
Chapter 2

Hamilton's Formalism for

Constraint Systems

2.1 Singular Lagrangian systems

The most general mathematial setting for gauge theories is Dira's on-

straint formalism

1

. Here I review this formalism, also to prepare the ground

for the following hapters, and in partiular the one on the Hamiltonian re-

dution of WZNW theories.

Attempts to handle onstrained systems date bak more than forty years.

In his lassial works Dira set up a formalism to treat suh systems self-

onsistently [18℄. Later Bergman et.al. in a series of papers investigated

the onnetion between onstraints and invarianes [3, 11, 13℄. After the

introdution of Grassmann variables to desribe fermions [9℄, the formalism

has been extended to inlude �elds with half-integer spins [25, 14, 10℄. The

development ulminated with the advent of the elegant and powerful BRST

formalism [7℄. These and other lassial results have been a prerequisite for

the quantization of gauge theories both in the path integral formalism [20, 6℄

and in the funtional Shr�odinger piture [47, 33℄.

There are several exellent reviews on the treatment of onstrained sys-

tems of gauge theories besides Dira well-known letures [19℄. Some fous

more on systems with a �nite number of degrees of freedom [45℄, others on

�eld theories [30℄ and some on both [46, 27, 31℄. For generally ovariant

theories you may onsult [26℄.

We shall be onerned with systems whose dynamis an be derived

from Hamilton's variational priniple. I assume that all Lagrangians depend

1

For an alternative approah see [22℄
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at most on �rst derivatives, up to divergene terms

2

. Throughout this

work I shall use loal oordinates, unless I am fored to address global

questions, e.g. the Gribov problem or the role of topologially nontrivial

�eld on�gurations.

With these assumptions the lassial trajetories of a system with N

degrees of freedom make the ation

S =

t

2

Z

t

1

L(q

i

; _q

i

)dt , i = 1; : : : ; N (2.1)

stationary under variations Æq(t) whih vanish at the endpoints. The q

and _q are loal oordinates on the veloity phase spae TQ. The neessary

onditions for S to be stationary are the Euler-Lagrange equations

L

i

� �

d

dt

�

�L

� _q

i

�

+

�L

�q

i

= 0 (2.2)

whih an be rewritten as

L

i

= �

�

2

L

� _q

i

� _q

j

�q

j

�

�

2

L

� _q

i

�q

j

_q

j

+

�L

�q

i

� �W

ij

(q; _q)�q

j

+ V

i

= 0: (2.3)

We see that the aelerations at a given time are uniquely determined by

(q; _q) at that time only if the Hessian (W

ij

) an be inverted. Suh systems

are alled regular.

For singular systems detW = 0, and the aelerations and hene time

evolution will not be uniquely �xed by (q; _q). For suh systems di�erent

time evolutions will stem from the same initial onditions.

The rank R of W , whih we assume for simpliity to be onstant on TQ,

being R<N implies the existene of M=N�R null-eigenvetors Y

m

of W :

Y

i

m

(q; _q)W

ij

(q; _q) = 0 , m = 1; : : : ;M: (2.4)

Contrating the E-L equations (2.3) with the Y

m

we get

�

m

(q; _q) � Y

i

m

V

i

= 0 , m = 1; : : : ;M: (2.5)

These equations do not ontain aelerations. Assume thatM

0

�M relations

�

m

0

= 0 , m

0

= 1; : : : ;M

0

; (2.6)

are funtionally independent on the others, and the remaining ones are either

dependent or identially ful�lled. The independent ones are the so-alled

Lagrange onstraints.

2

For higher derivative theories, and in partiular for higher derivative gravity, see [26℄.
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For �eld theories the dynamis is desribed by funtions '

a

(x) of spae-

time with values in a ertain target spae. The index a may belong to an

internal symmetry, it may be a spaetime index or both internal and spae-

time index as in non-non-Abelian gauge theories. When going from point

mehanis to �eld theory one may think of replaing the disrete label i by

a ontinuous one (a; ~x):

q

i

(t) = q(t; i) �! q(t; a; ~x) = '

a

(t; ~x) = '

a

(x):

Summations beome spatial integrals, e.g.

X

i

_q

i

_q

i

�!

X

Z

dx _'

a

(~x) _'

a

(~x)

and funtions of (q; _q) beome funtionals of ' and _'. Also, derivatives with

respet to q

i

or _q

i

beome funtional derivatives, e.g.

�L

� _q

i

�!

ÆL

Æ _'

a

(~x)

The veloity phase spae TQ is hosen so that the Lagrange-funtional L is

ontinuous and suÆiently often di�erentiable. If the target spae is linear

one may hoose a Banah spae (typially a Sobolov spae), otherwise one

tries to model the theory on a C

k

-Banah manifold [16, 37℄ sine the impliit

funtion theorem still applies then. Banah manifolds are modeled over

Banah spaes and are straightforward generalizations of �nite-dimensional

manifolds.

A funtional on a Banah spae X is alled ontinuous if

lim

n!1

F ['

n

℄ = F ['℄ for X 3 '

n

! ':

F is alled Frehet-di�erentiable at ' if there exists a linear funtional F

0

'

suh that

jF [' + Æ'℄� F ['℄ � F

0

'

[Æ'℄j = o(k Æ' k) for all k Æ' k! 0:

For loal theories the Lagrangian has the form

L['; _'℄ =

Z

dxL('; �

i

'; _') (2.7)

with a Lagrangian density L depending only on the �eld and its derivatives

at the same point. For suh theories the Euler-Lagrange equations are

L

a

� �

�

�t

ÆL

Æ _'

a

+

ÆL

Æ'

a

= ��

�

�L

�(�

�

'

a

)

+

�L

�'

a

= 0; (2.8)
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where I adopted the ommon notation

F

0

'

[Æ'℄ �

Z

ÆF

Æ'(x)

Æ'(x): (2.9)

Rewriting the �eld equations as

L

a

= �

�

2

L

�(�

�

'

a

)�(�

�

'

b

)

�

�

�

�

'

b

�

�

2

L

�(�

�

'

a

)�'

b

�

�

'

b

+

�L

�'

a

� �W

��

ab

�

�

�

�

'

b

+ V

a

= 0

(2.10)

we an see that theories with x

0

taken as evolution parameter are regular if

W

00

ab

is invertible and singular if it is not. For singular systems there exist

(for eah ~x) M=N�R null-vetors

Y

a

m

('; �')W

00

ab

('; �') = 0 , m = 1; : : : ;M (2.11)

whih lead to nontrivial and independent Lagrangian onstraints

�

m

0

('; �') � Y

a

m

0

V

a

= 0 , m

0

= 1; : : : ;M

0

�M; (2.12)

involving only the �elds and their �rst derivatives.

How one proeeds for singular systems is neatly explained in [43, 46℄.

There are two points whih have to be onsidered. Firstly the rank of the

Hessian may derease if one takes the independent onstraints (2.6,12) into

aount. This may lead to new independent onstraints. Again the rank

may derease leading to further onstraints, et. This proess terminates as

soon as the rank does not hange anymore.

Seondly one needs to hek whether the onstraints one has found after

the above algebrai proess has terminated are respeted by the time evo-

lution. These may lead to new onstraints. Again and again di�erentiate

newly emerging onstraints until no new ones arise. Add those relations

involving aelerations to those already present. Consisteny of the old re-

lations with the new ones may lead to further onstraints. After all that one

needs again to hek whether the rank of the Hessian has hanged. If this

is the ase one needs to start from the beginning et.

Generalized Bianhi identities If a theory possesses a loal gauge in-

variane we may map solutions into solutions without a�eting the initial

onditions. Thus we expet that gauge theories are singular systems. A-

tually this follows from the generalized Bianhi identity [50, 48℄ whih we

derive next.

The point transformations
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x

0

= x

0

(x) � x+ Æx

'

0

(x

0

) = '

0

('(x); x) � '(x) + Æ'

(2.13)

whih leave the ation invariant

Z

d

d

x

0

L('

0

; �

0

'

0

; x

0

) =

Z

d

d

xL('; �'; x) (2.14)

form a group whih we assume to be ontinuous. For transformations lose

to the identity d

d

x

0

=d

d

x(1 + �

�

Æx

�

), and the invariane (2.14) implies

ÆL+ L�

�

Æx

�

= �

�

�

�

(2.15)

with some �. Using

ÆL =

�L

�'

a

Æ'

a

+

�L

�(�

�

'

a

)

Æ(�

�

'

a

) + �

�

LÆx

�

it follows at one that

ÆL+ L�

�

Æx

�

= �

�

(LÆx

�

) + �

�

(

�L

�(�

�

'

a

)

�

Æ'

a

) + L

a

�

Æ'

a

;

where the Euler derivatives L

a

have been de�ned in (2.8) and

�

Æ'

a

= Æ'

a

� �

�

'

a

Æx

�

� '

a

0

(x)� '

a

(x) (2.16)

is the in�nitesimal di�erene of the old and the transformed �les at the same

point. We used that [

�

Æ; �

�

℄=0. Thus the gauge invariane implies

�

�

(LÆx

�

+

�L

�(�

�

'

a

)

�

Æ'

a

� �

�

) + L

a

�

Æ'

a

= 0 (2.17)

and these are the generalized Bianhi identities. Nowhere did we use the

equation of motion and thus (2.17) are o�-shell identities.

First assume that S is invariant under global transformations forming a

n-dimensional Lie-group. Then

�

�

= �

�

�

��

; Æ

�

x

�

= �

�

A

��

; Æ

�

'

a

= �

�

B

�a

; (2.18)

where the �

�

; �= 1; : : : ; n are the onstant parameters of the in�nitesimal

transformations. Inserting this into (2.17) and going on shell, L

a

= 0, we

onlude

�j

��

= 0; where j

��

=

�L

�(�

�

'

a

)

(B

�a

�A

��

�

�

'

a

)+LA

��

��

��

; (2.19)
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whih is Noether's �rst theorem. Note that we allowed for general point

transformation so that (2.19) applies to both spae-time and internal sym-

metries. However, when deriving (2.19) we imposed the equations of motion

so that the urrents are onserved only on-shell.

Let us now assume that the symmetry transformations are loal. In that

ase the parameters beome spae-time dependent and (2.18) generalizes to

Æ

�

x

�

= �

�

A

��

, Æ

�

'

a

= �

�

B

�a

+ �

�

�

�

C

�a�

; (2.20)

where the �

�

(x) parametrize the in�nitesimal loal gauge transformations

and B and C are the so-alled desriptors [3℄, whih in general depend on the

�elds and their derivatives. I assumed that no seond or higher derivatives

of � enter beause this overs most interesting examples. With

�

Æ

�

'

a

= �

�

(B

�a

� �

�

'

a

A

��

) + �

�

�

�

C

�a�

(2.21)

the integrated form of (2.17), after a partial integration, reads

0 =

Z

�

�

[L

a

(B

�a

� �

�

'

a

A

��

)� �

�

(L

a

C

�a�

)℄: (2.22)

Sine it must hold for arbitrary funtions �

�

this implies that the expression

between the square brakets must vanish. Inserting L

a

from (2.10) we end

up with

0 = L

a

(B

�a

� �

�

'

a

A

��

� �

�

C

�a�

)� C

�a�

�

�

V

a

+C

�a�

(�

�

W

���

ab

�

�

�

�

'

b

+W

��

ab

�

�

�

�

�

�

'

b

):

(2.23)

Sine these are o�-shell identities we onlude

C

�a(�

W

��)

ab

= 0; (2.24)

where the brakets around the indies mean symmetrization. In partiular,

desriptors C

�a0

whih are not identially zero are null-eigenvetors of the

Hessian,

C

�a0

W

00

ab

= 0 (2.25)

and render the system singular. If all C

�a�

vanish, then (2.23) redues to

0 = (B

�a

� �

�

'

a

A

��

)L

a

=) (B

�a

�A

��

�

�

'

a

)W

(��)

ab

= 0: (2.26)

Thus, if C � 0 but the B

�a

�A

��

�

�

'

a

are not identially zero, we onlude

again that the system is singular. So we have the important result that

gauge theories are neessarily singular. However, the onverse is not true.

Not all oneivable singular systems are gauge theories.
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2.2 Primary and seondary onstraints

The departing point for the Hamiltonian formalism is to de�ne the anonial

momenta (densities) by

p

i

=

�L

� _q

i

(q; _q) resp. �

a

(~x) =

ÆL

Æ _'

a

(~x)

; (2.27)

where we assume that L 2 C

2

(TQ). Only if

W

ij

=

�p

i

� _q

j

resp. W

00

ab

(~x; ~y) =

Æ�

a

(~x)

Æ _'

b

(~y)

(2.28)

is invertible, that is for regular systems, an this relation be solved for all

veloities in terms of the phase spae variables

3

, _q = _q(q; p) resp. _' =

_'('; �). In the other ase not all momenta (2.27) are independent, but

there are some relations

�

m

(q; p) = 0 resp. �

m

('; �) = 0 , m = 1; : : : ;M (2.29)

that follow from the de�nition (2.27) of the momenta. I shall assume that

the onstraints (2.29) are independent.

In the following we restrit ourselves to �nite dimensional systems and

only omment on the related results for �eld theories. The orresponding

�eld theoretial formulas, if they apply, are obtained if one uses deWitt's

ondensed notation [17℄ in whih i beomes a omposite index.

The onditions (2.29) are the M = N �R primary onstraints. They

de�ne the 2N�M -dimensional primary onstraint surfae, denoted by �

p

.

The equations of motions have not been used to derive them and they imply

no restrition on the (q; _q). (2.27) maps the 2N -dimensional veloity phase

spae TQ to the lower-dimensional sub-manifold �

p

in the momentum phase

spae �. Hene the inverse images of a given point in �

p

form a manifold of

dimension M .

To pass to the Hamiltonian formalism we impose some regularity on-

ditions on the primary onstraints. They an be alternatively formulated

as:

1. the independent funtions �

m

;m = 1; : : : ;M an be loally taken as

the �rst M oordinates of a new, regular, oordinate system in the

viinity of �

p

.

2. The gradients d�

1

; : : : ; d�

M

are loally linearly independent on �

p

; i.e.,

d�

1

^ : : : ^ d�

M

6= 0 on �

p

.

3

for �eld theories we assume TQ to be a Banah manifold so that the inverse funtion

theorem applies
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For example, if � is an admissible onstraint, �

2

is not, sine d(�

2

)=2�d�=0

on �

p

. If the onstraints are regular the following properties hold.

Theorem 1 If a smooth funtion F (q; p) vanishes on �

p

, then F = f

m

�

m

for some funtions f

m

.

Theorem 2 If �

i

Æq

i

+ �

i

Æp

i

=0 for arbitrary variations Æq

i

; Æp

i

tangent to

the onstraint surfae, then

�

i

= u

m

��

m

�q

i

and �

i

= u

m

��

m

�p

i

on �

p

for some u

m

.

Before proving these two important theorems it is useful to distinguish be-

tween weak and strong equations. A funtion F (q; p) de�ned in the neigh-

borhood of �

p

is alled weakly zero if

F j

�

p

= 0() F � 0 (2.30)

and strongly zero if

F j

�

p

= 0 and (

�F

�q

i

;

�F

�p

i

)j

�

p

=0

() F ' 0: (2.31)

These de�nitions are useful sine the equations of motion ontain gradients

of funtions on �

p

. The primary onstraint surfae an itself be de�ned by

weak equations. We have

�

m

� 0 but �

m

'= 0 (2.32)

beause of our regularity onditions on the onstraints.

Sine r

x

(f

m

�

m

) � f

m

r

x

�

m

, where x = (q; p) denotes the phase spae

oordinates, the �rst theorem implies

Lemma 1 F � 0 =) F � f

m

�

m

' 0 for some funtions f

m

.

To prove the �rst theorem we hoose the independent onstraints �

m

as �rst

oordinates of a regular oordinate system x=(�; ~x) in the neighborhood of

�

p

. Sine F (0; ~x)=0 we have

F (�; ~x) =

1

Z

0

d

d�

F (��; ~x)d� = �

m

1

Z

0

F;

m

(��; ~x)d�

and thus

F = f

m

�

m

with f

m

=

1

Z

0

F;

m

(��; ~x)d�: (2.33)
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This proves theorem 1 in the neighborhood U of any point on �

p

. We over

the neighborhood of �

p

by open sets U

i

, on eah of whih theorem 1 applies.

Together with the open sets V

k

on whih �

k

6= 0 the U

i

over the whole

phase spae. On V

k

we an set F = (F=�

k

)�

k

and theorem 1 holds there.

Finally, to guarantee that the f

m

are the same on the overlap of U

i

and U

i

0

one uses a �nite partition of unity.

Theorem 2 follows immediately from the regularity ondition whih im-

plies that at a given point x on �

p

a basis of T

x

�

p

(the vetors tangent

to �

p

at x), together with the gradients r

x

�

m

form a basis of T

x

�. The

assumption in theorem 2 means that (�; �) are orthogonal to T

x

�

p

. Thus it

must be a linear ombination of the gradients r

x

�

m

.

For �eld theories one �nds

F [�; ~x℄ � 0) F =

Z

f

m

�

m

, f

m

(~x) =

Z

d�

ÆF

Æ�

m

(~x)

[��; ~x℄ (2.34)

and a weakly vanishing funtional is a linear ombination of smeared on-

straints. The test funtions should lie in the spae dual to the spae of the

onstraints [8℄.

2.2.1 Legendre transformation

The anonial Hamiltonian

H = _q

i

p

i

� L resp. H =

Z

dx �

a

(~x) _'

a

(~x)� L =

Z

dx H (2.35)

has the remarkable property that _q enters H only through the ombination

p(q; _q). This follows from

ÆH = _q

i

Æp

i

+ Æ _q

i

p

i

� Æ _q

i

�L

� _q

i

� Æq

i

�L

�q

i

= _q

i

Æp

i

� Æq

i

�L

�q

i

(2.36)

whih shows that H is a funtion of p and q only. Here Æp is to be regarded

as linear ombination of Æq and Æ _q so that Æq; Æp are tangent to �

p

. H is

only de�ned on �

p

sine we used the onstraints. We would like to extend

the formalism to the whole phase spae �.

The equation (2.36) an be rewritten as

(

�H

�q

i

+

�L

�q

i

)Æq

i

+ (

�H

�p

i

� _q

i

)Æp

i

= 0 (2.37)

with variations tangent to �

p

. H may be the restrition to the hyper-surfae

�

p

of a funtion

~

H de�ned all over phase spae. Then (2.37) holds with H

replaed by

~

H. Applying theorem 2 we onlude that
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_q

i

�

�

~

H

�p

i

+ u

m

��

m

�p

i

, �

�L

�q

i

�

�

~

H

�q

i

+ u

m

��

m

�q

i

:

(2.38)

The �rst set of relations enables us to reover the veloities from the (q; p) 2

�

p

and the parameters u

m

. Beause of the regularity onditions on the

onstraints two di�erent u yield di�erent _q and the �rst relation permits

us to express u as funtion of q and _q. This way one obtains an invertible

Legendre transformation from the 2N -dimensional veloity phase spae to

the 2N dimensional spae �

p

� fu

m

g:

p

i

=

�L

� _q

i

(q; _q) and u

m

= u

m

(q; _q) (2.39)

with inverse transformation

_q

i

=

�

~

H

�p

i

+ u

m

��

m

�p

i

and �

m

(q; p) = 0: (2.40)

We had to extend the Hamiltonian, whih was originally de�ned only on �

p

,

to a neighborhood of �

p

. Aording to theorem 1 two possible extensions

di�er by a term 

m

�

m

. Thus the formalism should be unhanged by the

replaement

~

H �!

~

H + 

m

(q; p)�

m

: (2.41)

Indeed, making this transformation in (2.38) just shifts the u to u+ .

Finally, the relations (2.38) allow us to rewrite the equation of motion

(2.2) in the equivalent Hamiltonian form

_q

i

�

�H

�p

i

+ u

m

��

m

�p

i

and _p

i

� �

�H

�q

i

� u

m

��

m

�q

i

; (2.42)

where we dropped the tilde atop H. The Lagrangian equations of motion

(2.2) are equivalent to (2.42). The phase spae funtion

H

p

� H + u

m

�

m

(2.43)

is the primary Hamiltonian.

Introduing the Poisson braket of two phase spae funtions

fF;Gg �

�F

�q

i

�G

�p

i

�

�F

�p

i

�G

�q

i

resp.

fF;Gg �

Z

dx

�

ÆF

Æ'

a

(~x)

ÆG

Æ�

a

(~x)

�

ÆF

Æ�

a

(~x)

ÆG

Æ'

a

(~x)

�

(2.44)

and using u

m

r

x

�

m

� r

x

(u

m

�

m

), the Hamiltonian equations of motion an

be rewritten as
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_q

i

� fq

i

;H

p

g � fq

i

;Hg+ fq

i

; �

m

gu

m

_p

i

� fp

i

;H

p

g � fp

i

;Hg+ fp

i

; �

m

gu

m

:

(2.45)

Besides there are still the equations de�ning �

p

:

�

m

(q; p) = 0: (2.46)

For an any phase-spae funtion F (q; p) the time evolution follows then from

_

F � fF;H

p

g � fF;Hg + u

m

fF; �

m

g: (2.47)

2.2.2 Dira-Bergman algorithm

The onstraints must be onsistent with the time evolution, that is if initially

(q; p) is on �

p

it should remain there at later times. This means that the

equations of motion should preserve the onstraints and this gives rise to

the onsisteny onditions [18, 3℄

_

�

m

� f�

m

;Hg+ f�

m

; �

n

gu

n

� h

m

+ C

mn

u

n

� 0: (2.48)

For non-admissible Lagrangians these relations will be inonsistent. As an

example take L= _q�q whih leads to H=q and �=p�1 so that (2.48) reads

1 � 0. For suh inonsistent models the ation has no stationary points and

we shall exlude them.

To disuss the onsisteny relations (2.48) we distinguish the two follow-

ing ases:

� detC �= 0:

In this ase u is uniquely �xed by (2.48) to be u

n

� C

nm

h

m

, where

C

nm

is the inverse of C

nm

. The time evolution (2.47) of a phase spae

funtion beomes

_

F � fF;Hg � fF; �

m

gC

mn

f�

n

;Hg: (2.49)

No additional onditions appear. For any initial data (q; p) on �

p

the

time evolution stemming from (2.49) is unambiguous and stays on �

p

.

� detC � 0:

In this ase u is not �xed and (2.48) is only solvable if h

m

w

m

a

� 0 for

all left null-eigenvetors w

a

of C. Either these equations are ful�lled

or they lead to a ertain number K

1

of new onstraints

�

k

� 0 , k =M + 1; : : : ;M +K

1

� J

1

;
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alled seondary onstraints. The primary and seondary onstraints

�

j

� 0; j = 1; : : : ; J

1

de�ne a hyper-surfae �

1

� �

p

.

Now one has to hek onsisteny for the primary and newly generated

seondary onstraints on �

1

,

_

�

j

= f�

j

;Hg+ f�

j

; �

n

gu

n

� h

j

+C

jn

u

n

= 0 on �

1

with the retangular J

1

�M matrix C. The left null-eigenvetors w

j

a

of

C

jn

imply further onditions w

j

a

h

j

=0 on �

1

and may lead to further,

so-alled tertiary onstraints whih, together with the primary and

seondary onstraints, de�ne a hyper-surfae �

2

� �

1

, et.

This proedure terminates after a �nite number of iterations and the follow-

ing situation is reahed: There is a hyper-surfae �



� � de�ned by

�

j

� 0 , j = 1; : : : ;M +K � J: (2.50)

For every left null-eigenvetor w

j

a

of the retangular matrix C

jm

= f�

j

; �

m

g

the onditions w

j

a

f�

j

;Hg � 0 are ful�lled. For the multiplier �elds there

are the equations

f�

j

;Hg+ f�

j

; �

m

gu

m

� 0; (2.51)

where � now means equality on �



. We note that the primary onstraints

are merely onsequenes of the de�nition of the momenta, whereas we used

the equations of motion to arrive at the seondary onstraints

4

.

We make the same regularity assumptions on the full set of onstraints

�

j

de�ning �



as we made on the primary onstraints �

m

de�ning �

p

. Also,

we assume that the rank of C is onstant on �



.

2.3 First and seond lass onstraints

The distintion between primary and seondary onstraints will be of minor

importane in the �nal form of the Hamiltonian theory. A di�erent lassi-

�ation of onstraints, namely into �rst and seond lass [19℄, will play a

entral part. Let v

a

be a basis of the kernel of C,

f�

j

; �

m

g v

m

a

� 0 , a = 1; : : : ;dim KerC =M � rankC: (2.52)

The general solution for the multipliers u in (2.51) has then the form

u = ~u+ �

a

v

a

; (2.53)

where ~u is a partiular solution. We have separated the part of u that

remains undetermined by the onsisteny onditions. This part ontains

M�rankC free funtions �

a

.

4

in the sequel I all all non-primary onstraints seondary
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The ombinations of primary onstraints

�

a

= v

m

a

�

m

(2.54)

weakly ommute with all other onstraints,

f�

a

; �

j

g � 0 , j = 1; : : : ; J: (2.55)

Moreover, sine the v

a

form a basis of KerC, the �

a

are a omplete set of

primary onstraints with this property. This leads to the onept of �rst

lass funtions and in partiular �rst lass onstraints (FCC). A funtion

F (q; p) is said to be �rst lass if its Poisson braket with all onstraints

vanish weakly (on �



),

fF; �

j

g � 0 , j = 1; : : : ; J: (2.56)

The set of �rst lass funtions is losed under Poisson braket [19℄. This is

proved as follows: if F;G are �rst lass, then aording to theorem 1

fF; �g = �

0

, fG;�g = �

00

for any onstraint �, where �

0

; �

00

are some linear ombinations of the on-

straints. Using the Jaobi identity we have

ffF;Gg; �g = fF; fG;�gg � fG; fF; �gg = fF; �

00

g � fG;�

0

g � 0:

In partiular the onstraints �

a

are a omplete set of �rst lass primary

onstraints (modulo squares of seond lass onstraints). Also, as a result

of the Dira-Bergman algorithm H

p

is �rst lass.

A funtion that is not �rst lass is alled seond lass. I use a notation

adapted to this new lassi�ation. All primary and seondary FCC are

denoted by 

a

. The remaining onstraints are alled seond lass onstraints

(SCC) and I denote them by �

�

.

The �rst property we need is that the matrix of SCC

�

��

= f�

�

; �

�

g is non-singular. (2.57)

Indeed, if it was singular, then there would exist a null vetor r

�

�

��

�

fr

�

�

�

; �

�

g � 0. Sine r

�

�

�

also ommutes weakly with the FCC (by their

�rst lass property) it would weakly ommute with all onstraints and would

be �rst lass whih ontradits our assumption. For ounting degrees of

freedom it is important to note that the number of SCC must be even.

Otherwise the antisymmetri � would be singular.

Now onsider the onsisteny onditions (2.51). They are identially

ful�lled for the 

a

. For the SCC we have

f�

�

;Hg+�

��

u

�

� 0; (2.58)
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where u

�

=0 if �

�

is a seondary SCC. Solving for the multipliers we obtain

�

��

f�

�

;Hg =

n

u

�

; �

�

primary

0; �

�

seondary ;

(2.59)

where �

��

�

�

= Æ

�



. Thus all multipliers belonging to the primary SCC

are determined by the onsisteny onditions and we remain with the un-

dermined multipliers �

a

in (2.53). We have the important result that the

number of undetermined multipliers is equal to the number of independent

primary FCC.

Inserting that into the equations of motion (2.47) we end up with

_

F � fF;Hg + fF; �

a

g�

a

� fF; �

�

g�

��

f�

�

;Hg; (2.60)

where the �

a

are the primary FCC. One an easily hek that all onstraints

are preserved in time.

2.3.1 Seond lass onstraints and Dira braket

For purely SC systems no multipliers remain in the time evolution (2.60)

and there is no ambiguity in the dynamis. The term in (2.60) ontaining

the inverse of � fores the system to stay on �



. This surfae is the redued

phase spae for SC systems.

Motivated by (2.60) one introdues the Dira braket [18℄ for two phase

spae funtion as

fF;Gg

�

� fF;Gg � fF; �

�

g�

��

f�

�

; Gg; (2.61)

in terms of whih

_

F � fF;Hg

�

(2.62)

for SC systems. This braket possess the same properties as the Poisson

braket, i.e. they are antisymmetri, bilinear and obey the Jaobi identity

and produt rule. In addition we have

fF; �

�

g

�

= 0 ; fF;Gg

�

� fF;Gg ; fF; fG;Kg

�

g

�

� fF; fG;Kgg (2.63)

for arbitrary F and �rst lass G;K. These properties follow easily from the

de�nition (2.61) and the property that �rst lass funtions have vanishing

Poisson braket with all onstraints, e.g.

fF; �

�

g

�

= fF; �

�

g � fF; �

�

g�

�

f�



; �

�

g = 0: (2.64)

Let us draw an immediate onsequene of (2.64). Aording to theorem 1

any funtion an be replaed by its restrition to �



, up to a linear ombi-

nation of the onstraints. Thus when alulating the Dira braket (2.61)
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between two funtions we may replae them by their restrition to �



sine

the other brakets vanish on aount of (2.64). It follows that the SCC an

be set equal to zero either before or after evaluating the Dira braket.

To understand the geometri meaning of SCC we reall some fats from

sympleti geometry [4℄:

In most ases the phase spae � is the otangental bundle T

�

Q over

the on�guration spae Q and hene is equipped with a natural sympleti

struture (a non-degenerate losed two-form)

! = !

��

dx

�

^ dx

�

(2.65)

whih, aording to Darboux, an loally be written as ! = dq

i

^dp

i

: Given

!, we an assign to a funtions F its orresponding Hamiltonian vetor �eld

X

F

by

i

X

F

! = dF; (2.66)

where i

X

and d are the interior and exterior derivatives, respetively. In

loal oordinates we �nd

i

X

F

!(Y ) = !(X

F

; Y ) = !

��

X

�

F

Y

�

and dF (Y ) = �

�

F Y

�

(2.67)

for any vetor �eld Y , so that

X

�

F

= �!

��

�

�

F; where !

��

!

��

= Æ

�

�

: (2.68)

The Poisson braket of two funtions is

fF;Gg = ��

�

F!

��

�

�

G = !

��

!

��

�

�

F!

��

�

�

G = !(X

F

;X

G

): (2.69)

In partiular, the hange of F under the Hamiltonian ow generated by G

an be written as

F

0

� fF;Gg = !(X

F

;X

G

) = i

X

F

!(X

G

) = dF (X

G

) = X

�

G

�

�

F: (2.70)

In other words, the ows generated by G are just the motions along the

Hamiltonian vetor �eldX

G

. For G=H these are the Hamiltonian equations

of motion.

Finally there is an important relation between the Poisson and Lie

braket,

[X

F

;X

G

℄ = �X

fF;Gg

; where [X;Y ℄

�

= X

�

�

�

Y

�

� Y

�

�

�

Y

�

(2.71)

are the Lie braket. This relation follows from the Jaobi identity.

Let us now return to the SC systems. The inlusion map j : �



�! �

indues a two-form on �



, namely the pull bak of the sympleti form !

on �, !



= j

�

!. !



is losed sine ! has this property, but it may be

degenerate. In this ase it is alled pre-sympleti. However, for SCC it is

indeed sympleti, as follows from
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Theorem 3 The �

�

are seond lass if and only if !



= j

�

! is non-

degenerate.

Atually, we shall see that the Dira braket belongs to !



. Most properties

of the Dira braket, and in partiular the Jaobi identity follow then at

one from the orresponding properties of !.

To prove this theorem we must show that ! is non-degenerate on the

vetors tangent to �



. A vetor �eld Y is tangent to �



if Y

�

�

�

�

�

vanishes

for all onstraints �

�

. With (2.70) this is equivalent to

!(X

�

; Y ) � 0 for all X

�

� X

�

�

: (2.72)

On the other hand, from (2.69) follows that

!(X

�

;X

�

) = f�

�

; �

�

g � �

��

�= 0 (2.73)

so that the Hamiltonian vetor �elds of the onstraints are not tangent. Let

us now determine the vetors X whih obey

!(X;Y ) � 0 for all tangent Y: (2.74)

Sine ! is non-degenerate (2.74) an have dim�-dim�



independent solutions

X. But beause of our regularity onditions on the onstraints the dim�-

dim�



Hamiltonian vetor �elds X

�

, whih are not tangent, are independent

solutions. Thus anyX whih obeys (2.74) is a ombination of the X

�

. Hene

there annot be a tangent X obeying (2.74) and this proves that j

�

! is non-

degenerate.

Note that we used the SC nature of the onstraints and in partiular

that the ows generated by the SCC lead o� the onstraint surfae.

Now it is easy to prove that the Dira braket furnishes an expliit

representation for the indued Poisson braket. For that onsider

fF;Gg

�

= !(X

F

;X

G

)� !(X

F

;X

�

)�

��

!(X

�

;X

G

) � !

�

(X

F

;X

G

): (2.75)

It is easy to see, that !

�

(X

F

+X

�

;X

G

)=!

�

(X

F

;X

G

) for any Hamiltonian

vetor �eld belonging to the onstraints. Thus !

�

depends only on the

tangent omponents of X

F

;X

G

. But for tangent X

F

we have !(X

F

;X

�

) � 0

(see (2.72)) and !

�

an be replaed by ! without hanging the value of (2.75).

This proves that !

�

is just the pull-bak of !.

2.3.2 First lass onstraints and gauge transformations

Purely FC systems are relevant sine gauge theories are of this type. Gauge

related point should be identi�ed and this leads to the problem of gauge

invariant funtions and/or the gauge �xing problem. The FCC together
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with a omplete set of gauge �xing onditions form then a SC system. Hene

for FC systems the gauge �xing de�ne a subset �

r

2 �



and this set is the

redued phase spae.

For purely FC systems the time evolution is governed by

_

F � fF;Hg+ fF; �

a

g�

a

; (2.76)

with primary FCC �

a

. For the same initial onditions we get di�erent evolu-

tions, depending on the multipliers �

a

. The presene of arbitrary funtions

�

a

in the primary Hamiltonian tells us that not all x=(q; p) are observable,

i.e. there are several x representing a given physial state. Assume that the

initial value x(0) is given and represents a ertain state. Then the equation

of motion should fully determine the physial state at later times. So if

x

0

(t) 6= x(t) stem from the same physial state x(0) then they should be

identi�ed.

Consider two in�nitesimal time evolutions of F = F (0) given by H

p

with

di�erent values of the multipliers,

F

i

(t) = tfF;Hg+ tfF; �

a

g�

a

i

; i=1,2 : (2.77)

The di�erene F

2

(t)�F

1

(t) between the values is then

Æ

�

F = fF; �

a

�

a

g; , � = t(�

2

� �

1

): (2.78)

Sine suh a transformation does not alter the the physial state at time t

it is a gauge transformation [19℄. Now we alulate

[Æ

�

; Æ

�

℄F = ff�

a

�

a

; �

b

�

b

g; Fg (2.79)

and onlude that the ommutator of any two primary FCC also generate

gauge transformations. Also, performing a gauge transformation at t = 0

with multipliers � and then time evolve with multipliers � should lead to

the same state as doing these transformations in the reverse order. We �nd

[Æ

t;�

; Æ

�

℄F = tf _�

a

�

a

� f�

a

�

a

;Hg+ f�

a

�

a

; �

b

�

b

g; Fg (2.80)

and onlude that the ommutators f�

a

;Hg also generate gauge transfor-

mations.

We have seen that the �rst lass funtions are losed with respet to the

Poisson braket and thus the f�

a

; �

b

g and f�

a

;Hg are linear ombinations

of the FCC. However, in general there will appear seondary FCC in these

ombinations. Also, if we ompared the higher order terms in the time evo-

lutions (2.77) we would �nd that time derivatives of f�

a

;H

p

g generate gauge

transformations. This way seondary FCC show up as gauge transforma-

tions in all relevant systems and this lead Dira to onjeture that all FCC
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a

generate gauge transformations. We shall assume this onjeture to hold

in what follows although there are some exoti ounterexamples [2, 15℄.

Note, however, that if the struture onstants in

f

a

; 

b

g = t



ab





(2.81)

depend on the anonial variables, then [Æ

�

; Æ

�

℄F is a gauge transformation

only on the onstraint surfae. Also, above we made the hidden assumption

that time (or the spae-time oordinates in �eld theory) is not transformed.

Else we would have to take F + Æ

�

F at the transformed time t + Æ

�

t be-

fore alulating the seond variation Æ

�

. We ome bak to this point when

disussing generally ovariant theories.

We onlude that the most general physially permissible motion should

allow for an arbitrary gauge transformation to be performed during the time

evolution. But H

p

ontains only the primary FCC. We thus have to add to

H

p

the seondary FCC multiplied by arbitrary funtions. This led Dira to

introdue the extended Hamiltonian

H

p

�! H

e

= H +N

a



a

(2.82)

whih ontains all FCC [19℄. H

e

aounts for all the gauge freedom.

Clearly, H

p

andH

e

should imply the same time evolution for the lassial

observables. Observables are gauge invariant funtions on �



, that is phase

spae funtions that weakly ommute with the gauge generators,

F observable () fF; 

a

g � 0 for all FCC 

a

: (2.83)

Sine H

e

�H

p

is a ombination of the seondary FCC, we have

_

F � fF;H

p

g � fF;H

e

g (2.84)

for any observable F , as required. In the extended formalism one makes

no distintion between primary and seondary FCC sine they are treated

symmetrially. The introdution of H

e

is a new feature of the Hamiltonian

sheme. It does not follow from the Lagrangian formalism.

At this point the following remark is in order. The number of time de-

pendent funtions whih enter the Lagrangian o� mass-shell gauge transfor-

mation is equals to the number of Lagrangian onstraints and hene equals

to the number of primary onstraints. Hene, if there are seondary FCC

it annot be that any onstraint G = N

a

(t)

a

generate o� mass-shell trans-

formations. Indeed, when disussing the onsisteny onditions we assumed

that the primary onstraints must be onserved only for on mass-shell tra-

jetories. Hene for arbitrary o� mass-shell variations the seondary on-

straints do not guarantee that the primary onstraints are respeted. We

ome bak to this important point in hapter 4.

29



Let us now investigate the geometri meaning of FC systems. As a

preparation we show:

The indued 2-form j

�

! has rank � N � 2M , where M is the number of

independent �rst or seond lass onstraints.

Let us assume that the tangent vetors X

p

; p=1; : : : ; P form a basis for the

null-eigenvetors of j

�

!, i.e. j

�

!(X

p

; Y ) =!(X

p

; Y ) = 0 for all tangent Y .

Let us now see how big P an be. For that we onsider

a

p

!(X

p

; Z

q

) = 0; where the Z

q

; q = 1; : : : ;M

together with the tangent vetors form a basis of T� at the point under

onsideration. These are M equations for P unknown. So, if P � M then

there would always exist a solution X=a

p

X

p

with !(X;Z

q

) = 0 for all Z

q

.

Being also a null-eigenvetor of j

�

! we would onlude that !(X;Z)=0 for

all vetors Z 2 T� or that ! is degenerate. This then proves the statement

above. Now we have the following

Theorem 4 For a FC system the indued two-form j

�

! is maximally de-

generate. The kernel is spanned by the Hamiltonian vetor �elds belonging

to the FCC.

First, if X

�

�

�



b

� 0 for all onstraints, then X is tangent. But sine

X

�

a

�

�



a

� f

a

; 

b

g � 0, all Hamiltonian vetor �elds belonging to the on-

straints are tangent. Seond, for an arbitrary tangent vetor X we have

!(X

a

;X) = i

X

a

(X) = �

�

�

a

X

�

� 0. Thus the M X

a

's are null-eigenvetors

of the indued two-form and the rank of j

�

! equals 2N �2M , i.e. it is

maximally degenerate.

Thus we have the following situation: The M FCC generate ows whih

stay on the onstraint surfae and whih we identi�ed with gauge transfor-

mations. The Hamiltonian vetor �elds belonging to the onstraints are the

null-diretions of the indued pre-sympleti 2-form. That these null-vetor

�elds generate gauge orbits follows from

Theorem 5 On �



the vetors X

a

generate M -dimensional manifolds.

The proof uses the Frobenius integrability ondition, whih says that M

linearly independent vetor �elds are integrable (through eah point in �



there is a surfae, the gauge orbit, to whih the X

a

are tangent) i� all Lie

brakets [X

a

;X

b

℄ are linear ombinations of (X

1

; : : : ;X

M

). Indeed,

[X

a

;X

b

℄ = �X

f

a

;

b

g

= �t



ab

X



+ 



!

��

�

�

t



ab

� �t



ab

X



; (2.85)

where we used (2.81). Note that for (q; p)-dependent struture onstant (as

in gravity) the null vetor �elds are integrable only on the onstraint surfae.
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In a next step one wants to eliminate the gauge degrees of freedom that

is identify points on the same gauge orbit. This an in priniple be ahieved

by introduing gauge invariant variables, e.g. the transverse potential or

holonomies in eletrodynamis, or alternatively by �xing the gauge. A gauge

�xing must obey two onditions: �rst it must be attainable and seond it

should �x the gauge uniquely

5

. We an �x the gauge by imposing the

independent onditions

F

a

(q; p) = 0; a=1,. . . ,M. (2.86)

The surfae de�ned by these onditions should interset every gauge orbit

in exatly one point. A neessary ondition is that at least one gauge �xing

funtion F

b

should hange in the diretion of all null-vetors X

a

. In other

words, there is at least one F

b

so that

�

a

(X

a

;rF

b

) = �

a

f

a

; F

b

g 6= 0 (2.87)

for all �. This implies that

detf

a

; F

b

g � det F

ab

6= 0: (2.88)

In partiular, if we ould hoose gauge �xings anonially onjugated to the

onstraints, f

a

; F

b

g = Æ

ab

, then the gauge orbits would interset the gauge

�xing surfaes orthogonal and in this ase detF

ab

= 1. The determinant of

F plays an important part in the quantization of gauge systems and is the

well-known Faddeev-Popov determinant [21℄.

Beause of (2.88) the FCC together with the gauge �xings form a SC

system and we an take over the result from the previous subsetion. The

redued phase spae �

r

onsists of the points ful�lling the onstraints and

gauge �xings. Colleting the 

a

and F

a

into one vetor, 


p

; p = 1; : : : ; 2M ,

we �nd for the Hamiltonian equation of motion for any phase spae funtion

_

F = fF;Hg � fF;


p

gG

pq

f


q

;Hg: (2.89)

Mixed seond and �rst lass onstraints Before gauge �xing the evo-

lution is governed by the �rst lass partner of the extended Hamiltonian

H

�

e

= H + 

a

N

a

� �

�

�

��

f�

�

;Hg (2.90)

sine we have

_

F = fF;H

�

e

g = fF;Hg+ fF; 

a

gN

a

� fF; �

�

g�

��

f�

�

;Hg: (2.91)

5

There may be obstrutions to ful�lling these requirements as has been demonstrated

by Gribov and Singer [28, 44℄.
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For a disussion of the starred variables see [12℄. After gauge �xing one

an again introdue starred variables with respet to the SC system  

I

=

(�

�

; 

a

; F

b

). Denoting the Poisson brakets matrix of all these onstraints

 

I

by

~

�, we have

_

F = fF;H

�

g; where H

�

= H +  

I

~

�

IJ

f 

J

;Hg: (2.92)

2.4 First order ation priniples

The solutions to the primary Hamiltonian equations of motion (2.45, 2.46)

extremize the primary (or total) �rst order ation,

ÆS

p

= Æ

t

2

Z

t

1

�

_q

i

p

i

�H �

X

primary

u

m

�

m

�

dt = 0 (2.93)

with respet to variations Æq; Æp; Æu subjet only to the restrition Æq(t

1

)=

Æq(t

2

) = 0. The variables u

m

whih have been introdued to make the

Legendre transformation invertible appear now as Lagrange multipliers en-

foring the primary onstraints. It is lear that the theory is invariant under

H ! 

m

�

m

sine suh a hange an be absorbed into the Lagrange multi-

pliers.

The variational priniple (2.93) is equivalent to

Æ

Z

�

_q

i

p

i

�H

�

dt = 0 subjet to �

m

= Æ�

m

= 0: (2.94)

There is yet another variational priniple whih for gauge invariant observ-

ables leads to the same time evolution, namely the extended ation priniple.

The equations of motion for the extended formalism follow from

ÆS

e

= Æ

Z

�

_q

i

p

i

�H �

X

all onstr:

u

j

�

j

�

dt = 0; (2.95)

where the sum extends over all onstraints.

Take the ase of purely SCC and let y

i

! x

�

(y

p

) be the embedding of

�

r

� �. The Lagrange multiplier method guarantees that the implementa-

tion of the onstraints �

�

, either diretly or via the Lagrange multipliers,

are equivalent. Now let us solve the onstraint diretly in (2.95). Reall

that a sympleti 2-form an loally be written as ! = d�. The pull-bak of

the one-form potential � is

j

�

(�) = j

�

(p

i

dq

i

) � j

�

(a

�

dx

�

) = a

�

(x(y))

�x

�

�y

p

dy

p

: (2.96)
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Inserting this into the extended ation one �nds

S

e

[y℄ =

Z

f� �H(x(y))dtg =

Z

(a

p

_y

p

� h)dt: (2.97)

The orresponding variational priniple yield then the equation of motion

for SC systems:

ÆS

e

[y℄ = 0() _y

p

= fy

p

; h(y)g

�

: (2.98)

This an be heked diretly by using

j

�

! = j

�

d� = d j

�

� = d a

p

(y)dy

p

: (2.99)

The fat that (2.95) yields (2.97) is of pratial use when alulating Dira

braket. One solves for the onstraints inside the ation and from the new

kineti term one reads o� the indued potential form on �



. From (2.99)

one omputes the indued sympleti form and thus the Dira braket.

For FC systems it is also legitimate to solve the FCC inside the ation

S

e

=

Z

�

q

i

p

i

�H �N

a



a

�

dt: (2.100)

However, sine the indued 2 form is degenerate the equations of motion

on �



are not anonial. To get Hamiltonian equations one needs to go to

�

r

by imposing additional gauge onditions. Then one may write down the

orresponding ation for the SC system as disussed above.

2.5 Abelian Chern-Simons Theory with Soures

To see how the general formalism works in an expliit example I onsider

the Abelian Chern-Simons model [29, 41, 32, 24℄. This is a �eld theory

for a gauge potential A

a

in 3 spae-time dimensions with oordinates x=

(x

0

; x

1

; x

2

) � (t; ~x) with �rst order Lagrangian density

L =

�

4

A

a

�

ab

F

b

+A

a

J

a

; where

F

ab

= �

a

A

b

� �

b

A

a

, �

a

J

a

= 0:

(2.101)

Indies are lowered with the metri �

ab

= diag(1;�1;�1) and �

ab

is the Levi-

Civita symbol, �

012

=1. We enlose the system in a �nite box [0; L℄� [0; L℄.

The quantum theory is sensitive to the value of the oupling onstant �. For

rational 2�� and vanishing external urrent J the Hilbert spae beomes

�nite-dimensional [41℄.

For arbitrary periodi urrents the ation is invariant under U(1)-gauge

transformations

A

a

! A

a

+ �

a

� , S ! S +

I

n

a

(

�

4

��

ab

F

b

+ �J

a

) (2.102)

provided � vanishes at the initial and �nal times and �; F

01

; F

02

are periodi

in x

1

; x

2

with period L. So we shall assume that � and F

ab

are both periodi.
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2.5.1 Dira theory for U(1)-Chern-Simons theory

Sine L is linear in the �rst derivatives the Hessian vanishes identially and

the model is singular. Thus we expet 3 independent primary onstraints

(per spae point). More expliitly, the anonial momentum densities are

�

a

(~x) =

ÆL

Æ

_

A

a

(~x)

=

�

2

A

b

(~x)�

ba0

(2.103)

and immediately lead to the primary onstraints

f�

m

g = f�

0

; �

1

+

�

2

A

2

; �

2

�

�

2

A

1

g , m = 1; 2; 3: (2.104)

The anonial Hamiltonian beomes

H =

Z

d

2

x

�

�

a

(~x)

_

A

a

(~x)�L

�

=

Z

d

2

xH

= �

Z

d

2

x

�

�

2

A

a

�

abi

�

i

A

b

+A

a

J

a

�

, i = 1; 2:

(2.105)

and the time evolution is determined by (2.47) with primary Hamiltonian

H

p

=

Z

d

2

xH

p

, H

p

= H+ u

m

�

m

; (2.106)

and fundamental Poisson braket

fA

a

(~x); �

b

(~y)g = Æ

a

b

Æ(~x � ~y): (2.107)

Let us now see whether seondary onstraints arise from the onsisteny

onditions

_

�

m

� 0. One omputes

_

�

1

(~x) =

Z

d

2

y f�

0

(~x);H

p

(~y)g

= �

Z

d

2

y f�

0

(~x); �A

0

(~y)�

0ji

�

i

A

j

(~y) + J

0

(~y)A

0

(~y)g

=

Z

d

2

y

�

��

0ji

�

i

A

j

(~y) + J

0

(~y)

�

Æ(~x � ~y)

= �

0ji

��

i

A

j

(~x) + J

0

(~x)

leading to the seondary onstraint

�

4

(~x) = �F

12

� J

0

(~x): (2.108)

There is a quiker way to arrive at this onlusion, sine

_

�

1

= ��H

p

=�A

0

.

The time derivative of the other two primary onstraints are
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_

�

2

(~x) = �(u

3

� �

2

A

0

(~x)) + J

1

(~x)

_

�

3

(~x) = �(� u

2

+ �

1

A

0

(~x)) + J

2

(~x)

(2.109)

and putting them weakly to zero �xes the multipliers u

2

; u

3

. Finally, we

must have

_

�

4

(~x) = ��

2

u

2

(~x)� ��

1

u

3

(~x) + �

0

J

0

(~x) � 0: (2.110)

Inserting u

2

; u

3

from (2.109) this beomes �

a

j

a

= 0 and yields no further

ondition. Thus the Dira-Bergman algorithm leads to 3 primary and 1

seondary onstraint.

Obviously �

1

� 

1

is �rst lass. Also the ombination



2

= �

1

�

2

+ �

2

�

3

+ �

4

= �

i

�

i

+

�

2

F

12

� J

0

(2.111)

is �rst lass and is the analog of the Gauss onstraint in eletrodynamis.

As SCC we may take

�

1

= �

2

and �

2

= �

3

=) �

��

= �

�

0 1

�1 0

�

Æ(~x � ~y): (2.112)

� has inverse �

�1

=��=� and (2.91) reads

_

F � fF;Hg + fF; 

a

gN

a

+

1

�

Z

d

2

y fF; �

i

(~y)g �

ij

f�

j

(~y);Hg: (2.113)

Sine the FCC ommute with all onstraints they generate transformations

on �



, i.e. if (A; �) is on �



then

Æ

N

A(~x) =

R

d

2

y fA(~x); 

a

(~y)g N

a

(~y)

Æ

N

�(~x) =

R

d

2

y f�(~x); 

a

(~y)g N

a

(~y)

(2.114)

are variations tangent to it. This follows from Æ

N

�

j

=

R

f�

j

; 

a

gN

a

� 0.

Also, sine these transformations ommute with H

p

, one expets that they

are related to in�nitesimal gauge transformations (2.102). Indeed, de�ning

G =

Z

d

2

y

�

�

0

�(~y)

1

(~y) + �(~y)

2

(~y)

�

(2.115)

one �nds

Æ

�

A

a

(~x) = �

a

�(~x): (2.116)

Only the partiular ombination (2.115) of the FCC generate the o� mass-

shell gauge transformations (2.102). This partiular ombination has the

property that

_

G is a ombination of the primary FCC onstraints only. In

hapter 4 we shall show more generally that for systems with FCC whih are

linear in the momenta a ombination of FCC generate Lagrangian o� mass-

shell symmetries if its time-derivative is a ombination of primary FCC.
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2.5.2 Gauge �xing of Chern-Simons theory

We have seen that the Chern-Simons theory possesses two SCC and two

FCC. Now we supplement those by two gauge �xing onditions, namely

F

1

= A

0

and F

2

= �

i

A

i

: (2.117)

Altogether the onditions (�

1

; �

2

; 

1

; F

1

; 

2

; F

2

) form a SC system and de�ne

�

r

. The surfae de�ned by �

i

; 

1

and F

1

an be parametrized by the spatial

omponents of the gauge potential whih an be deomposed as

A

i

= �

ij

�

j

'+ �

i

�+

1

L

q

i

(2.118)

with onstant q

i

6

. Imposing further 

2

and F

2

we see that

A

i

= �

1

�

�

ij

�

j

1

4

J

0

+

1

L

q

i

(2.119)

so that �

r

= fq

1

; q

2

g is �nite-dimensional. Furthermore, 

2

= 0 and the

periodiity of the A

i

imply that the total harge Q=

R

d

2

xJ

0

must vanish.

The inverse Poisson braket 'matrix' reads

(

~

�

IJ

)(x; y) =

1

�

0

B

B

B

B

B

B

B

B

�

0 �1 0 0

1

4

�

2

0

1 0 0 0 �

1

4

�

1

0

0 0 0 � 0 0

0 0 �� 0 0 0

1

4

�

2

�

1

4

�

1

0 0 0 ��

1

4

0 0 0 0 �

1

4

0

1

C

C

C

C

C

C

C

C

A

Æ(x� y)

and one �nds the following Dira braket for the oordinates on �

r

fq

i

; q

j

g = �Æ

ij

: (2.120)

When alulating the starred Hamiltonian, one should reall that for a pe-

riodi funtion 4

�1

4f = f � V

�1

R

f . After some algebra one �nds

H

�

= �

Z

d

2

x

n

A

0

(�F

12

� J

0

) +

1

�

J

0

1

4

�

ij

�

i

J

j

o

�

1

2

j

i

q

i

�

1

�

�

ij

j

i

p

j

; (2.121)

where we have introdued the mean 'uxes'

j

i

�

1

L

Z

d

2

xJ

i

, q

i

�

1

L

Z

d

2

xA

i

and p

i

�

1

L

Z

d

2

x�

i

: (2.122)

6

The U(1)-bundle over the torus is non-trivial and A must be periodi only up to non-

trivial gauge transformations [42℄. For simpliity we assume here that A is periodi and

hene

R

F

12

=0
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After imposing the onstraints �

i

; 

2

and F

1

the non-trivial equations of

motion take the simple form

_q

i

= �

1

�

�

ij

j

j

: (2.123)

Of ourse, the evolution belonging to H

�

stays on �

r

. Sine �

r

is 2-

dimensional the (topologial) Chern-Simons theory is e�etively a simple

mehanial system. This was expeted from the beginning sine there are 6

onstraints and gauge �xings for 6 degrees of freedom (per ~x).

To see the meaning of this result more learly, let us see what the ob-

servables are. As oordinates on �



we may take � and q

i

in (2.118), so that

we are onsidering funtionals F [A

0

; �; q

i

; J

a

℄. Suh F ommute with the

FCC if they are independent of � and A

0

. Hene observables have the form

F = F [J

a

; q

i

℄ (2.124)

and depend only on the zero-modes of the A

i

.

Let us �nally remark that for a pure CS theory (J =0) the Lagrangian

density is invariant, up to a total time derivative, under gauge transfor-

mations for whih only e

i�

must be periodi. This introdues global gauge

transformations with windings around the handles of the torus (the box with

opposite points identi�ed). Hene we must identify gauge potentials whih

are related by suh global gauge transformations

A

i

� A

i

+

2�

L

n

i

or q

i

� q

i

+ 2�n

i

: (2.125)

Gauge invariant funtionals must be invariant under suh transformations.

Thus they depend only on exp(i

P

m

i

q

i

). For pure Chern-Simons theories

we have

e

i

P

m

i

q

i

=W (C;A) = exp

n

i

I

C

A

o

(2.126)

on the onstraint surfae (F

12

=0) if the loop C winds m

i

-times around the

torus in the diretion i. For a ontratible loop W (C;A) vanishes. Thus,

observables have the form

F (A) = F

�

e

i

H

C

A

�

: (2.127)

Let C;D be 2 loops whih windm

i

; n

i

-times around the torus in the diretion

i. We parametrize them by x(�); y(s). We ompute

I

C

I

D

fA(x(�)); A(y(s))g = �

I

C

I

D

�

ij

_x

i

(�) _y

j

(s)d�ds = �(n

1

m

2

� n

2

m

1

):

Upon deformation of the urves the ommutator is invariant and therefore is

a topologial invariant. This an be understood by noting that for J=0 the
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Chern-Simons model (2.101) is invariant under spae-time di�eomorphisms.

In partiular the spatial ones are generated by

G

diff

=

Z

d

2

x �

i

A

i



2

(2.128)

and hene observables must be invariant under spatial di�eomorphisms.

Finally note, that for the pure Chern-Simons theory the phase spae

variables q

i

lie in [0; 2�℄, that is �

r

is ompat and as a onsequene the

Hilbert spae beomes �nite dimensional.

Atually there is a quiker way to arrive at these results if one inserts

the �elds on the redued phase spae (2.119) into the �rst order ation. One

easily �nds

S =

Z

dt(

�

2

q

i

�

ij

_q

j

� q

i

j

i

) +

1

�

Z

dtd

2

xJ

0

1

4

�

ij

�

i

J

j

(2.129)

whih of ourse reprodues the orret equations of motion (2.123).
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