An

expliit alulation yields

log

det

0

iD=

det

0

i

^

D=

=

1

Z

0

d�

4�

Z

p

g

�

tr a

�

1

�

2

5

[G+��℄� �

�

+ log det

N

 

^

N

 

:

(5.52)

Here g

�

is the determinant of the deformed metri g

�

��

= e

2��

ĝ

��

, and

a

�

1

= �

1

12

R

�

+ 

5

�4

�

G+

1

p

g

�

h

(1� �)

p

ĝ

�

^

V

+ �

p

g

�

V

i



5

(5.53)

is the relevant Seeley-deWitt oeÆient of D=

2

�

. Furthermore,

^

N

 

is the

norm-matrix of the zero-modes

^

 

p

0

in (5.50). Sine those are orthonormal

it is just the k-dimensional identity matrix. N

 

is the norm-matrix of the

zero-modes of iD= whih are related to the

^

 

p

0

as

 

p

0

= e

iF�

5

(G+��)�

1

2

�

^

 

p

0

(5.54)

as follows from (5.36). Inserting (5.53) into (5.52) one �nds the following

formula for the determinant in arbitrary bakground gravitational and gauge

�elds:
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det

0

iD= = det

N

 

^

N

 

det

0

(i

^

D= ) exp

�

S

L

24�

+

1

2�

Z

p

ĝG

^

4G

�

� exp

�

2k

V

Z

p

gG+

�

2

2�

^

V

Z

p

ĝ�

�

;

(5.55)

where

S

L

=

Z

p

ĝ[

^

R� � �

^

4�℄

(5.56)

is the Liouville ation. In deriving this result we used that

R

p

g�=0. A-

tually, for our referene metri the Rii salar

^

R vanishes and the Liouville

ation simpli�es to �

R p

ĝ�

^

4�. However, as it stands the formula (5.55)

holds for arbitrary referene metris and arbitrary Riemannian surfaes.

As expeted for a gauge-invariant regularization, the funtion F and

thus the pure gauge part of the vetor potential does not appear in the

determinant.

For later use we also give the analogous formula for the zero-mode trun-

ated salar determinant [44℄

det

0

1

2

(�4) = det

0

1

2

(�

^

4)(

V

^

V

)

1

2

exp

�

�

1

24�

S

L

�

:

(5.57)

This ompletes the omputations of the determinants.

The generating funtional for the full theory is then obtained as follows:

First one notes that the formulas (5.41) and (5.47) for the fermioni fun-

tionals still hold without hats. Thus to alulate the funtionals in arbitrary

gauge-, auxiliary- and gauge �elds we need to know the Green-funtions, de-

terminants and zero-modes in these bakgrounds.

To relate the fermioni Green-funtions S in the di�erent topologial setors

to the hatted ones we de�ne

S

1

(x; y) = e

�g(x)

^

S(x; y) e

��g(y)

; g = �iF + 

5

(G+��) +

1

2

�:

On the in�nite spae we would have S = S

1

[6℄. However, if the Dira

operator possesses zero modes this simple relation is modi�ed to to

S(x; y) = S

1

(x; y) +

Z

P

0

(x; u)S

1

(u; v)P

0

(v; y)

q

g(u)g(v)d

2

ud

2

v

�

Z

S

1

(x; u)P

0

(u; y)

q

g(u)d

2

u�

Z

P

0

(x; u)S

1

(u; y)

q

g(u)d

2

u;

(5.58)

and this formula should be ompared with the analogues one for salars

(5.33). Here P

0

is the orthonormal projetor onto the zero modes. For gauge

�elds with vanishing ux S=S

1

. Together with the relation (5.55) between
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the full and hatted determinant and the expliit form (5.45,5.46) for det i

^

D=

this yields the fermioni generating funtional in the various topologial

setors.

In the trivial setor one �nds expliitly

Z

F

[�; ��℄ =

1

j�(�)j

2

�

h

�

1



0

i

(0; �)

�

�

h

��

1

�

0

i

(0; �)

e

�

R

��(x)S(x;y)�(y)

� exp

�

1

24�

S

L

+

1

2�

Z

p

gG4G℄

�

:

(5.59)

By using the saling properties of the Rii-salar and Laplaian (see ap-

pendix B) the exponent an be rewritten as

�

1

96�

Z

p

gR

1

4

R+

1

2�

Z

p

gG4G;

whih makes lear that the resulting funtional is di�eomorphism invariant.

Here we used that R integrates to zero or that the Euler number of the

torus vanishes. On the sphere or higher genus surfaes the last formula is

modi�ed.

To relate the hatted and full funtionals in the non-trivial setors one realls

that in the formula (5.47) for the full partition funtion (without hats) one

must use orthonormal zero-modes. These an be expanded in terms of the

un-normalized modes  

p

0

de�ned in (5.54). Inserting these expansions into

(5.47) yields the inverse square roots of the determinants of the orrespond-

ing norm matries N

 

and N

�

whih partly hanel detN

 

in (5.47). Thus

one ends up with

Z

F

[�; ��℄ =

�

�

^

V
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4�
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��(x)S

e

(x;y)�(y)

exp
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S

L

24�

+

1

2�

Z

p

ĝG

^

4G+

2k

V

Z

p

gG

�

;

(5.60)

where the  

p

0+

are the un-normalized zero-modes (5.50).

Bosoni path integral: To arrive at the generating funtional for the

omplete theory we must �nally quantize the photon and auxiliary �elds A

�

and B

�

(see (5.35)). For that we insert the deomposition (5.26) into the

bosoni part of the (Eulidean) ation (5.1). This results in

S

B

=

�

2

2e

2

V

+ (2�)

2

p

ĝĝ

��

h

�

h

�

+

Z

p

g

�

1

2

'4

2

'� �4�� �4�� g

3

R�

�

:

(5.61)
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The term quadrati in the h �eld is not present in the ation (5.1) on

Minkowski spae-time. But on the torus h is part of the Hodge deom-

position of B

�

and thus on the same footing as �� and ���. Sine S

B

and

the fermioni determinants are both gauge invariant and thus independent

of the pure gauge mode � in (5.26), it is natural to hange variables from

A

�

to ('; �; t

�

;�) in eah topologial setor. One an show [41℄ that this

transformation is one to one, provided

Z

p

g' =

Z

p

g� = 0 and et

�

2 [0; 1℄:

(5.62)

The measures are related as

DA

�

= J

X

k

dt

0

dt

1

D'D�; where J = (2�)

2

det

0

(�4):

(5.63)

The Jaobian J is independent of the dynamial �elds. In expetation values

of gauge invariant and thus -independent operators the �-integration anels

against the normalization. This is of ourse related to the fat that in QED

the ghosts deouple in the Lorentz gauge.

Finally observe that via the derivative ouplings to the fermioni urrent

[24℄ we introdued arti�ial degrees of freedom. The relation between B

�

in

(5.35) and the �elds (�; �; h

�

) is only one to one if we impose the onditions

similar to (5.62), namely

�

� �

1

V

Z

p

g� = 0;

�

� = 0 and h

�

2 [�1;1℄:

(5.64)

There is no restrition on the harmoni part of the auxiliary �eld, sine B

�

is not a gauge �eld. The onstraints are imposed in the funtional integral

as

Z

dh

0

dh

1

D�D�Æ(

�

�)Æ(

�

�) � � � :

(5.65)

The normalization by the volume in (5.64) is needed suh that the on-

straints and hene the partition funtion are both dimensionless. For exam-

ple, expanding � in eigenmodes of the Laplaian as

� = a

0

�

0

+

X

n>0

a

n

�

n

; where �

0

=

1

p

V

is the zero mode, one �nds the dimensionless partition funtion

Z

D� Æ(

�

�) e

�4�

=

p

V

1

det

0

1

2

(�4)

(5.66)
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for free bosons.

Constraining the mean �eld to zero as in (5.66) is equivalent to �xing the

�eld at an arbitrary point � on the torus to zero [49℄

Z

D� Æ(

�

�) � � � =

Z

D� Æ(�(�))

This an be seen as follows:

Z

D� Æ(�(�)) � � � =

Z

duÆ(

�

�� u)D� Æ(�(�)) � � � :

Now one shifts the �eld as �! �+u. Using that the ation is left invariant

by this shift, the measure beomes

Z

duD� Æ(

�

�)Æ(�(�) + u) � � � =

Z

D� Æ(

�

�) � � �

whih shows that the two onstraints are the same. When integrating over

the auxiliary �elds it is always understood that the divergent zero modes

are suppressed as in (5.65).

5.2.1 Partition funtion

As a �rst appliation of our general results we alulate the partition funtion

of the theory (5.1). To ompute it we must put the soures � and �� in (5.25)

to zero. Then it is evident from (5.60) that the non-trivial setors do not

ontribute and hene we may assume �=0. Thus the partition funtion is

given by

Z

0

= J

Z

d

2

td

2

hD'D�D� Z

F

[0; 0℄ e

�S

B

[�=0℄

;

(5.67)

where J is the Jaobian of the transformation (5.63). Z

F

the fermioni

partition funtion (5.59) in the trivial setor and the integration is over

�elds obeying the onditions (5.62,reft51). Now we perform the various

integrals in turn.

integration over the harmonis: By using the series representation of

the theta funtions one omputes

1

Z

0

d

2

(et)�

h

�

1



0

i

(0; �)

�

�

h

�

1



0

i

(0; �) =

1

p

2�

0

(5.68)

Sine the result appears always together with the �-funtion fator in (5.59)

it is onvenient to introdue

� :=

1

p

2�

0

1

j�(�)j

2
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in the following expressions. The result (5.68) does not depend on the h-�eld

and hene the h-integration in (5.67) beomes Gaussian. It yields a fator

1=4� so that

Z

0

= ��det

0

(�4) e

S

L

=24�

Z

D

Æ

('��) e

1

2�

R

p

gG4G�S

B

[h=0℄

;

(5.69)

where G has been de�ned in (5.6).We inserted the expliit expression (5.63)

for the Jaobian. If we would have kept the hemial potential and twists

then already the toron-integration in (5.68) would have washes out the de-

pendene on the boundary onditions and hemial potential.

Integration over � and �: The integral over �, subjet to the ondition

(5.64), modi�es the Liouville fator and yields one inverse square-root of the

determinant of �24 in (5.69). To ontinue we reall the saling formula for

the determinant of 4 [14℄:

log

det

0

(�a4)

det

0

(�4)

= log a � �(0) = log a � [

1

4�

Z

a

1

� p℄;

where p is the number of zero modes of the operator. On the torus

R

a

1

=0

and we �nd

det

0

(� a4) =

1

a

det

0

(�4):

(5.70)

Using this saling property the �-integral together with (5.66) we obtain

Z

0

= ��

q

2V det

0

(�4) e
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2

3

+1=24�)S

L

Z

D

Æ

('�) e

1

2�

R

p

gG4G�S

B

[h=�=0℄

;

(5.71)

To quantize the � �eld we need to reall that G= e'+g

2

�. Sine '4' �

(A

T

; A

T

), the anomalous term �

R

G4G in the exponent ontains an ex-

pliit photon mass term with bare-mass e=

p

�. However, when quantizing

the � �eld this mass is renormalized. This an be seen expliitly in the re-

sulting expression for the partition funtion after the �-integration has been

performed

Z

0

=

2

p

��eV

m



e

(g

2

3

+1=24�)S

L

Z

D'e

�

1

2

R

p

g'(4

2

�m

2



4)'

;

(5.72)

where the renormalized photon mass is

m

2



=

e

2

�

2�

2� + g

2

2

:
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Integration over ': The zeta-funtion regulated determinant whih one

obtains when performing the integral (5.72) fatorizes

det

0

(4

2

�m

2



4) = det

0

(�4) � det

0

(�4+m

2



):

This fatorization property is not obvious sine all determinants must be

regulated. But it holds for ommuting operators and in the zeta-funtion

sheme. Then the partition funtion simpli�es to

Z

0

=

2

p

��eV

m



(det

0

(�4)det
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(�4+m

2



))

�

1

2

exp
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(g

2

3

+

1

24�

)S

L

�

:

We an go further by using (5.57) and the known result for the determinant

of

^

4 [28℄ whih together yield

det

0

1

2

(�4) = �

0

Lj�(�)j

2

s

V

^

V

exp

�

�

1

24�

S

L

�

(5.73)

whih �nally leads to

Z

0

=

p

2�V

e

m



1

�

0

j�(�)j

4

1

det

0

1

2

(�4+m

2



)

exp

�

(

1

12�

+ g

2

3

)S

L

�

(5.74)

for the partition funtion of the general model (5.1) on urved spaes. It

shows expliitly that in the topologially trivial setor the theory should be

equivalent to a theory of free mass-less and massive bosons with mass m



.

It is interesting to follow the various ontributions to the expliit dependene

on the gravitational �eld sine they ontribute to the Hawking radiation.

For that we reall that when one quantizes a onformal �eld theory with

entral harge  in an external gravitational �elds one ends up with the

Liouville term, Z � exp[ S

L

=24�℄ [44℄. Thus the fermions ontribute with

 = 1, as expeted. The � and � �eld ontribute with 1 and 1 + 24�g

2

3

,

respetively. However, the Jaobian ombined with the onformal part of

the gauge setor ontribute with =�1 and we are left with a total entral

harge  = 2 + 24�g

2

3

. Of ourse, the gauged model is not onformally

invariant and the breaking is manifest in the massive determinant in (5.74).

The partition funtion of the un-gauged theory is (5.72) multiplied by an

inverse determinant (the missing Jaobian) and without '-integration. In

this limit one obtains a onformal theory with entral harge =3+ 24�g

2

3

.

By using an elegant result of Christensen and Fulling [42℄, that relates

the onformal anomaly to the asymptoti Hawking ux, one onludes that

the Hawking radiation of the un-gauged model is 3+24�g

2

3

times that of

free mass-less salars. For the gauged model the Hawking radiation is still

thermal and onsists of mass-less and massive partiles.
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The appearane of m



in (5.72) should be interpreted as renormalization

of the eletri harge indued by the interation of the auxiliary �elds with

the fermions. After summing over all fermion-loops this leads to an e�etive

oupling between the photons and the �-�eld and in turn to a modi�ed

e�etive mass for the photons in (5.72). In the limit g

2

! 0 this mass tends

to the well-known Shwinger model result, m



! e=

p

� [8℄.

We onlude this subsetion with deriving an expliit formula for the par-

tition funtion on the at torus. Applying the results in [3℄ one obtains for

the massive determinant

det

0

(�

^

4+m

2



)

1

2

=

1

m



e

�

1

2

�

0

(0)

;

with

�

0

(0) =

X

n 6=0

1

�L

^

V m



p

(n; n)

K

1

(m



L

q

(n; n))�

^

V m

2



4�

;

(5.75)

where (n; n)= ĝ

ij

n

i

n

j

is the inner produt taken with the referene metri,

and the sum is over all (n

i

) 2 Z

2

with the origin exluded. For g

��

=

Æ

��

, in whih ase the partition funtion has the usual thermodynamial

interpretation, the result redues to one derived previously by Ambjorn

[27℄. In addition, if L approahes in�nity we reover a result in [1℄. The free

energy for �

1

= 0 and on at spae simpli�es then to

F = �

1

�

logZ =

1

2�

�

0

(0):

with �

0

(0) from (5.75) and the partiular hoie for the parameters.

5.2.2 Bosonisation

In the lassial analysis we have already seen that in the limiting ase g

3

=0

and g

1

= g

2

= g the general model redues to the gauged Thirring model.

Now we show that the same is true for the quantized theory on the torus

if in addition we set g

0

= g. More preisely, the Hubbard-Stratonovih

transform of the Thirring model is just the derivative oupling model (5.1)

with idential ouplings. In the proess of showing that we shall arrive at the

Bosonisation formulas for the gauged Thirring model on the urved torus.

We shall see that only the non-harmoni part of the fermion urrent an

naively be bosonised and that for this part the rules of the un-gauged model

on at spae time [15℄ need just be ovariantized.

For that we alulate the partition funtion (5.67) in a di�erent order.

First we integrate out the auxiliary �elds. In order to understand the role
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of � and � we introdue soures for them. Thus we study the generating

funtional for the orrelators of the auxiliary �elds

Z[�; �℄ =

Z

D(��h A

�

)e

�S+

R

p

g[��+��℄

:

Here

S = �i

Z

p

g 

y

D= + S

B

[g

3

=0℄

is the ation of the full theory. D= is the Dira operator in (5.36) with all

ouplings set equal and S

B

the bosoni ation (5.61). Sine � and � integrate

to zero (see 5.64) we may assume the same property to hold for the soures.

Also, sine there are no fermioni soures only on�gurations in the trivial

setor ontribute, so that there is not instanton potential in (5.36) and hene

� = 0 in (5.61). The integration over the auxiliary �elds is Gaussian and

yields

Z = N

0

Z

D( A

�

) e

�S

T

exp

Z

p

g

h

�

1

4

(�

1

4

� + �

1

4

�)

+

g

2

(�

1

4

j

�

;�

+ �

1

4

j

�

5;�

)

i
(5.76)

where

S

T

= �

1

4

Z

p

g

�

F

��

F

��

� i 

y

D= �

g

2

4

j

�

j

�

�

(5.77)

is the ation of the gauged Thirring model on urved spae-time and

N

0

=

V

2�det

0

(�4)

(5.78)

omes from the integration over the auxiliary �elds.

Let us �rst onsider the partition funtion, that is set the soures to zero.

Comparing (5.76) with (5.72) and using (5.73) we easily �nd

Z

D( t)e

�S

T

=

s

1

2

+

g

2

4�

e

�

1

4

R

F

��

F

��

Z

D Æ(�) e

�S



; (5.79)

where � is the mean �eld (see 5.64) and we used (5.63) and (5.70). The

ation for the neutral salar �eld  is found to be

S



=

1

2

Z

p

g�

�

�

�

 �

ie

p

�

1

p

1 + g

2

=2�

Z

p

g4':

Sine (5.79) holds for any ' (and thus for the non-harmoni part of any A

�

,

beause of gauge-invariane) we read o� the following Bosonisation rules:
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j

0�

�!

i

p

�

1

p

1 + g

2

=2�

�

��

�

�



j

0�

5

�! �

i

p

�

1

p

1 + g

2

=2�

�

�

;

(5.80)

where prime denotes the non-harmoni part of the urrents. Thus, only the

non-harmoni parts of the urrents an be bosonised in terms of a single

valued salar �eld. To bosonise their harmoni parts one would have to

allow for a salar �eld  with windings as � below . On the in�nite plane the

harmoni part is not present and we may leave out the primes in (5.80). If we

further assume spae time to be at we reover the well-known Bosonisation

rules in [15℄. What we have shown then, is that for the gauged model on

urved spae time the Bosonisation rules are just the at ones properly

ovariantized and with the omission of the zero-modes.

Sine (5.79) holds for any gauge �eld the urrent orrelators in the

Thirring model are orretly reprodued by the Bosonisation rules (5.80).

To see that more learly we alulate the two-point funtions of the auxiliary

�elds in the Thirring model (5.76-5.78). For that we di�erentiate (5.76) ('

is treated as external �eld) with respet to the soures and �nd

h�(x)�(y)i =

1

2

G

0

(x; y) +

g

2

4

Z

hG

0

(x; u)j

�

;�

(u)G

0

(y; v)j

�

;�

(v)i

T

h�(x)�(y)i =

1

2

G

0

(x; y) +

g

2

4

Z

hG

0

(x; u)j

�

5;�

(u)G

0

(y; v)j

�

5;�

(v)i

T

;

(5.81)

where G

0

is the free mass-less Green-funtion (5.30,5.33) in urved spae-

time and the integrations are over the variables u and v with the invariant

measure on the urved torus. Here h: : :i

T

are vauum expetation values of

the Thirring model (5.77). Alternatively we an alulate these expetation

values from (5.69) and (5.71), where the fermioni integration has been

performed and �nd

h�(x)�(y)i =

1

2

G

0

(x; y)

h�(x)�(y)i =

�m

2



2e

2

G

0

(x; y) +

m

2



2

(1�

�m

2



e

2

)'(x)'(y):

(5.82)

Comparing this with the result (5.81) we see at one that

Z

hG

0

(x; u)j

�

;�

(u)G

0

(y; v)j

�

;�

(v)i

T

= 0 (5.83)

Z

hG

0

(x; u)j

�

5;�

(u)G

0

(y; v)j

�

5;�

(v)i

T

=

m

2



e

2

(m

2



'(x)'(y) �G

0

(x; y)):
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These orrelators express the gauge invariane and the axial anomaly hj

�

5;�

i=

�m



4' in the gauged Thirring model. They an be orretly reprodued

with the bosonization rules (5.80). They are not reprodued with the ones

derived for the un-gauged model [15℄.

5.3 Chiral ondensate

Realling that S

e

in (5.60) anti-ommutes with 

5

one sees at one that

only on�guration supporting one fermioni zero-mode with positive hiral-

ity ontribute to the hiral ondensate

h 

y

P

+

 i = �

J

Z

0

Æ

2

Æ�

+

(x)Æ��

+

(x)

Z

D(: : :)Z

F

[�; ��℄j

�=��=0

e

�S

B

;

where �

+

=P

+

�. Earlier we have seen that these are the gauge �elds with

ux �=2� or instanton number k=1. Thus the ondensate beomes

h 

y

P

+

 i = �

J

Z

0

s

^

V

2

Z

D(:) 

y

0

(x) 

0

(x) exp(:) e

�S

B

[k=1℄

;

(5.84)

where exp(: : :) is the last exponential fator in (5.60). First we integrate

over the toron �eld t. The t dependene enters only through the zero mode

and more spei�ally

^

 

0

in (5.54) and (5.50) with p= 1. Using the series

representation for the theta funtions one �nds

Z

d

2

t

^

 

y

0

(x)

^

 

0

(x) =

1

^

V

:

(5.85)

Note that the result does not depend on the hemial potential similarly as

in our alulation of the partition funtion.

To ontinue we observe that the term

R

p

gG in exp(: : :) vanishes beause

of our onditions (5.62) and (5.64) on the �elds ' and �. Also note, that

the fermioni Green funtion does not enter in the expression for the hiral

ondensate. It follows that the fermioni funtional (5.59) in the trivial

setor and (5.60) in the one-instanton setor are the same, up to the fators

in the �st lines. From (5.85) and (5.69) we see that the toron integral of

the �st line in (5.60) is j�j

2

q

�

0

=

^

V exp(2�

R

p

g�=

^

V ) times the toron integral

over the fator in (5.59). Also, sine

S

B

[k = 1℄ = S

B

[k = 0℄ +

2�

2

e

2

V

the funtional integral and normalizing partition funtion in (5.84) are the

same, up to these fator and the �eld-dependent fators whih relate the

hatted and un-hatted zero-modes in (5.54). Finally note that the � integrals
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in (5.84) and in the normalizing partition funtion anel so that we end up

with the following formula for the ondensate

h 

y

P

+

 i =

r

�

0

^

V

j�(�)j

2

e

�2�

2

=e

2

V+2�=

^

V

R
p

ĝ�

D

e

�2(g�+e')(x)��(x)

E

�'

:

(5.86)

The expetation value is evaluated with

S

eff

=

Z

p

g

h

1

2

'(4

2

�

e

2

�

4)'�

e

2

�m
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�4��

eg

2

�

�4'

i

:

A formal alulation of the resulting Gaussian integrals yield
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+

 i =

r

�

0

^

V

j�(�)j

2

e

�2�

2

=e

2
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V
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��(x)�2��(x)

� exp [

2�

2
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4



e

2

K(x; x)℄ exp [

2�g

2

2

2� + g

2

2

G

0

(x; x)℄;

(5.87)

where

K(x; y) = hxj

1

4

2

�m

2



4

jyi =

1

m

2



(G

0

(x; y)�G

m



(x; y))

(5.88)

and G

m

; G

0

are the massive and mass-less Green-funtions.

Here we enounter ultra-violet divergenes sine G

0

(x; y) is logarithmi-

ally divergent when x tends to y. To extrat a �nite answer we need to

renormalize the operator exp(��). This wave funtion renormalization is

equivalent to the renormalization of the fermion �eld in the Thirring model

and thus is very muh expeted [44, 15℄. In order to do that we �rst de-

termine the short distane behavior of the mass-less Green funtion (5.31).

Using the identity

j�

h

1

2

+

�

0

L

1

2

+

�

1

L

i

(0; �)j

2

= je

i��(�

0

=L)

2

�

1

(

��

0

+ �

1

L

; �)j

2

and the small z expansion

�

1

(z; �) = 2��(�)

3

z +O(z

2

);

we see that

^

G

0

possesses the expeted logarithmi short distane singularity

^

G

0

(x; y) = �

1

4�

log

ĝ

��

�

�

�

�

^

V

�

1

4�

log (4�

2

�

0

j�(�)j

4

) +O(�):

(5.89)

From the relation (5.33) between the full and hatted Green funtion and
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the de�nition of � in (5.28) it follows that G

0

possesses the short distane

expansion

G

0

(x; y) �

^

G

0

(x; y) + 2�(x)�

1

^

V

Z

p

ĝ�+O(�)

To ontinue we need to regularize the omposite operator exp(��) ap-

pearing in (5.86). The normal ordering presription

: e

��(x)

:=

e

��(x)

he

��(x)

i

:

(5.90)

works well on the whole plane [44, 15℄. On the urved torus we must be

more areful when renormalizing this operator. The required wave funtion

renormalization is not unique but it is very muh restrited by the following

requirements: First we take as referene system (the denominator in 5.90)

one with a minimal number of dynamial degrees of freedom sine we do not

want to loose information by our regularization. Seond, the renormalized

operator should have a well-de�ned in�nite volume limit and its expetation

values should luster. Finally, the regularization should respet general o-

variane. These requirements then fore us to take as referene system the

in�nite plane with metri g

��

. The at metri Æ

��

is not permitted sine it

leads to a ill-de�ned expression for hexp(��)i. With these hoie the normal

ordering in (5.90) is equivalent to replaing the mass-less Green funtion in

(5.87) by

G

reg

0

(x; y) := G

0

(x; y) +

1

4�

log [�

2

s

2

(x; y)℄:

(5.91)

Here s(x; y) denotes the geodesi distane between x and y. The ourrene

of the arbitrary mass sale � omes from the ambiguities in the required

ultra-violet regularization. On the at torus

^

G

reg

0

has now the �nite oini-

dene limit

^

G

reg

0

(x; x) = �

1

4�

log

�

4�

2

�

0

j�(�)j

4

�

2

^

V

�

:

(5.92)

To determine the hiral ondensate we also need to determineK(x; y) on the

diagonal. In a �rst step we shall obtain it for the at torus. Its �-dependene

is then determined in a seond step. For �=0 and �= i�

0

the Green funtion

^

K has been omputed in [41℄. The generalization to arbitrary � is found to

be
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��

0

a
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2

) +

1

m

2



^

V

+

1
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� log j�(

�1

�
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2

+ F (L; �) �H(L; �)

�

;

(5.93)

where we introdued the dimensionless onstant a = Lm



j� j=2� and the

funtions

F (L; �) =

X

n>0

h

1

n

�

1

p

n

2

+ a

2

i

H(L; �) =

X

n>0

1

p

n

2

+ a

2
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1

e

�2�iz
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(n)

� 1

+

1

e

2�iz

�

(n)

� 1

i
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(5.94)

We used the abbreviations

z

�

=

1

j� j

2

(n�

1

� i�

0

p

n

2

+ a

2

):

(5.95)

Substituting (5.93) and (5.92) into (5.87) with �=0 we obtain the following

exat formula for the hiral ondensate on the torus with at metri ĝ

��

:

h 

y

P

+

 i

ĝ

=

1

Lj� j

�

m



Lj� j

2�

�

g

2

2

2�+g
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2
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�

�
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m



e

2

L�

0

oth
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�

0

2j� j

�

� exp

h

�m

2



e

2

�

F (L; �)�H(L; �)

�i

;

(5.96)

where we used that on the at torus � = 0 and V =

^

V . Furthermore, we

identi�ed � with the natural mass sale m



of the theory.

To study the �nite temperature behavior of the hiral ondensate we

must assume that � = i�=L and then � = 1=T is just the inverse temper-

ature. Furthermore we perform the thermodynami limit L ! 1. Then

oth(: : :) ! 1, H ! 0 and the expression for the hiral ondensate simpli-

�es to

h 

y

P

+

 i

�

= �T

�

m



2�T

�

g

2

2

2�+g

2

2

exp

h

�

�

2

m



e

2

T +

2�

2� + g

2

2

F

i

: (5.97)

Let us now investigate the low and high temperature limits in turn. To

study the low temperature limit we use that

F (�)!  + log

a

2

+

1

2a

for a!1;

where  = 0:57721 : : : is the Euler number. Inserting this expansion into

(5.97) yields
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2

2

=(2�+g

2

2

)

exp

�

2�
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2



�

for T ! 0:

(5.98)

For temperatures large ompared to the indued photon mass F vanishes.

Thus we obtain the high temperature behavior
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P

+

 i
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= �T

�

m



2�T

�

g

2

2

2�+g

2

2

exp

�
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e

2

T

�

for T !1

(5.99)

It is instrutive to disuss the various limiting ases. For all g

i

=0, i.e. the

Shwinger model limit, the exat result (5.97) simpli�es to

h 

y

P

+

 i

T

= �T e

�

�

m



T+F (�)

�!

�

�

m



4�

e



T ! 0

�T e

��T=m



T !1,

(5.100)

where now m

2



= e

2

=� is the indued photon mass in the Shwinger model.

This formula for the temperature dependene of the hiral ondensate in

QED

2

agrees with the earlier results in [41℄.

Next we wish to investigate how the self-interation of the fermions a�et

the breaking. For large oupling g

2

and �xed temperature the exponent in

(5.97) vanishes so that

h 

y

P

+

 i

T

�

1

q

2� + g

2

2

for T �xed; g

2

!1:

Hene, for very large urrent-urrent oupling the hiral ondensate vanishes.

Or in other words, the eletromagneti interation whih is responsible for

the hiral ondensate, is shielded by the pseudosalar-fermion interation.

For intermediate temperature and oupling g

2

we must retreat to numer-

ial evaluations of the sums de�ning the hiral ondensate in (5.97). The

numerial results are depited in �gure 1.

The study of the inuene of the gravitational �eld is ompliated by the

presene of the massive Green funtion G

m



in (5.87,5.88). This Green fun-

tion is known only for very partiular urved spaes. Fortunately we only

need the oinidene limit for whih we an use its short distane expansion

[37℄. For simpliity we assume in�nite volume and zero temperature. Then

[13℄

G

m

(x; y) �

1

4i

1

X

j=0

a

j

(x; y)(�

�

�m

2

)

j

H

(2)

0

(ms);

(5.101)

for small geodesi distanes s=s(x; y). Here H

(2)

0

denotes the Hankel fun-
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tion of the seond kind and order zero. In partiular

H

(2)

0

(z)!

2

i�

[ log

z

2

+ ℄ for z ! 0:

Inserting that into (5.101) we �nd with G

0

=

^

G

0

from (5.89) the following

short distane expansion

G

0

(x; y)�G

m

(x; y) � �

1

2�

h

log (

2�j�(�)j

2

m



Le

�(x)

)� 

i

+

1

4�

1

X

j=1

a

j

(x)(�

�

�m

2

)

j

log(m

2

):

(5.102)

We have used that a

0

(x)=1 and s � e

�(x)

ŝ, where ŝ is the geodesi distane

on the at spaetime with hatted metri, ŝ

2

= ĝ

��

(x�y)

�

(x�y)

�

. Finally,

substituting (5.102) into (5.87) we end up with

h 

y

P

+

 i

�

= h 

y

P

+

 i

�=0

� exp

h

�

1

2

(

�m



e

)

2

1

X

1

a

j

(x)

(j � 1)!

m

2j

i

:

The Seeley-deWitt oeÆients a

j

have been omputed up to j=5 [26℄. They

are of order j in the urvature and its derivatives. The �rst two are

a

0

(x) = 1 and a

1

(x) =

1

6

R:

For R << m

2

and slowly varying R we onlude that the hiral ondensate

dereases with inreasing urvature as

h 

y

P

+

 i � exp [�

�

2

12e

2

R℄:

If we ompare this with the temperature dependene (5.99) we are lead to

de�ne a urvature indued e�etive temperature

T

eff

=

R

12m



:

For this identi�ation of urvature with temperature no horizon is needed as

in blak hole physis where the temperature is related to the surfae gravity

at the horizon. Note that ontrary to the temperature the urvature may

beome negative. Then the ondensate is ampli�ed and the identi�ation of

R with T is only a formal one.

Finally we onsider the hiral two point funtion for non-oiniding points.

The gauge invariant form reads

S

+

(x; y) � h 

y

(x) e

ie

R

x

y

A

�

dx

�

P

+

 (y)i:
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It is related to a bound state between a stati external harge and a dynam-

ial fermion [20℄.

The integration over the various �elds is similar as in the alulation of the

ondensate. The result takes a simple form in the in�nite volume and zero

temperature limit:

S

+

(x; y) = S

+

(x)

1

4

S

+

(y)

1

4

exp

h

1

2

(

�m



e

)

2

(K(x; y) +K(y; x))

i

� exp [(

�g

2

2

2� + g

2

2

+

g

2

1

2

)G

0

(x; y)�

g

2

1

4

(G

0

(x; x) +G

0

(y; y))

i

; (5.103)

where S

+

(x) � S

+

(x; x) = h 

y

(x) (x)i denotes the hiral ondensate.

Again the mass-less propagator must be regularized. We do this using the

presription (5.91). Then

S

+

(x; y) = S

+

(x)

1

4

S

+

(y)

1

4

exp

h

1

2

(

�m



e

)

2

(G

m



(x; y) +G

m



(y; x))

i

p

2�m

g

2

1

4�



(g(x)

1

8

g(y)

1

8

ŝ)

1

2

(1+

g

2

1

2�

)

:

Note that the oupling strength g

1

to the longitudinal urrent enters the

saling exponent. On at spae G

m

redues to

1

2�

K

0

(mŝ) whih deays

exponentially for large separations. Hene we �nd

^

S

+

(x; y) �

^

S

+

(x)

1

2

p

2�ŝ(m



ŝ)

g

2

1

4�

(5.104)

for large separations of x and y. We have used that the hiral ondensate

^

S

+

(x) in (5.98) is onstant, due to translational invariane. For g

1

=0 this

simpli�es to the Shwinger model result [41℄

^

S

+

(x; y) �

r

m



e



2

1

2�

p

jx� yj

:

Unlike the orrelators of �elds whih in the bosonised version are loal in the

massive boson �eld, this two-point funtion does not deay exponentially.

However the long range orrelations are suppressed by the oupling to the

longitudinal urrent.

5.4 The un-gauged setor

5.4.1 Thermodynamis

In this setion we derive the grand anonial potential, equation of state

and ground state energy for A

�

= 0. For the un-gauged model there is no
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Gauss onstraint and the harge of the vauum need not vanish. Indeed, for

A

�

=0 the partition funtion depends on the hemial potential and on the

fermioni boundary onditions. Tehnially this is due to the absene of the

toron integration whih for the gauged model wiped out any dependene on

�; � and �.

The partition funtion of the un-gauged model is given by

Z =

Z

d

2

hD�D� Z

F

[�=��=A=0℄ e

�S

B

[A=0℄

;

(5.105)

where Z

F

is the fermioni generating funtional (5.59) and S

B

the bosoni

ation (5.61). The integration over the harmoni �elds is Gaussian and

yields

1

Z

�1

d

2

h�

h

�

1



0

i

�

�

h

��

1

�

0

i

e

�(2�)

2

p

ĝĝ

��

h

�

h

�

=

�

h

u

w

i

(�)

4�

q

1 + g

2

0

=2�

where

�

h

u

w

i

(�) =

X

n2Z

2

e

i�(n+u)�(n+u)+2�i(n+u)w

(5.106)

is the theta funtion with harateristis

u = �

�

1

1

�

(�

1

+ i�

�

1

�

�

) and w =

�

1

�1

�

(�

0

+ i�

�

0

�

�

� �

0

)

(5.107)

and ovariane

� =

�

� 0

0 ���

�

+ i

�g

2

0

�

0

2� + g

2

0

�

g

2

0

�4� � g

2

0

�4� � g

2

0

g

2

0

�

:

(5.108)

The remaining funtional integrals in (5.105) are performed as in the al-

ulation of the ondensate. To obtain the partition funtion of the Thirring

model in the limit g

i

=g we divide Z by the orresponding partition funtion

N

0

of the free bosons (see 5.78). Using (5.70) and (5.59) we obtain

Z

N

0

=

1

j�(�)j

2

s

2� + g

2

2

2� + g

2

0

�

h

u

w

i

(�) e

(1=24�+g

2

3

)S

L

:

(5.109)

In the Thirring model limit g

2

= g

0

and the square-root in this formula

disappears.
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Zero-temperature limit: To investigate the thermodynamis of the model

we assume spaetime to be at and that �= i�=L. Then


 = �

1

�

log

Z

N

0

is the grand anonial potential. Let us now investigate the low temperature

limit of 
. For �=0 this yields the ground state energy.

To study this limit we observe that for �= i�=L the ovariane matrix � in

(5.108) simpli�es to

i�� = �

��

L

h

Id +

g

2

0

4�

1

2� + g

2

0

�

g

2

0

�4� � g

2

0

�4� � g

2

0

g

2

0

�

i

(5.110)

and has eigenvalues

�

1

= �

��

L

2� + g

2

0

2�

and �

2

= �

��

L

2�

2� + g

2

0

(5.111)

with orresponding eigenvetors

v

1

= (�1; 1) and v

2

= (1; 1): (5.112)

Also the � tensor (see 5.43) and �

0

(see 5.36) in (5.107) simplify to

�

�

�

=

�

0 �=L

�L=� 0

�

and �

0

= �i

�

2�

�:

Now we an determine the low temperature limit of the grand potential from

(5.109) (with S

L

= 0) and (5.110-5.112℄. For that we note that the saddle

point approximation to the Gaussian sum (5.106) de�ning the theta-funtion

beomes exat when � !1. Also, using that

log j�(�)j

2

�! �

��

6L

for � !1

we end up with


(� !1) = �

�

6L

�

4�

2� + g

2

0

�

L

(�

1

+

�L

2�

)

2

+

�

2L

min

n2Z

2

h

2� + g

2

0

2�

fn

2

� n

1

�

4�

2� + g

2

0

(�

1

+

�L

2�

)g

2

+

2�

2� + g

2

0

fn

1

+ n

2

� 2�

1

g

2

i

(5.113)

for the zero-temperature grand potential of the un-gauged model. The hem-

ial potential and hiral twist enter only through the ombination �

1

+�L=2�.
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Up to the seond term the potential is invariant under

�

1

�! �

1

+ 1 and �

1

+

�L

2�

�! �

1

+

�L

2�

+ 1 + g

2

0

=2�:

Let us now disuss the potential in the various limiting ases.

No hiral twist, �

1

=0, and vanishing hemial potential: Then


(� !1) oinides with the ground state energy. The minimum in (5.113)

is attained for n

1

=n

2

=[

1

2

+�

1

℄ and we �nd

E

0

(L;�

1

; �

1

=0) = �

�

6L

+

2�

L

2�

2� + g

2

0

(�

1

� [

1

2

+ �

1

℄)

2

:

(5.114)

Only for anti-periodi boundary onditions, that is for �

1

= 0, does this

Casimir energy oinide with the orresponding result for free fermions. For

g

2

0

� 4� the Casimir fore is always attrative whereas for g

2

0

< 4� it an

be attrative or repulsive, depending on the value of �

1

. The result (5.114)

is in agreement with the literature [16℄. For example, it oinides with De

Vegas and Destri's result if we make the identi�ation !

DD

= 2��

1

and

1=�

DD

=1 + g

2

0

=2� in formula (42) of that paper.

Small twists and hemial potential: For small �

1

and � the min-

imum is assumed for n

i

=0 and the potential simpli�es to


(� !1) = �

�

6L

+

2�

L

2�

2� + g

2

0

�

2

1

and does not dependent on the hemial potential.

For vanishing g

0

, that is for free fermions, the minimum of (5.113) is attained

for

n

1

= [

1

2

+ �

1

� �

1

�

�L

2�

℄ and n

2

= [

1

2

+ �

1

+ �

1

+

�L

2�

℄;

where [x℄ denotes the biggest integer whih is smaller or equal to x. This

then leads to the following zero temperature potential


 = �

�

6L

�

2�

L

(�

1

+

�L

2�

)

2

+

�

L

n

�

1

� �

1

�

�L

2�

� [

1

2

+ �

1

� �

1

�

�L

2�

℄g

2

+

�

L

n

�

1

+ �

1

+

�L

2�

� [

1

2

+ �

1

+ �

1

+

�L

2�

℄g

2

:

(5.115)

For � = �

1

= 0 this redues to the Casimir energy for free fermions with

left-right symmetri twists and agrees with the results in [32℄.
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Note, however, that for �

1

6=0 we disagree with [16℄. The di�erene is due

to the seond term on the right in (5.113). Let us give two arguments in

favor of our result:

The disrepany arises from the prefator appearing in the fermioni deter-

minant (5.46). As disussed earlier this prefator implies the breakdown of

holomorphi fatorization, a property whih has been presupposed in [16℄.

One an show that our results an be reprodued by starting with massive

fermions and taking the limit m! 0.

The seond argument goes as follows: Suppose that �

1

= �

1

= 0. Then

(5.115) simpli�es to


(� !1) = �

�

6L

�

2�

L

(

�L

2�

)

2

+

2�

L

(

�L

2�

� [

1

2

+

�L

2�

℄)

2

:

(5.116)

For mass-less fermions the fermi energy is just � and at T =0 all eletron

states with energies less then � and all positron states with energies less then

�� are �lled. The other states are empty. Sine d
=d� is the expetation

value of the eletri harge in the presene of � we see that it must jump

if � rosses an eigenvalue of the �rst quantized Dira Hamiltonian h. For

vanishing twists the eigenvalues of h are just E

n

=(n�

1

2

)�=L. Indeed, from

(5.116) one �nds that the eletri harge

hQi =

d


d�

= 2[

1

2

+

�L

2�

℄ = 2n for E

n

� � < E

n+1

jumps at these values for �. Further observe, that in the thermodynami

limit L!1 the density




L

! �

2�

2� + g

2

0

�

2

2�

;

redues for g

0

=0 to the standard result for free eletrons.

Equation of state: We wish to derive the equation of state for �nite T

in the in�nite volume limit L!1. This may be ahieved by interhanging

the roles played by L and �. More preisely, using that

�

h

u

w

i

(�) =

q

det(i�

�1

) e

2�iw�u

�

h

�w

u

i

(i�

�1

)

we �nd in analogy with the low temperature limit that for L ! 1 the

pressure is given by
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�p = lim

L!1

1

L

log

Z

N

0

=

�

6�

+

2�

�

2� + g

2

0

2�

�

2

0

�

�

2�

min

n2Z

2

h

2� + g

2

0

2�

fn

1

+ n

2

+ 2�

0

g

2

+

2�

2� + g

2

0

fn

2

� n

1

+ 2�

0

+ 2i

��

2�

g

2

i

(5.117)

Here the minimum of the real part has to be taken. Again the minimiza-

tion arises from the saddle point approximation to the theta funtion whih

beomes exat when L!1. For small twists the minimum is assumed for

n

i

=0 and then

�p =

�

6�

�

2�

�

2�

2� + g

2

0

(�

0

+ i

��

2�

)

2

beomes independent on the hiral twist �

0

. As we have interhanged the

roles of the temporal and spatial twists this is onsistent with the earlier

result that for small twists 
 is independent of �

0

. In partiular, for �

1

=0,

we are lead to the following equation of state

p(�; �; �

0

=0) =

�

6�

2

+

�

2

2�

2�

2� + g

2

0

;

whih for small �

0

relates the pressure to the hemial potential and tem-

perature. This result is onsistent with the renormalization of the eletri

harge whih is onjugate to the hemial potential. It shows in partiular

that the thermodynami behavior of the Thirring model is not just the one

of free fermions as has been laimed in [50℄. Indeed, the zero point pressure

is multiplied by a fator 2�=(2� + g

2

0

). This modi�ation arises from the

oupling of the urrent to the harmoni �elds. It an not be seen if only the

loal part of the auxiliary �eld is onsidered, whih is the ase if one quan-

tizes the model on the in�nite Eulidean spae. Furthermore, we see that

the 'pressure' p is real only for �

0

=0. This phenomenon ours also in the

Hamiltonian formalism [38℄. However, �nite temperature physis ditates

anti-periodi boundary onditions, i.e �

0

=0, and then p beomes real.

5.4.2 Conformal struture

When we disussed the properties of the lassial model (5.1) we have notied

that for A

�

= 0 it redues to a onformal �eld theory on at Minkowski

spaetime. We have found the results listed at the end of setion 2.

We determine the quantum orretions to these lassial results. As in

the previous setions we do that within the Eulidean funtional approah.

Thus we start from �rst priniples and need not postulate the emerging
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Ka-Moody and Virasoro algebras in advane [30, 22℄. When omparing the

lassial with the quantum results one should keep in mind that roles of  

y

0

and  

y

1

are interhanged when one swithes from Minkowski to Eulidean

spaetime. For further hanges the reader is referred to appendix A.

In what follows it is onvenient to exploit the holomorphi struture of

the model. On the torus with at metri ĝ

��

the Cauhy-Riemann equations

read

(�

�

�

�

�

� i�

�

)f = 0:

(5.118)

Then one hooses oordinates x

0a

= e

a

�

x

�

and the orresponding omplex

oordinates x= x

00

+ix

01

suh that (5.118) takes the standard form. More

expliitly we hose

x = i��x

0

+ ix

1

so that �

x

=

1

2�

0

(�

x

0
� ��

x

1
):

In this setion x and �x always denote the omplex oordinates belonging

to x

�

. In these oordinates the free Dira operator and the orresponding

Green funtion are simple

i�= = 2i

�

0 �

x

�

�x

0

�

and S(x

�

; y

�

) =

1

2�i

�

0 1=�

1=

�

� 0

�

+O(1);

where �=x�y. The hiral omponents of the energy momentum tensor and

urrent are then given by

T

xx

=

�

0

2i

(�T

00

+ T

01

) =

�

0

2i

dĝ��

d��

T

��

and j

x

=

1

2i

(�j

0

� j

1

):

Using that the energy momentum tensor is onserved and traeless and that

the vetor and axial-vetor urrents are onserved it is easy to hek that

these hiral omponents only depend on x and not on �x.

Virasoro and Ka-Moody algebras First we determine the entral

harge from the short distane expansion of the T

xx

orrelators. As in the

lassial theory (see (5.12)) the symmetri energy momentum tensor mea-

sures the hange of the e�etive ation � = logZ under arbitrary variations

of the metri. For the torus there are two independent ontributions. One

being due to variations of the modular parameter � and its onjugate ��

whih depend impliitly on the metri. The other is due to the variations

of terms whih depend expliitly on the metri. Sine the hiral omponent

T

xx

is gotten by ontrating T

��

with dĝ

��

=d�� it follows that

hT

xx

i =

i�

0

p

g(x

�

)

�

1

L

2

�

���

+

dĝ

��

d��

Æ

Æg

��

(x

�

)

�

�[g; �; �� ℄ � Æ

x

�[g; �; �� ℄:
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It is always understood when doing metri variations, that we take the at

spaetime limit afterward. The �� variation is onstant and may be skipped

in the short distane expansion.

Taking several metri variations of the urvature dependent part of logZ

with Z from (5.109), (5.78) and (5.73) we �nd the following short distane

expansions for the three point orrelation funtion

hT

uu

T

vv

T

zz

i � �

3 + 24�g

2

3

(2�)

3

1

(u� v)

2

(u� z)

2

(v � z)

2

:

Comparing with the general expression [22℄ we read o� the entral harge

and the onformal weight of the energy momentum tensor

 = 3 + 24g

2

3

� and h

T

xx

= 2 : (5.119)

The �rst ontribution is that of three free �elds. The g

3

�dependent term

we have already met in our lassial analysis and omes from the oupling

to the bakground urvature. It is well known from the minimal onformal

series. Note that the ouplings g

1

and g

2

do not a�et the entral harge.

In partiular, if we subtrat the entral harge of the auxiliary �elds and set

g

3

=0 then  is the same as for the Thirring model, namely =1 [22℄.

Next we determine the Ka-Moody algebra of the U(1) urrents. To de-

rive the orrelation funtions with urrent insertions we ouple the fermions

to a gauge �eld, that is onsider the 'gauged' model without Maxwell term.

For example,

< j

�

(x

�

) j

�

(y

�

) > =

1

e

2

q

g(x

�

)g(y

�

)

Æ

2

�[g;A℄

ÆA

�

(x

�

)ÆA

�

(y

�

)

j

A=0

:

Using (5.72) on at spaetime and without Maxwell term, together with

�

�

� = �

�

�

A

T

�

; where A

T

�

= A

�

�

2�

L

t

�

�r

�

1

4

r

�

A

�

is the transversal part of A

�

, one obtains the following short distane ex-

pansion

hj

x

j

y

i � �

1

2�

1

2� + g

2

2

1

(x� y)

2

:

We read o� the value k of the entral extension in the U(1)-Ka-Moody

algebra to be

k =

2�

2� + g

2

2

:

(5.120)

Finally we need to determine the onformal weight of the urrent. From

hj

x

j

y

T

zz

i � �

1

4�

2

1

2� + g

2

2

1

(x� z)

2

(y � z)

2
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we obtain h

j

= 1. To summarize, the symmetry algebra is the semi-diret

produt of a Virasoro algebra with entral harge (5.119) and a U(1) Ka-

Moody urrent algebra with entral extension (5.120).

Conformal weights: To unravel the possible representations of the Vira-

soro algebra realized in the model we must determine the onformal weights

of the fundamental �elds. The short distane expansions of the fermioni

two-point funtion with T

zz

follows from the metri variation of the Green

funtion

h 

0

(x)  

y

1

(y)i = S

ij

(x; y) � exp [ig

1

g

3

�(x) + �G

R

(x; x)℄ � [x! y℄� 2�G(x; y)

where

� =

1

4

�

g

2

1

�

2�g

2

2

2� + g

2

2

�

:

and S

ij

is the fermioni Green funtion in the external gravitational �eld

and harmoni gauge �eld but with � and � set to zero. More preisely,

h 

0

(x)  

y

1

(y) T

zz

i =

1

Z

Æ

z

�

Zh 

0

(x)  

y

1

(y)i

�

:

However, sine Z � exp[F (R

2

)℄, its metri variation vanishes after the at

spaetime limit has been taken. We refer to appendix B for the variation of

S

ij

and G(x; y). Colleting the most singular terms, we arrive at

h 

0

(x)  

y

1

(y) T

zz

i �

1

2�i

1

4�

h

1

(z�x)(z�y)

(

1

z�x

�

1

z�y

)

�

ig

1

g

3

x�y

(

1

(z�x)

2

�

1

(z�y)

2

) +

�

2�

(

1

z�x

�

1

z�y

)

2

i

e

2�G(x;y)

:

(5.121)

Using that

�

x

e

2�G(x;y)

= ��

y

e

2�G(x;y)

= �

�

2�

1

x� y

e

2�G(x;y)

;

we �nd that the 2-point funtion varies under a in�nitesimal onformal trans-

formation, parametrized by f(z), as

1

i

I

dzf(z)h 

0

(x)  

y

1

(y) T

zz

i =

n

f(x)�

x

+ f(y)�

y

+

1

2

(1 +

�

2�

)[f

0

(x) + f

0

(y)℄�

ig

1

g

3

2

[f

0

(x)� f

0

(y)℄

o

h 

0

(x) 

y

1

(y)i:

Note that the exponential fator has been absorbed to reover the orrelation

funtion h 

0

(x) 

y

1

(y)i. The short distane expansion with T

�z�z

is alulated

similarly. Then one reads o� the onformal weights

167



h

 

0

=

1

2

+

1

16�

g

2

1

�

1

16�

2�g

2

2

2� + g

2

2

�

ig

1

g

3

2
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y

1

= (h

 

0

)

y

�

h

 

0

=

1

16�

g

2

1

�

1

16�

2�g

2

2

2� + g

2

2

�

ig

1

g

3

2

:

(5.122)

Thus we have reprodued the lassial results supplemented by additional

g

1

and g

2

dependent quantum orretions. In the Thirring model limit g

3

=0

and g

1

=g

2

=g, these terms add up to give the known anomalous dimension

appearing in the Thirring model [22℄. The last lassial term is a peuliar

feature of the solution. For the onformal weight to be real we are obliged

to hoose g

3

imaginary.

Let us now turn to the auxiliary �elds. It is straightforward to ompute

the orrelators

h�

x

T

zz

i �

1

4�

g

3

1

(x� z)

2

h�

x

�

y

T

zz

i � �

1

32�

2

1

(x� z)(y � z)

h�

x

�

y

T

zz

i � �

1

16�

1

(x� z)(y � z)

:

(5.123)

We see that the lassial results are unhanged, that is for g

3

6=0 the salar

�eld � is not primary and for g

3

=0 we �nd the onformal weights h

�

=h

�

=

0.

Finally we turn to vertex operators or exponentials of the auxiliary �elds.

In ontrast to � and � those are well de�ned even on the extended plane.

Realling the regularization presription (5.91) we �nd

h: e

�

1

�(x)

: : e

�

2

�(y)

: T

zz

i � �

1

16�

1

2�+g

2

2

h

�

1

z�x

+

�

2

z�y

i

2

�h: e

�

1

�(x)

: : e

�

2

�(y)

:i

(5.124)

and hene

1

i

Z

C

f(z)h: e

�

1

�(x)

: : e

�

2

�(y)

: T

zz

i �

h

f(x)�

x

+ f(y)�

y

�

1

8(2�+g

2

2

)

(�

2

1

f

0

(x) + �

2

2

f

0

(y))

i

h: e

�

1

�(x)

: : e

�

2

�(y)

:i :

(5.125)

From this we read o� the onformal weights of the vertex operators
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i
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h

i

= �

�

2

i

8(2� + g

2

2

)

:

(5.126)

Note that �

i

must be imaginary to get a positive weight. A similar analysis

for the �-�eld yields

1

i

Z

C

f(z)h: e

�

1
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: : e
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(5.127)

and hene

h

i

= �

1

2

�

i

(

�

i

8�

+ g

3

) :

(5.128)

Here both �

i

and g

3

must be imaginary for the weights to be positive.

Note that ontrary to � the �elds : e

��(x)

: remain primary when the �R

oupling is swithed on. This oupling results only in a shift of the onformal

weights.

U(1)-harges: To see how the left and right Ka Moody urrents at on

the fermioni �elds we notie that after the integration over the auxiliary

�elds the A-dependene of the fermioni Green funtion fatorizes as

h 

0

(x) 

y

1

(y)i

A

= e

1

2

m
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'4'

� e

�eg(x)
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�e�g(y)

;

where

g(x) = �i�(x) + 

5

�'(x); � =

2�

2� + g

2

2

:

Also, using that on at spaetime

�(x) = �i
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z

G(x; z)A
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Z
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(5.129)

one ends up with
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2

1
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i
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1
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and thus obtains the following the U(1) harges
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q

 

0

=

1

2

(1 +

2�

2� + g

2

2

) , �q

 

0

=

1

2

(1�

2�

2� + g

2

2
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(5.130)

We have used the onvention where the eletri harge q+�q is unity. In the

Thirring model limit we an ompare (5.130) with the results obtained in

[22℄. For that we need to resale the urrents suh that the entral extension

(5.120) of the Ka-Moody algebra beomes unity

j

z

!

q

1 + g

2

2

=2� j

z

:

Now it is easy to see that we agree with [22℄ if we make the identi�ation

�g

Fu

=

g

2

2

4�

1

p

1 + g

2

2

=2�

:

To summarize, what we have found is that the lassial onformal and axial

transformations of all �elds besides � and � are deformed. The longitudinal

part of the urrent-urrent interation in (5.1) hanges the onformal weights

of the fermion �eld only. The transversal part a�ets all weights and U(1)-

harges. The bakground harge hanges the onformal weight of the vertex

operators belonging to the salar �eld.

Of ourse, the same struture is found in the other hiral setor.

5.4.3 Finite size e�ets

When quantizing a onformal �eld theory on a spaetime with �nite volume

one introdues a length sale. The presene of this length sale in turn breaks

the onformal invariane and gives rise to �nite size e�ets. It has been

onjetured [12℄ that the �nite size e�ets are proportional to the entral

harge. For example when one strethes spae time, x

�

! ax

�

, then the

hange of the e�etive ation is proportional to :

�

ax

� �

x

= �



6

log a � �;

(5.131)

where � is the Euler number of the Eulidean spae time. In [17℄ this

onjeture has been proven for a lass of onformal �eld theories on spaes

with boundaries. The only important assumption has been that the regu-

larization respets general ovariane. In this subsetion we shall show that

the onjeture does not hold for the model (5.1) on Riemannian surfaes.

Unfortunately, the only global onformal transformations on the torus

are translations whih do not give rise to �nite size e�ets. Also, the Euler

number vanishes and aording to (5.131) the �nite size e�ets are insensitive

to the value of . For that reason we quantize the ungauged model (5.1) on

the sphere where the global onformal group is the Moebius group.
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An e�etive method to ompute �nite size e�ets has been developed in

[17℄. It is based on the following observation: Any onformal transformation

z ! w(z) is a omposition of a di�eomorphism (de�ned by the same w) and

a ompensating Weyl transformation g

��

! e

2�

g

��

with

e

2�

=

dw(z)

dz

d �w(�z)

d�z

; z = x

0

+ ix

1

:

Therefore, hoosing a di�eomorphism invariant regularization one has

0 = Æ�

Diff

= Æ�

Conf

� Æ�

Weyl

:

Now we apply the tehniques of the previous setions to derive the hange

Æ�

Weyl

of the e�etive ation on the sphere under Weyl transformations.

This hange is given by the trae anomaly.

The hange of the e�etive ation under Weyl resaling is

Æ�

Weyl

= � log

R

D(��) det(iD= ) exp(�S

B

[A = 0; g℄)

R

D(��) det(i

^

D= ) exp(�S

B

[A = 0; ĝ℄)

;

where S

B

is the bosoni ation (5.61) with vanishing gauge �eld. Also, sine

on the sphere there are no harmoni vetor �elds the term � h

2

in S

B

is

not present. Thus the alulation on the sphere is atually simpler as on

the torus (see 5.105) sine there is no integration over the harmoni �elds.

As on the torus we must impose the onditions (5.64) in order to eliminate

the additional degrees of freedom we introdued in the derivative oupling

representation. Thus we obtain

Æ�

Weyl

= log

^

V

V

�

S

L

24�

++

g

2

3

4

Z

R

1

4

R+ log

det

0

4

det

0

^

4

:

(5.132)

Here we used that (5.55) in the trivial setor still holds on the sphere. Also

we used the saling law (5.70). S

L

is the Liouville ation (5.56) in whih we

an not put

^

R to zero, sine

Z

p

gR = 8� = 4��

for any urvature and thus in partiular for

^

R. As for the fermions (see

5.51) one introdues the 1-parametri family of Laplaians

4

�

= e

�2��

^

4

interpolating between

^

4 and 4. The � derivative of the orresponding

determinant is given by the trae anomaly [39, 17℄. The expliit alulation

yields
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(5.133)

Again g

�

is the determinant and a

�

1

=

1

6

R

�

the relevant Seeley-deWitt o-

eÆient of the deformed metri g

�

��

= e

2��

ĝ

��

. P

�

is the projetion onto

the zero-mode of 4

�

. Using that the normalized zeromode is onstant and

� 1=

p

V

�

, one �nds

log det

0

4

^

4

= log

V

^

V

+

1

12�
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:

The � log V hanel against the same term in (5.132) and we end up with

Æ� =

g

2

3

4

Z

p

gR

1

4

(R�

8�

V

)�

3

24�

Z

p

ĝ
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24�
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(5.134)

whih depends only on g

3

. Now we an see why the �nite size onjeture

generally fails to be true, although it holds for theories without bakground

harge on domains with boundaries [17℄. Take the simple ase of a dilatation

w(z) = az. Then, the onformal angle is a onstant � = log a and (R �

8�=V )=0. Then the �rst term in (5.134) vanishes and the �nite size e�et

does not depend on g

2

3

. It is given by

Æ� = �

3

24�

log a

Z

p

ĝ

^

R = � log a

and does not agrees with (5.131) sine  in (5.119) depends on g

3

. Thus

we have disproved the onjeture. On other Riemannian surfaes one would

�nd the same result: the e�etive ation sales as in (5.119) where  is the

entral harge of the model without bakground harge. It is evident that

the �nite size saling omes from the middle term � log a

R
p

ĝ

^

R in (5.134).

It is interesting to ompare the �nite size saling on Riemannian surfaes

with the one on domains with boundaries. In the presene of boundaries

(5.133) is modi�ed to
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�

b

�

1

�

�

;

(5.135)

where the seond integral is over the boundary of spaetime and ~g

��

the

indued metri on this boundary. On a domain we an always put

^

R to

zero and the middle term in (5.135) does not ontribute to the saling. The

saling omes from the surfae term in (5.135). Di�eomorphism invariane

implies that the bulk term determines the surfae term (up to di�eomor-

phism invariant surfae terms). This is how the entral harge, de�ned by

the short distane expansion of the T

zz

-orrelators and thus by the bulk
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term, re-emerges in the saling law (5.131), whih is determined by the

surfae term.
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Appendix A

Conventions

In this appendix we set up our notation and give a list of useful formulas.

Let g

��

be the metri of spaetime. The sign onvention for the urvature

tensors is suh that

R

�

�Æ

= �

�

Æ�;

� �

�

�;Æ

+ �

�

Æ�

�

�

�

� �

�

�

�

�

Æ�

and R

�Æ

= R

�

��Æ

:

(A.1)

In 2 dimensions the only independent omponent isR

0101

. In order to ouple

fermions to gravity we must introdue a loal Lorentz frame (or tetrad), e

�a

,

relating the Lorentz and spaetime indies:

e

�a

e

a

�

= g

��

, e

�a

e

�

b

= �

ab

, �

ab

=

�

1 0

0 �1

�

:

(A.2)

The Latin and Greek indies are Lorentz and spaetime indies, respe-

tively. All physial laws should be general- and Lorentz ovariant. If g

��

has Eulidean signature then �

ab

in (A.2) is hanged to Æ

ab

.

The 'urved' gamma matries are related to the at ones as



�

= e

�

a

~

a

: (A.3)

We us the following hiral representation for the at 's:

̂

0

M

=

�

0 1

1 0

�

; ̂

1

M

=

�

0 �1

1 0

�

(A.4)

and in Eulidean spaetime we may hoose

̂

0

E

= ̂

0

M

; ̂

1

E

= î

1

M

: (A.5)

We may also de�ne
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5
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0

M

̂
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0

E
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E
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(A.6)

The relations
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= �i�

a

b

~

b

; where �
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=

�

0 1

�1 0

�

(A.7)

are partiular to 2 dimensions and play an important role in this hapter.

Note that depending whether one is in Minkowskian or Eulidean spaetime

the Lorentz index a is raised with �

ab

or Æ

ab

. The urved spae analogue of

(A.6) reads
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(A.8)

where �

��

=

p

jgj�

��

is the antisymmetri tensor (whereas the at metri

has Lorentz- indies, the antisymmetri tensor has spae-time indies). To

implement loal Lorentz invariane one needs to introdue a onnetion !

�ab

.

For example, in the Lagrangian the Lorentz-ovariant derivative ating on

the spinors read

D

�
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�

+ i!
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(A.9)

where the spin onnetion !

�

is de�ned by
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(A.10)

In 2 dimensions this redues to
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�

=

1

2i

!

�01



5

or !

E

�

=

1

2

!
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(A.11)

Finally we list some useful saling relations. If the 2-bein sales as e

a

�

=e

�

ê

a

�

then the above introdued quantities sale as

g

��

= e
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ĝ
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Appendix B

Variational formulas

Here we ollet some useful variational formulas. In the followingD

�

denotes

the spaetime and Lorentz ovariant derivative. How it ats on spaetime

and Lorentz tensors follows from the �rst formula in (A.10).

Using the de�nition of the Christo�el symbol and (A.2) it is straightforward

to show that

Æg
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��
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(B.1)

For some formulas related to the variation of the tetrad let us refer to [36℄
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(B.2)

Then using (A.10) it is easy to see that

Æ!
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= D
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(B.3)

When performing the variation of urvature dependent expressions we have

used the identities
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(B.4)

Depending on the topology of spaetime, the indued urvature

^

R appearing
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in (A.12) may be di�erent from zero. In this ase it is not possible to express

the onformal angle � in terms of the urvature salar. Nevertheless, to

perform variations of �-dependent expressions, the identity

Æ(

p

gR) = �2Æ(

p

g4�)

(B.5)

proves to be useful.

Taking the variations of the equations

p

g�G(x; y) = �Æ(x� y) and

p

g iD=S(x; y) = Æ

2

(x� y)

(B.6)

for the salar and fermioni Green funtions we may derive (up to ontat

terms) the following variational formulas
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;

here all arguments and derivatives whih are not made expliit in the integral

refer to the oordinate u over whih is integrated. Finally, we need the

following formula for the variation of the inverse Laplaian
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(B.7)

where V is the volume of spaetime and f an arbitrary funtion. To prove

this identity we note that for f 2 (Kern4)

?

we have

4

1

4

f = f:

Varying this equation yields

4(Æ

1

4

f) = Æf � (Æ4)

1

4

f

whih may be inverted to give

Æ

�

1

4

f

�

=

1

4

�

Æf � Æ(4)

1

4

f

�

+

1

V

Z

p

gÆ

�

1

4

f

�

:

(B.8)

Varying the identity

1

V

Z

p

g

1

4

f = 0

allows to replae the last term of (B.8) to obtain the required result (B.7).
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