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1 Introduction

In the theory of quantum fields on curved spacetimes one considers gravity
as a classical background and investigates quantum fields propagating on
this background. The structure of spacetime is described by a manifold M
with metric gµν . Because of the large difference between the Planck scale
(10−33cm) and scales relevant for the present standard model (≥ 10−17cm)
the range of validity of this approximation should include a wide variety
of interesting phenomena, such as particle creation near a black hole with
Schwarzschild radius much greater than the Planck length.

The difficulties in the transition from flat to curved spacetime lie in the
absence of the notion of global inertial observers or of Poincare transfor-
mations which underlie the concept of particles in Minkowski spacetime. In
flat spacetime, Poincare symmetry is used to pick out a preferred irreducible
representation of the canonical commutation relations. This is achieved by
selecting an invariant vacuum state and hence a particle notion. In a gen-
eral curved spacetime there does not appear to be any preferred concept
of particles. If one accepts, that quantum field theory on general curved
spacetime is a quantum theory of fields, not particles, then the existence
of global inertial observers is irrelevant for the formulation of the theory.
For linear fields a satisfactory theory can be constructed. Recently Brunelli
and Fredenhagen [1] extended the Epstein-Glaser scheme to curved space-
times (generalising an earlier attempt by Bunch [2]) and proved perturbative
renormalizability of λφ4.

The framework and structure of Quantum field theory in curved spacetimes
emerged from Parkers analysis of particle creation in the very early universe
[3]. The theory received enormous impetus from Hawkings discovery that
black holes radiate as blackbodies due to particle creation [4]. A compre-
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hensive summary of the work can be found in the books [5, 6, 7, 8, 9]

2 Quantum Fields in Curved Spacetime

In a general spacetime no analogue of a ’positive frequency subspace’ is
available and as a consequence the states of the quantum field will not
possess a physically meaningful particle interpretation. In addition, there
are spacetimes, e.g. those with timelike singularities, in which solutions
of the wave equation cannot be characterised by their initial values. The
conditions of global hyperbolocity of (M, gµν) excludes such ’pathological’
spacetimes and ensures that the field equations have a well posed initial
value formulation. Let Σ ⊂ M be a hypersurface whose points cannot be
joined by timelike curves. We define the domain of dependence of Σ by

D(Σ) = {p ∈ M|every inextendible causal curve through p intersects Σ}.
If D(Σ) = M, Σ is called a Cauchy surface for the spacetime and M is
globally hyperbolic. If (M, gµν) is globally hyperbolic with Cauchy surface
Σ, then M has topology R × Σ. Furthermore, M can be foliated by a
one-parameter family of smooth Cauchy surfaces Σt, i.e. a smooth ’time
coordinate’ t can be chosen on M such that each surface of constant t is
a Cauchy surface [10]. In such a spacetime there is a well posed initial

value problem for linear wave equations [11]. For example, given smooth
initial data φ0, φ̇0, then there exists a unique solution φ of the Klein-Gordon

equation

2gφ+m2φ = 0, 2g =
1√−g∂µ(

√−ggµν∂ν). (1)

which is smooth on all of M, such that on Σ we have

φ = φ0 and nµ∇µφ = φ̇0,

where nµ is the unit future-directed normal to Σ. In addition φ varies
continuously with the initial data.

For the phase-space formulation we slice M by spacelike Cauchy surfaces
Σt and introduce unit normal vector fields nµ to Σt. The spacetime metric
gµν induces a spatial metric hµν on each Σt by the formula

gµν = nµnν − hµν .
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Let tµ be a ’time evolution’ vector field on M satisfying tµ∇µt = 1. We
decompose it into its parts normal and tangential to Σt,

tµ = Nnµ +Nµ,

where we have defined the lapse function N and the shift vector N µ tangen-
tial to the Σt. Now we introduce adapted coordinates xµ = (t, xi), i = 1, 2, 3
with tµ∇µx

i = 0, so that tµ∇µ = ∂t and Nµ∂µ = N i∂i. The metric coeffi-
cients in this coordinate system are

g00 = g(∂t, ∂t) = N2 −N iNi and g0i = g(∂t, ∂i) = −Ni,

where Ni = hijN
j, so that

ds2 = (Ndt)2 − hij(N
idt+ dxi)(N jdt+ dxj)

(∂φ)2 =
1

N2
(∂0φ−N i∂iφ)2 − hij∂iφ∂jφ.

The determinant g of the 4-metric is related to the determinant h of the
3-metric as g = −N 2h. Inserting these results into the Klein-Gordon action

S =

∫

Ldt =
1

2

∫

η
(

gµν∂µφ∂νφ−m2φ2
)

, η =
√

|g|d4x,

one obtains for the momentum density, π, conjugate to the configuration
variable φ on Σt

π =
∂L

∂φ̇
=

√
h

N
(φ̇−N i∂iφ) =

√
h(nµ∂µφ).

A point in classical phase space consists of the specification of functions
(φ, π) on a Cauchy surface. By the result of Hawking and Ellis, smooth (φ, π)
give rise to a unique solution to (1). The space of solutions is independent
on the choice of the Cauchy surface.

For two (complex) solutions of the Klein-Gordon equation the inner product

(u1, u2) ≡ i

∫

Σ

(

ū1n
µ∇µu2 − (nµ∇µū1)u2

)√
h d3x = i

∫

(ū1π2 − π̄1u2)d
3x

defines a natural symplectic structure. Natural means, that (u1, u2) is inde-
pendent of the choice of Σ. This inner product is not positive definite. Let
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us introduce a complete set of conjugate pairs of solutions (uk, ūk) of the
Klein-Gordon equation1 satisfying the following ortho-normality conditions

(uk, uk′) = δ(k, k′) ⇒ (ūk, ūk′) = −δ(k, k′) and (uk, ūk′) = 0.

There will be an infinity of such sets. Now we expand the field operator in
terms of these modes:

φ =

∫

dµ(k)
(

akuk + a†kūk

)

and π =

∫

dµ(k)
(

akπk + a†kπ̄k

)

,

so that

(uk, φ) = ak and (ūk, φ) = −a†k.

By using the completeness of the uk and the canonical commutation relations
one can show that the operator-valued coefficients (ak, a

†
k) satisfy the usual

commutation relations

[ak, ak′ ] = [a†k, a
†
k′ ] = 0 and [ak, a

†
k′ ] = δ(k, k′). (2)

We choose the Hilbert space H to be the Fock space built from a ’vacuum’
state Ωu satisfying

akΩu = 0 for all k, (Ωu,Ωu) = 1. (3)

The ’vectors’ Ωu, a
†
kΩu, . . . comprise a basis of H. The scalar product given

by (2,3) is positive-definite.

If (vp, v̄p) is a second set of basis functions, we may as well expand the field
operator in terms of this set

φ =

∫

dµ(p)
(

bpvp + b†pv̄p

)

.

The second set will be linearly related to the first one by

vp =

∫

dµ(k)
(

(uk, vp)uk − (ūk, vp)ūk

)

≡
∫

dµ(k)
(

α(p, k)uk + β(p, k)ūk

)

v̄p =

∫

dµ(k)
(

(uk, v̄p)uk − (ūk, v̄p)ūk

)

≡
∫

dµ(k)
(

β̄(p, k)uk + ᾱ(p, k)ūk

)

.

1the k are any labels, not necessarily the momentum
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The inverse transformation reads

uk =

∫

dµ(p)
(

vpᾱ(p, k) − v̄pβ(p, k)
)

ūk =

∫

dµ(p)
(

− vpβ̄(p, k) + v̄pα(p, k)
)

.

As a consequence the Bogolubov-coefficients are related by

αα† − ββ† = 1 and αβt − βαt = 0. (4)

If the β(k, p) vanish, then the ’vacuum’ is left unchanged, but if they do not,
we have a nontrivial Bogolubov transformation

( a a† ) = ( b b† )

(
α β
β̄ ᾱ

)

and

(
b
b†

)

=

(
ᾱ −β̄
−β α

) (
a
a†

)

. (5)

which mixes the annihilation and creations operators. If one defines a Fock
space and a ’vacuum’ corresponding to the first mode expansion,

akΩu = 0,

then the expectation of the number operator b†pbp defined with respect to
the second mode expansion is

(Ωu, b
†
pbpΩu) =

∫

dµ(k)|β(p, k)|2.

That is, the old vacuum contains new particles. It may even contain an
infinite number of new particles, in which case the two Fock spaces cannot
be related by a unitary transformation.

Stationary and static space-times

A space-time is stationary if there exists a special coordinate system in
which the metric is time-independent. This property holds iff space-time
admits a timelike Killing field K = Kµ∂µ which fulfils the Killing equation
LKgµν = 0∇µKν + ∇νKµ = 0. In a static spacetime the timelike Killing
field is everywhere orthogonal to a family of hypersurfaces or satisfies the
Frobenius condition (has vanishing vorticity) K̃ ∧ dK̃ = 0, K̃ = Kµdx

µ.
Given such a Killing field, we may introduce adapted coordinates along the
congruence and in one hypersurface such that the metric is time-independent
and the shift vector Ni vanishes.
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If spacetime is stationary, there is a natural choice for the mode functions uk:
one may introduce a coordinate t upon which the metric does not depend
and with respect to which (the globally timelike) K takes the form K = ∂t.
Since ds2 = g00dt

2 + . . . = (K,K)dt2 + . . ., the coordinate t is in general
not the proper time of observers moving with the flow of K. However, since
∇K(K,K) = 0, we may scale K such that t is the proper time measured
by at least one comoving clock. Now we may choose basis functions uk that
satisfy

iLKuk = ω(k)uk and iLK ūk = −ω(k)ūk,

where the ω(k) > 0 are constant. The ω(k) are the frequencies relative to the
particular comoving clock and the uk and ūk are the positive and negative
frequency solutions, respectively. Now the construction of the vacuum and
Fock space is done as described above.

If spacetime is static, we may choose coordinates (t, xi) such that

K = ∂t and (gµν) =

(
N2 0
0 −hij

)

is time-independent. As modes we use

uk =
1

√

2ω(k)
e−iω(k)tφk(x

i)

which diagonalise LK . The Klein-Gordon equation simplifies to

Kφk ≡
(

− N√
h
∂i(N

√
hhij∂j) +N2m2

)

φk = ω2
kφk.

Since nµ∂µ = N−1∂t the inner product of two mode functions is

(u1, u2) =
ω1 + ω2

2
√
ω1ω2

ei(ω1−ω2)t
∫

φ̄1φ2 N
−1

√
h d3x

︸ ︷︷ ︸

(φ1,φ2)2

.

The elliptic operator K is symmetric with respect to the L2 scalar product
(., .)2 and may be diagonalised. Its positive eigenvalues are the ω2(k) and its
eigenfunctions form a complete ’orthonormal’ set on Σ, (φk, φk′)2 = δ(k, k′).
It follows then that the uk form a complete set with the properties discussed
earlier.

Ashtekar and Magnon [13] and Kay [14] gave a rigorous construction of the
Hilbert-space and Hamiltonian in a stationary spacetime. They started with
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a conserved positive scalar product (., .)E defined by the energy norm. This
norm is invariant under the time-translation map

α∗
t (φ) = φ ◦ αt or (α∗

t (φ))(x) = φ(αt(x)),

generated by the Killing field. When completeing the space of complex
solutions in the ’energy-norm’ one gets a complex (auxiliary) Hilbertspace
H̃. The time translation map extends to H̃ and defines a one-parameter
unitary group

α∗
t = eih̃t, h̃ self-adjoint.

Note, that from the definition of the Lie derivative,

d

dt
(α∗

tφ)|t=0 = −LKφ = ih̃φ.

The conserved inner product (φ1, φ2) can be bounded by the energy norm
and hence extends to a quadratic form on H̃. Let H̃+ be the positive spectral
subspace of H̃ and let K be the projection map P : H̃ → H̃+. For all real
solutions we may now define the scalar product as the inner product of the
projected solutions, which are complex. The one-particle Hilbert space H is
just the completion of the space H̃+ of ’positive frequency solutions’ in the
Klein-Gordon inner product.

Hadamard states

For a black hole the global Killing field is not everywhere timelike. One may
exclude the non-timelike region from space time which corresponds to the
imposition of boundary conditions. One may also try to retain this region
but attempt to define a meaningful vacuum by invoking physical arguments.
In general spacetimes there is no Killing vector at all. One probably has to
give up the particle picture in this generic situation.

In (globally hyperbolic) spacetimes without any symmetry one can still con-
struct a well-defined Hilbertspace, namely the Fockspace over a quasifree
vacuum state, provided that the two-point functions satisfies the so-called
Hadamard condition. Hadamard states are states, for which the two-point
function has the following singularity structure

ω(φ(x)φ(y)) ≡ ω2(x, y) =
u

σ
+ v log σ + w, (6)

where σ(x, y) is the square of the geodesic distance of x and y and u, v, w are
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smooth functions on M. It has been shown that if ω2 has the Hadamard
singularity structure in a neighbourhood of a Cauchy-surface, then it has
this form everywhere [17]. To show that, one uses that ω2 satisfies the wave
equation. This result can then be used to show that on a globally hyperbolic
spacetime there is a wide class of states whose two-point functions have the
Hadamard singularity structure.

The two-point function ω2 must be positive,

ω(φ(f)†φ(f)) =

∫

dµ(x)dµ(y) ω2(x, y))f̄(x)f(y) ≥ 0,

and must obey the Klein-Gordon equation. These requirements determine
u and v uniquely and put stringent conditions on the form of w.

In a globally hyperbolic spacetime the Cauchy problem has a unique solu-
tion. It follows that there are unique retarded and advanced Greenfunctions

∆ret(x, y) , ∆adv(x, y) with supp(∆ret) = {(x, y);x ∈ J+(y)}.

The Feynman Greenfunction is related to ω2 and the advanced Greenfunc-
tion as

i∆F (x, y) = ω2(x, y) + ∆adv(x, y).

Since ∆adv is unique, the ambiguities of ∆F are the same as those of ω2.
The propagator function

i∆(x, y) = [φ(x), φ(y)] = ∆ret(x, y) − ∆adv(x, y)

determines the antisymmetric part of ω2,

ω2(x, y) − ω2(y, x) = i∆(x, y),

so that this part is without ambiguities. For a scalar field without selfinter-
action we expect that

ω(φ(x1) . . . φ(xn)) = 0 for odd n

ω(φ(x1) . . . φ(x2n)) =
∑

i1<i2...<in
j1<j2...<jn

n∏

k=1

ω(φ(xik)φ(xjk
)).

A state ω fulfilling these conditions is called quasifree. Now one can show
that any choice of ω2(x, y) fulfilling the properties listed above give rise to
a well-defined Fock-space
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F =
∞⊕

n=0

Fn, (7)

over a quasifree vacuum state. The scalar-product on the ’n-particle sub-
space’ Fn in

Fn = {ψ ∈ D(Mn)symm/N}completion (8)

is

(ψ1, ψ2) =

∫

dµ(x1, .., xn, y1, .., yn)
n∏

i=1

ω2(xi, yi)ψ̄1(x1, .., xn)ψ2(y1, .., yn),

where we introduced the abbreviation dµ(x1, x2, ..) = dµ(x1)dµ(x2) . . .. Since
ω2 satisfies the wave equation, the functions in the image of 2 + m2 have
zero norm. The zero-norm states has been divided out in order to end up
with a positive definite Hilbertspace.

The smeared field operator is now defined in the usual way:

φ(f) = a(f)† + a(f̄),

where

(a(f̄)ψ)n(x1, .., xn) =
√
n+ 1

∫

dµ(x, y)ω2(x, y)f(x)ψn+1(y, x1, .., xn)

(a(f)†ψ)n(x1, .., xn) =
1√
n

n∑

k=1

f(xk)ψn−1(x1, .., x̌k, .., xn), n > 0

and (a(f)†ψ)0 = 0. It is now easy to see that ω2 is just the Wightman
function of φ in the vacuum state ψ0:

ω2(x, y) = (ψ0, φ(x)φ(y)ψ0).

3 The Unruh Effect

We may ask the question how quantum fluctuations appear to an accelerat-
ing observer? In particular, if the observer were carrying with him a robust
detector, what would this detector register? If the motion of the observer

10



undergoing constant (proper) acceleration is confined to the x3 axis, then
the world line is a hyperbola in the x0, x3 plane with asymptotics x3 = ±x0.
These asymptotics are event horizons for the accelerated observer. It is
helpful to use a noninertial frame of reference attached to the observer. To
find this frame we consider a family of accelerating observers, one for each
hyperbola with asymptotics x3 = ±x0. The natural coordinate system is
then the comoving one in which along each hyperbola the space coordinate
is constant while the time coordinate τ is proportional to the proper time as
measured from an initial instant x0 = 0 in some inertial frame. The world
lines of the uniformly accelerated particles are the orbits of one-parameter
group of Lorentz boost isometries in the 3-direction:

(
x0

x3

)

= ρ

(
sinhκt
coshκt

)

= eκωt
(

0
ρ

)

, (ωµ
ν) =

(
0 1
1 0

)

.

In the comoving coordinates (t, ρ, x2, x3)

ds2 = κ2ρ2dt2 − dρ2 − (dx1)2 − (dx2)2.

so that the proper time along a hyperbola ρ =const is κρt. The orbits are
tangential to the Killing field

K = ∂t = κ(x3∂0 + x0∂3) with (K,K) = (κρ)2 = g00. (9)

Some typical orbits are depicted in figure (1). Since the proper acceleration
on the orbit with (K,K) = 1 or ρ = 1/κ is κ, it is conventional to view
the orbits of K as corresponding to a family of observers associated with an
observer who accelerates uniformly with acceleration a = κ.

The coordinate system t, ρ covers the Rindler wedge R on whichK is timelike
future directed. The boundary H+ and H− of the Rindler wedge is given by
ρ = 0 and appears as a Killing horizon, on which K becomes null. Beyond
this event horizon the Killing vector field becomes spacelike in the regions
F, P and timelike past directed in L. The parameter κ plays the role of the
surface gravity. To see that, we set r − 2M = ρ2/8M in the Schwarzschild
solution and linearise the metric near the horizon r ∼ 2M . One finds that

ds2 ∼ (κρ)2dt2 − dρ2

︸ ︷︷ ︸

2-dim Rindler

spacetime

− 1

4κ2
dΩ2

︸ ︷︷ ︸

2-sphere of

radius 1/2κ

contains the line element of 2-dimensional Rindler spacetime, where κ =
1/4M is indeed the surface gravity of the Schwarzschild black hole.
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Figure 1: A Rindler-observer sees only a quarter of Minkowski space

Killing horizons and surface gravity

The notion of Killing horizons is relevant for the Hawking radiation and
the thermodynamics of black holes and can already be illustrated in Rindler
spacetime. Let S(x) be a smooth function and consider a family of hyper-
surfaces S(x) = const. The vector fields normal to the hypersurfaces are

l = g(x)(∂µS)∂µ,

with arbitrary non-zero function g. If l is null, l2 = 0, for a particular hyper-
surface N in the family, N is said to be a null hypersurface. For example,
the normal vectors to the surfaces S = r − 2M =const in Schwarzschild
spacetime have norm

l2 = g2gµν∂µS∂νS = g2
(

1 − 2M

r

)

,

so the horizon at r = 2M is a null hypersurface.

Let N be a null hypersurface with normal l. A vector t tangent to N is
characterised by (t, l) = 0. But since l2 = 0, the vector l is itself a tangent
vector, i.e.

lµ =
dxµ

dλ
, where xµ(λ) is a null curve on N .
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Now one can show, that ∇ll
µ|N ∼ lµ, which means that xµ(λ) is a geodesic

with tangent l. The function g can be chosen such that ∇ll = 0, i.e. so that
λ is an affine parameter. A null hypersurface N is a Killing horizon of a
Killing field K if K is normal to N .

Let l be normal to N such that ∇ll = 0. Then, since on the Killing horizon
K = fl for some function f , it follows that

∇KK
µ = flν∇ν(fl

µ) = flµlν∂νf = (∇K log |f |)Kµ ≡ κKµ on N .

One can show, that the surface gravity κ = 1
2∇K log f2 is constant on orbits

of K. If κ 6= 0, then N is a bifurcate Killing horizon of K with bifurcation
2-sphere B. In this non-degenerate case κ2 is constant on N . If N is a
Killing horizon of K with surface gravity κ, then it is also a Killing horizon
of cK with surface gravity c2κ. Thus the surface gravity depends on the
normalisation of K. For asymptotically flat spacetimes there is the natural
normalisation K2 → 1 and future directed as r → ∞. With this normal-
isation the surface gravity is the acceleration of a static particle near the
horizon as measured at spatial infinity.

A Killing field is uniquely determined by its value and the value of its deriva-
tive Fµν = ∇[µKν] at any point p ∈ M . At the bifurcation point p of a
bifurcate Killing horizon K vanishes, K(p) = 0, and hence is determined by
Fµν(p). In 2 dimensions Fµν(p) is unique up to scaling. The infinitesimal
action of the isometries αt generated by K takes a vector vµ at p into

LKv
µ = F µ

νv
ν . (10)

The nature of the map on Tp depends upon the signature of the metric. For
Riemannian signature it is an infinitesimal rotation and the orbits of αt are
closed with a certain period. For Lorentz signature (10) is an infinitesimal
Lorentz boost and the orbits of αt have the same structure as in the Rindler
case. A similar analysis applies to higher dimensions.

For example, for the Killing field (9) we have

∇KK = ±κK =⇒ surface gravity = ±κ.

The Rindler wedge R is globally hyperbolic with possible Cauchy hyper-
surface ΣR. Thus it may be viewed as spacetime in its own right and we
may construct a quantum field theory on it. When we do that, we obtain
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a remarkable conclusion, namely that the standard Minkowski vacuum ΩM

corresponds to a thermal state in the new construction. This means, that
an accelerated observer will feel himself to be immersed in a thermal bath
of particles with temperature proportional to his acceleration a [15],

kT = h̄a/2πc.

Unruh pointed out in addition that a Rindler detector would detect these
particles. The noise along a hyperbola is greater than the noise along a
geodesic, and this excess noise excites the Rindler detector. A uniformly
accelerated detector in its ground state may jump spontaneously to an ex-
cited state. Note that the temperature tends to zero in the limit in which
Planck’s constant h tends to zero. Such a radiation has non-zero entropy.
Since the use of a accelerated frame seems to be unrelated to any statistical
average, the appearance of a non-vanishing entropy is rather puzzling.

The Unruh effect shows, that at the quantum level there is deep relation
between the theory of relativity and the theory of fluctuations associated
with states of thermal equilibrium, two major aspects of Einstein’s work:
The distinction between quantum zero-point and thermal fluctuations is
not an invariant one, but depends on the motion of the observer.

Note that the temperature is proportional to the acceleration a of the ob-
server. Since a = 1/ρ this means that Tρ = const ⇐⇒ T

√
g00 = const. This

is just the Tolman-Ehrenfest relation [18] for the temperature in a fluid in
hydrostatic equilibrium in a gravitational field. The factor

√
g00 guarantees

that no work can be gained by transferring radiation between two regions
at different gravitational potentials.

Let us calculate the number of ’Rindler-particles’ in Minkowski vacuum. To
simplify the analysis, we consider a zero-mass scalar field φ in 2-dimensional
Minkowski space. In the Heisenberg picture, the expansions in terms of
annihilation and creation operators are

φ =

∫

dk
(

akuk + h.c.
)

, where uk =
1√
4πω

e−iωx0+ikx3

, ω = |k|

and

φ =

∫

dp
(

bpvp + h.c.
)

, where vp =
1√
4πε

ρip/κ e−iεt, ε = |p|.
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The β-coefficients are found to be

β(p, k) = −(ūk, vp) =
1

4π

∞∫

0

(
√
ω

ε
−

√
ε

ω

1

κρ

)

eikρρipdρ,

where we have evaluated the time-independent ’scalar-product’ at t = 0 for
which x0 = 0. Using the formula

∞∫

0

dxxν−1e−(α+iβ)x = Γ(ν)(α2 + β2)−ν/2e−iν arctan(β/α)

we arrive at

β(p, k) = −Γ(ip/κ)

4πκ
ω−ip/κ

(
√
ε

ω
± p√

εω

)

e∓πp/2κ for
k

ω
= ±1,

or at

|β(p, k)|2 =
1

2πκω

1

e2πε/κ − 1
.

The Minkowski spacetime vacuum is characterised by akΩM = 0 for all k.
Assuming that this is the state of the system, the expectation value of the
occupation number as defined by the Rindler observer, np ≡ b†pbp, is found
to be

(ΩM , npΩM ) =

∫

dk|β(p, k)|2 = volume × 1

e2πε/κ − 1
, (11)

Thus for an accelerated observer the quantum field seems to be in an equi-
librium state with temperature proportional to T = κ/2π = a/2π. Note,
that in cgs units, this becomes

(T/1oK) = (a/1021cm/sec2). (12)

Since T tends to zero as ρ→ ∞ the Hawking temperature (i.e. temperature
as measured at spatial ∞) is actually zero. This is expected since there is
nothing inside which could radiate. But for a black hole Tlocal → TH at
infinity and the black hole must radiate at this temperature.

Let us finally see, how the (massless) Feynman-Greenfunction in Minkowski
spacetime,

i∆F (x, x′) = 〈0|T (φ(x)φ(x′))|0〉 =
i

4π2

1

(x− x′)2 − iε
,
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appears to an accelerated observer. Let x = (t, ρ) and x′ = (t′, ρ) be two
events on the worldline of an accelerated observer. Since the invariant dis-
tance of these two events is 2ρ sinh κ

2 (t− t′), we have

∆F (x, x′) =
i

16π2ρ2

1

sinh2 κ
2 (t− t′) − iε

. (13)

After a Fourier transformation one arrives at the following spectral repre-
sentation of the Feynman-propagator as seen by this observer

∆F (x, x′) =
1

(2π)4
(
κ

ρ
)2

∫

d4p e−iE(t−t′)
( 1

p2 + iε
− 2πi

δ(p2)

eβ|E| − 1

)

. (14)

This is the finite temperature propagator. It follows, that, in equilibrium,
atoms dragged along the world line find their excited levels populated as
predicted by a temperature β−1 = a/2π.

4 The Stress-Energy Tensor

The operator of primary interest is the energy-momentum tensor. It de-
scribes the local energy, momentum and stress properties of the field and is
relevant for studying the back-reaction of the quantum field on the spacetime
geometry. Semiclassically one would expect that back-reaction is described
by the ’semiclassical Einstein equation’

Gµν = 8πG〈Tµν 〉,

where the right-hand side contains the expectation value of the energy-
momentum tensor of the relevant quantised field in the chosen state. If the
characteristic curvature radius L in a region of spacetime is much greater
then the Planck length lpl =

√

h̄G/c3, then in the calculation of 〈Tµν〉 one
can expand in the small parameter ε = (lpl/L)2 and retain only the terms up
to first order in ε (one-loop approximation). The term of order ε, containing
a factor h̄, represents the main quantum correction to the classical result.
In the one-loop approximation the contributions of all fields to 〈Tµν〉 are
additive and thus can be studied independently.

Some restrictions should be expected on the class of states on which 〈Tµν〉
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can be defined. The Hadamard condition provides a restriction of exactly
this sort of states.

The difficulties with defining

〈Tµν〉 = ω(Tµν)

are present already in Minkowski spacetime. The divergences are due to
the vacuum zero-fluctuations. The methods of extracting a finite, physically
meaningful part, known as renormalisation procedures, were extensively dis-
cussed in the literature [20]. A simple cure for this difficulty is (for free fields)
the normal ordering prescription:

ω( : Tµν : ) = ω(Tνν) − (ΩM , TµνΩM ).

The so defined vacuum expectation value of the stress-energy tensor van-
ishes. On curved spacetime there is no satisfactory generalisation of this
prescription since there is there is no preferred vacuum state and due to
vacuum polarisation effects we do not expect that the stress-energy of the
vacuum (assuming there is a natural one) vanishes.

To make progress let us look at an alternative formulation of the normal
ordering prescription. We first consider the ill-defined object φ2(x), which
is part of the stress-energy tensor. We may split the points and consider first
the object ω(φ(x)φ(y)) which solves the Klein-Gordon equation. This bi-
distribution makes perfectly good sense. For physically reasonable states ω
in the Fock space (e.g. states with a finite number of particles) the singular
behaviour of this bi-distribution is the same as that belonging to the vacuum
state, ω0(φ(x)φ(y)). For such states the difference

F (x, y) = ω(φ(x)φ(y)) − ω0(φ(x)φ(y))

is a smooth function of its arguments. Hence, after performing this ’vacuum
subtraction’ the coincidence limit may be taken. We then define

ω(φ2(x)) = lim
x→y

F (x, y).

The same prescription can be used for the stress-energy tensor instead of
φ2. We define

ω(Tµν(x)) = lim
x→x′

Dµν′F (x, x′), Dµν′ = ∂µ∂ν′ − 1

2
gµν [∂α∂

α′ −m2]
)

.
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Although this is not a physical definition of expectation values of the stress-
energy tensor it sensibly defines the differences of the expected stress energy
between two states,

ω1(Tµν) − ω2(Tµν).

In the absence of an obvious prescription to define the expectation values, it
is useful to take an axiomatic approach. Wald showed that a renormalised
stress tensor satisfying certain reasonable physical requirements is essentially
unique [19]. Its ambiguity can be absorbed into redefinitions of the coupling
constants in the (generalised) gravitational field equation. Wald argues that
one expects this operator to have the following properties:

1. Consistency: Whenever ω1(φ(x)φ(y)) − ω2(φ(x)φ(y)) is a smooth
function, then ω1(Tµν) − ω2(Tµν) is well-defined and should be given
by the above ’point-splitting’ prescription.

2. Conservation: In the classical theory the stress-energy tensor is con-
served. If the regularisation needed to define a stress-energy tensor
respects the diffeomorphism invariance, then

∇νT
µν = 0

must also hold in the quantised theory. This property is needed for
consistency of Einstein’s gravitational field equation.

3. In Minkowski spacetime, we have (ΩM , TµνΩM ) = 0.

4. Causality: We assume, that spacetime is asymptotically static. For
a fixed in-state, ωin(Tµν(x)) is independent of variations of gµν outside
the past lightcone of x. For a fixed out-state, ωout(Tµν) is independent
of metric variations outside the future light cone of x.

The first and last properties are the key ones, since they uniquely determine
the expected stress-energy tensor up to the addition of local curvature terms.
This fact is contained in the

Uniqueness theorem (Wald): Let Tµν and T̃µν be operators on globally
hyperbolic spacetime satisfying the axioms of Wald. Then the difference

Uµν = Tµν − T̃µν
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fixed initial geometry and state

µν (x) = 0

µνgδ

Tδ

Figure 2: Changes outside the past lightcone do not affect 〈Tµν(x)〉.

1. is a multiple of the identity operator,

2. is conserved, ∇νU
µν = 0,

3. is a local tensor of the metric. That is, it depends only on the metric
and its derivatives, via the curvature tensor, at the same point x.

As a consequence of the properties,

ω(Tµν) − ω(T̃µν)

is independent on the state ω and depends only locally on curvature invari-
ants. The Causality axiom can be replaced by a locality property, which
does not assume an asymptotically static spacetime. The proofs of these
properties are rather simple and can be found in the standard textbooks.

4.1 Calculating the stress-energy tensor

A ’point-splitting’ prescription where one subtracts from ω(φ(x)φ(y)) the
expectation value ω0(φ(x)φ(y)) in some fixed state ω0 fulfils the consistency
requirement, but cannot fulfil the first and third axiom at the same time.
However, if one subtracts a locally constructed bi-distribution H(x, y) which
satisfies the wave equation, has a suitable singularity structure and is equals
to (ΩM , φ(x)φ(y)ΩM ) in Minkowski spacetime, then all four properties will
be satisfied.
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To find a suitable bi-distribution one recalls the singularity structure (6) of
ω2(x, y). In Minkowski spacetime and for massless fields w = 0 and this
suggests that we take the bi-distribution

H(x, y) =
u(x, y)

σ
+ v(x, y) log σ

The resulting stress-energy obeys almost all properties, besides that for mas-
sive fields on Minkowski spacetime we still find a non-vanishing vacuum
expectation value, and that

∇ν ω(T µν) = ∇νQ,

where Q is a scalar density, locally dependent on the metric. Hence we
may modify our prescription by simply subtracting (Q + c)gµν from Tµν .
The constant c is chosen, such that on Minkowski spacetime the vacuum
expectation value vanishes.

Effective action

The classical metric energy momentum tensor

Tµν(x) =
2

√

|g|
δS

δgµν(x)

is symmetric and automatically conserved (for solutions of the field equation)
if it is gotten by variation of a diffeomorphism-invariant classical action S. If
we could construct a diffeomorphism-invariant quantum or effective action

Γ, whose variation with respect to the metric yields an expectation value of
the energy momentum tensor,

〈Tµν(x)〉 =
2

√

|g|
δΓ

δgµν(x)
,

then 〈Tµν〉 would be conserved by construction. There exists a number of
procedures for regularising 〈Tµν〉, i.e. dimensional, point-splitting or zeta-
function regularisation, to mention the most popular ones. Some of them are
rigorously defined only on Riemannian manifolds. Point-splitting is an ex-
ception in this respect. Unfortunately the ’divergent’ part’ of Tµν cannot be
completely absorbed into the parameters already present in the theory, i.e.
gravitational and cosmological constant and parameters of the field theory
under investigation. One finds that one must introduce new, dimensionless
parameters.
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The regularisation and renormalisation of the effective action is more trans-
parent, since it is a scalar. The divergent geometric parts of the effective
action, Γ =

∫
ηγdiv + Γfinite have the form

γdiv = A+BR+ C(Weyl)2 +D[(Ricci)2 −R2] +E∇2R+ FR2.

The part containing A and B can be absorbed into the classical action of
gravity. The remaining terms with dimensionless parameters C − F cannot
be absorbed into parameters already present in the theory. Upon varia-
tion with respect the metric, they lead to a 2-parameter ambiguity in the
expression for Tµν .

4.2 Effective actions and 〈Tµν〉 in 2 dimensions

In two dimensions there are less divergent terms in the effective action. They
have the form

Ldiv = A+BR.

The last topological term does not contribute to Tµν and the first one leads
to an ambiguous term ∼ Agµν in the energy momentum tensor.

The symmetric stress-energy tensor has 3 components, two of which are
(almost) determined by T µν

;ν = 0. As independent components we choose
the trace T = T µ

µ which is a scalar of dimension L−2.

The ambiguities in the reconstruction of T µν from its trace is most trans-
parent if we choose isothermal coordinates (x0, x1)

ds2 = e2σ
(

(dx0)2 − (dx1)2)
)

which always exist in 2-dimensions. Introducing null-coordinates

u =
1

2
(x0 − x1) and v =

1

2
(x0 + x1) ⇒ ds2 = 4e2σdudv

the non-vanishing Christoffel symbols are Γu
uu = 2∂uσ, Γv

vv = 2∂vσ and
the Ricci scalar reads R = −2e−2σ∂u∂vσ. Rewriting the conservation in
null-coordinates we obtain

∂u〈Tvv〉 + e2σ∂v〈T 〉 = 0 , ∂v〈Tuu〉 + e2σ∂u〈T 〉 = 0, (15)

where T = T µ
µ = e−2σTuv. This shows, that the trace 〈T 〉 determines 〈Tvv〉
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up to a function tv(v) and 〈Tuu〉 up to a function tu(u). These free functions
contain information about the state of the quantum system.

In the case of a classical conformally invariant field, classT µ
µ = 0. An impor-

tant feature of 〈Tµν〉 is that its trace does not vanish any more. This trace-
anomaly is a state-independent local scalar of dimension L−2 and hence
must be proportional to the Ricci scalar,

〈T 〉 =
c

24π
R = − c

12π
e−2σ∂u∂vσ

where c is the central charge of the scale invariant quantum theory. Inserting
this trace anomaly into (15) leads to

〈Tuu,vv〉 = − c

12π
eσ∂2

u,ve
−σ + tu,v, 〈Tuv〉 = − c

12π
20σ. (16)

Formally, the expectation value of the stress-energy tensor is given by the
path integral

〈Tµν(x)〉 = − 1

Z[g]

∫

Dφ 2√
g

δ

δgµν
e−S[φ] =

2√
g

δ

δgµν
Γ[φ],

where the effective action is given by

Γ[g] = − logZ[g] = − log

∫

Dφ e−S[φ] =
1

2
log det(−4c)

and we made the transition to Euclidean spacetime (which is allowed for the
2d models under investigation). For arbitrary spacetimes the spectrum of
4c is not known. However, the variation of Γ with respect to σ in

gµν = e2σ ĝµν ,

is proportional to the expectation value of the trace of the stress-energy
tensor,

δΓ

δσ(x)
= −2gµν(x)

δΓ

δgµν (x)
= −√

g〈T µ
µ(x)〉

and can be calculated for conformally coupled particles in conformally flat
spacetimes. From the conformal anomaly one can (almost) reconstruct the
effective action.

In particular, in 2 dimensions the result is the Polyakov effective action

Γ[g] − Γ[δ] =
c

96π

∫ √
gR

1

4R,
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where the central charge c is 1 for uncharged scalars and Dirac fermions
(see [21] for modifications of this result, for a spacetime with nontrivial
topology). The 〈Tµν〉 is gotten by differentiation with respect to the metric.
The covariant expression is

〈Tµν〉 =
c

24π

(

gµνR−∇µ∇ν
1

4R
)

+
c

48π

(

∇µ
1

4R · ∇ν
1

4R− 1

2
gµν∇α 1

4R · ∇α
1

4R
)

,
(17)

and in isothermal coordinates it simplifies to (16), as it must be. This energy-
momentum tensor is consistent, conserved and causality restricts the choice
of the Greenfunction 1/4. The ambiguities in inverting the wave operator
in (17) shows up in the free functions tu,v. A choice of these functions is
equivalent to the choice of the quantum state.

Let us now apply these results to the (t, r) part of the Schwarzschild black
hole

ds2 =
(

1 − 2M

r

)

dt2 − 1

1 − 2M
r

dr2,

which we treat as 2-dimensional black hole2. We use the ’Regge-Wheeler
tortoise coordinate’ r∗

r∗ = r + 2M log (
r

M
− 2) (18)

such that the metric becomes conformally flat

ds2 =
(

1 − 2M

r

)

(dt2 − dr2
∗) ≡ α(dt2 − dr2

∗). (19)

The event horizon at r = 2M has tortoise coordinate r∗ = −∞. As above
we introduce null-coordinates u = 1

2(t − r∗) and v = 1
2(t + r∗). Using

∂v = ∂t + ∂r∗ and ∂r∗ = α∂r we obtain for the light-cone components (16)
of the energy momentum tensor

〈Tuu,vv〉 = − c

12π

(2Mα

r3
+
M2

r4

)

+ tu,v, 〈Tuv〉 = − c

12π

2Mα

r3
2The resulting energy momentum tensor is not identical to tensor one gets when one

quantises only the s-modes in the 4-dimensional Schwarzschild metric [22].
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or for 〈Tµν〉 in the xµ = (t, r∗) coordinate system

〈T ν
µ 〉 = − cM

24πr4

(
4r + M

α 0
0 −M

α

)

+
1

4α

(
tu + tv tu − tv
tv − tu −tu − tv

)

(20)

The state-dependence resides in the free functions tu,v.

The Boulware state is the state appropriate to a vacuum around a static
star and contains no radiation at spatial infinity J ±. Hence tu and tv must
vanish and the energy-momentum of a quantum field around a static star is

〈Os|T ν
µ |Os〉 = − cM

24πr4

(
4r + M

α 0
0 −M

α

)

. (21)

However, this state is singular at the horizon. To see that, we use Kruskal
coordinates which are regular at the event horizon:

U = −e−u/2M and V = ev/2M so that ds2 =
16M3

r
e−r/2MdUdV.

With respect to these coordinates the energy momentum tensor takes the
form

〈TUU 〉 =
(M

U

)2(

4tu − c

3π
[
2Mα

r3
+
M2

r4
]
)

〈TV V 〉 =
(M

V

)2(

4tv −
c

3π
[
2Mα

r3
+
M2

r4
]
)

〈TUV 〉 =
M2

UV

c

3π

2Mα

r3
.

For the Boulware vacuum tu = tv = 0 and the expectation value the stress-
energy momentum is singular at the past and future horizon. The compo-
nent 〈TUU 〉 is regular at the horizon U = 0 if M 2tu = c/192π and 〈TV V 〉 is
regular at the horizon V = 0, if M 2tv = c/192π holds. The corresponding
state is called the Israel-Hartle-Hawking state. In this state the asymptotic
form of the energy-momentum tensor is

〈0HH |T µ
ν |0HH〉 ∼ c

384πM2

(
1 0
0 −1

)

=
cπ

6
(kT )2

(
1 0
0 −1

)

(22)

with T = 1/8πkM = κ/2πk. This is the stress-tensor of a bath of thermal

24



r = constant

t = constant

t =

r = 2M

IIV

II

III

T

X
r = 2M

8

t = − 8r = 0

r = 0 Killing horihon

VU

Figure 3: The Kruskal extension of Schwarzschild spacetime

radiation at temperature T . Finally, demanding that energy-momentum is
regular at the future horizon and that there is no incoming radiation, i.e.

tu =
c

192πM2
and tv = 0

results in

〈0U |T µ
ν |0U 〉 ∼

c

768πM2

(
1 1
−1 −1

)

=
cπ

12
(kT )2

(
1 1
−1 −1

)

(23)

The Unruh state is regular on the future horizon and singular at the past
horizon. It describes the Hawking evaporation process with only outward
flux of thermal radiation.
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4.3 The KMS condition

The most elegant and powerful derivation of the Hawking radiation involves
an adaption of the techniques due to Kubo to show that the Feynman prop-
agator for a space-time with stationary black hole satisfies the KMS con-
dition (periodicity of the finite temperature Green function in imaginary
time). Consider a system with time-independent Hamiltonian H. The time
evolution of an observable in the Heisenberg picture is

A(z) = eizHAe−izH ,

where z = t + iτ is complex time. For τ = 0 it is the time-evolution
in a static spacetime with Lorentzian signature and for t = 0 the time-
evolution in the corresponding static spacetime with Euclidean signature.
If exp(−βH), β > 0 is trace class, one can define the equilibrium state of
temperature T = 1/β:

〈A〉β =
1

Z
tr e−βHA, Z = tr e−βH . (24)

For two observables A and B we define the thermal expectation values

Gβ
+(z,A,B) = 〈A(z2)B(z1)〉β =

1

Z
tr

(

ei(z+iβ)HAe−izHB
)

(25)

and

Gβ
−(z,A,B) = 〈B(z1)A(z2)〉β =

1

Z
tr

(

BeizHAe−i(z−iβ)H
)

(26)

where z = z2−z1 and we have used the cyclicity under the trace. Both expo-
nents in (25) have negative real parts if −β < τ < 0; for (26) the condition
reads 0 < τ < β. Therefore, these two formulas define holomorphic func-
tions in those respective strips with boundary values Gβ

±(t, A,B). From
(25,26) it follows immediately, that

Gβ
−(z,A,B) = Gβ

+(z − iβ,A,B) (27)

For z = t this reads 〈BA(t)〉β = 〈A(t− iβ)B〉β . Condition (27) is called the
KMS condition after Kubo, Martin and Schwinger [23]. It can be given a
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precise sense in terms of C∗ algebras and their states for systems for which
exp(−βH) is not trace-class. The KMS-condition is now accepted as a def-
inition of ’thermal equilibrium at temperature 1/β’.

So far the analytic functions G± have been defined in disjoint, adjacent
strips in the complex time plane. The KMS-condition states that one of
these is the translate of the other and this allows us to define a periodic
function throughout the complex plane, with the possible exception of the
lines τ = =(z) = nβ. Let A = φ(~x) and B = φ(~y). Because of locality φ(x)
and φ(y) commute for spacelike separated events and

[φ(t, ~x), φ(0, ~y)] = 0 for t ∈ I ⊂ R.

Then the boundary values of

Gβ
+(z, ~x, ~y) = 〈φ(z, ~x)φ(0, ~y)〉β and Gβ

−(z, ~x, ~y) = 〈φ(0, ~y)φ(z, ~x)〉β
coincide on I and we conclude (by the edge-of-the-wedge theorem) that
they are restrictions of a single holomorphic, periodic function, Gβ(z, ~x, ~y),
defined in a connected region in the complex time plane except parts of the
lines τ = nβ.

4.4 Euclidean Black Hole

The most general spherically symmetric vacuum solution of Einsteins field
equation is given by the well-known Schwarzschild line element

ds2 = αdt2 − 1

α
dr2 − r2dΩ2, α = 1 − 2M/r. (28)

This metric can be analytically extended to

ds2 = αdz2 − 1

α
dr2 − r2dΩ2,

with z = t + iτ . Now we perform the same coordinate transformation to
(complex) Kruskal coordinates as we did for the Lorentzian solution:

Z = 2er∗/4M sinh
z

4M
and X = 2er∗/4M cosh

z

4M
.

The line element reads

ds2 =
16M3

r
e−r/2M

(

dZ2 − dX2
)

− r2dΩ2
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Figure 4: The analycity region of Gβ(z, ~x, ~y).

and the Killing field takes the form

K = ∂z =
1

4M

(

Z∂X +X∂Z

)

.

The null-hypersurface N = {U = 0} ∪ {V = 0} has normal (with affine
parametrisation)

l =

{
∂V on {U=0}
∂U on {V=0} .

The surface gravity is

κ = K log |f | =
1

4M
V ∂V log |V | =

1

4M
on {U = 0}

κ = K log |f | = − 1

4M
U∂U log |U | = − 1

4M
on {V = 0}

Let us set Z = T + iT . The orbits of K are
(
T
X

)

= 2er∗/4M
(

sinh t/4M
cosh t/4M

)

and

( T
X

)

= 2er∗/4M
(

sin τ/4M
cos τ/4M

)

,
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in the Lorentzian and Euclidean slices, respectively. As expected from the
general properties of bifurcation spheres, these are Lorentz-boosts and ro-
tations, respectively. Since the Euclidean slice is periodic in τ and since
the Greenfunction is analytic in z = t + iτ we conclude, that it is peri-
odic in imaginary time with period 8πM , G(z, . . .) = G(z+ 8πiM, . . .). This
corresponds to a temperature T = 1/8πM , the Hawking temperature.

4.5 Energy-momentum tensor near a black hole

In any vacuum spacetime Rµν vanishes and so do the two local curvature
terms which enter the formula for Tµν with undetermined coefficients. Hence
Tµν is well-defined in the Schwarzschild spacetime. The symmetry of 〈T µ

ν〉
due to the SO(3) symmetry of the spacetime of a non-rotating black hole and
the conservation ∇ν〈T µν〉 reduce the number of independent components of
〈T µ

ν〉. Christensen and Fulling [24] showed that in the coordinates (t, r∗, θ, φ)
the tensor is block diagonal. The (t, r∗) part admits the representation

〈T µ
ν〉 =

( T
2 − H+G

αr2 − 2Θ 0

0 H+G
αr2

)

+
W

4παr2

(
1 −1
1 −1

)

+
N

αr2

(−1 0
0 1

)

(29)

whereas the (θ, φ)-part has the form

〈T µ
ν〉 = (

T

4
+ Θ)

(
1 0
0 1

)

. (30)

Here N and W are two constants and

α(r) =
(

1 − 2M

r

)

, T (r) = 〈T µ
µ〉, Θ(r) = 〈T θ

θ〉 −
1

4
T (r)

H(r) =
1

2

r∫

2M

(r′−M)T (r′)dr′, G(r) = 2

r∫

2M

(r′−3M)Θ(r′)dr′.

The energy-momentum tensor is characterised unambiguously by fixing two
functions T (r),Θ(r) and two constants N,W . The constant W gives the
intensity of radiation of the black hole at infinity and N vanishes if the state
is regular on the future horizon.

The radiation intensity W in non-vanishing only in the Unruh vacuum. The
coefficient W for the massless scalar field (s = 0), two-components neutrino
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field (s = 1/2), electromagnetic field (s = 1) and gravitational field (s = 2)
have been calculated by Page and Elster [25]:

M2W0 M2W1/2 M2W1 M2W2

7.4 · 10−5 8.2 · 10−5 3.3 · 10−5 0.4 · 10−5

The coefficient N vanishes for the Unruh and Israel-Hartle-Hawking vacua.

The calculation of the functions in (29,30) meets technical difficulties con-
nected with the fact that solutions of the radial mode equation (see be-
low) are not expressed through known transcendental functions and, conse-
quently, one needs to carry out renormalisation in divergent integrals within
the framework of numerical methods. The results for 〈T t

t〉 and 〈T r
r〉 for the

Israel-Hartle-Hawking and the Unruh states are sketched in the following
figure. These calculations have been done by Howard/Candelas and Elster
[26]

In the Hartle-Hawking state the Kruskal coordinate components of 〈Tµν〉
near the horizon are found to be of order 1/M 4. The energy flux into the
black hole is negative, as it must be since the ’Hartle-Hawking vacuum’ is
time independent and the energy flux at future infinity is positive. This is
possible since 〈Tµν〉 need not satisfy the energy conditions.

4.6 s-wave contribution to 〈Tµν〉

The covariant perturbation theory for the 4d effective action Γ as developed
in [29] is very involved for concrete calculations. Here we shall simplify the
problem by considering s-modes of a minimally coupled massless scalar field
propagating in an arbitrary (possibly time-dependent) spherically symmetric
4-dimensional spacetime. The easiest way to perform this task is to compute
the contribution of these modes to the effective action. We choose adapted
coordinates for which the Euclidean metric takes the form

ds2 = γab(x
a) dxadxb + Ω2(xa)ωijdx

idxj ,

where the last term is the metric on S2. Now one can expand the (scalar)
matter field into spherical harmonics. For s-waves, φ = φ(xa), the action
for the coupled gravitational and scalar field is

S = −1

4

∫

[Ω2 γR + ωR + 2(∇Ω)2]
√
γd2x+ 2π

∫

Ω2(∇φ)2
√
γd2x,
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where γR is the scalar curvature of the 2d space metric γab,
ωR = 2 is the

scalar curvature of S2 and (∇Ω)2 = γab∂aΩ∂bΩ. The purely gravitational
part of the action is almost the action belonging to 2d dilatonic gravity with
two exceptions: first, the numerical coefficient in front of (∇Ω)2 is different
and second, the action is not invariant under Weyl transformation due to the
ωR term. The action is quite different from the actions usually considered
in 2d (string-inspired) field theories, because of the unusual coupling of φ to

the dilaton field Ω. Choosing isothermal coordinates, γab = e2σγf
ab, where

γf
ab is the metric of the flat 2d space, one arrives with ζ-function methods

at the following exact result for the effective action for the s-modes [30]

Γs = (n)Γs +(i) Γ

(n)Γ[σ,Ω] =
1

8π

∫ ( 1

12
γR 1

4γ

γR− 4γΩ

Ω

1

4γ

γR
)√

γd2x

(i)Γ[Ω] = Γs[σ = 0,Ω] =
1

2
log det

(

−4f +
4fΩ

Ω

)

.
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The second contribution (i)Γ is invariant under 2d Weyl transformation,
whereas the first one is not. Unfortunately, the determinant cannot be
calculated exactly and one must resort to some perturbation expansion. For
details I refer to [30]. In the no-backscattering approximation one finds

(1)Γ =
1

8π

∫ ( 1

12
γR 1

4γ

γR− 4γΩ

Ω
×

[

1 + log
4γΩ

µ2Ω

])√
γd2x.

To this one need to add the following contribution which takes the back-
scattering into account

(2)Γ = − ξ

12 · 8π

∫ (
γR 1

4γ

γR + local terms
)√

γd2x,

where ξ ∼ 0.9. From this effective action one obtains 〈Tµν〉 by variation
with respect to the metric. To get the flux of the Hawking radiation we
need to continue back to Lorentzian spacetime by changing the signs in the
appropriate places. According to [31] we arrive at the in-vacuum energy-
momentum tensor by replacing −1/4 by the retarded Greenfunction. Ne-
glecting backscattering the luminosity of the black hole is the found to be

L = − π

12

1

(8πM)2
.

This exactly coincides with the total s-wave flux of the Hawking radiation
obtained with other methods [5] without taking backscattering effects into
account. With backscattering, the Hawking radiation is modified and com-
pares well with that obtained by other means [32].

5 Wave equation in Schwarzschild spacetime

The most dramatic result arising from investigation of particle creation near
black holes was Hawking’s discovery that particle creation also occurs near
a Schwarzschild black hole, resulting in ’emission’ of a thermal spectrum of
particles [4]. We give the main steps of the derivation and the discussion of
this result.

We study the classical wave propagation of a Klein-Gordon scalar field in
region I of the extended Schwarzschild spacetime (6). One might expect,
that any solution in this region must have started from infinity or must
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have entered region I from the white hole region III. At late times, one
expects that every solution will propagate into the black hole region II
and/or propagate.

For the investigation we use, that in in Schwarzschild coordinates the Lapla-
cian reads

2 =
1

α

∂2

∂t2
−

(

α
1

r

∂2

∂r2
r + α′ ∂

∂r

)

+
~L2

r2
. (31)

In the spherically symmetric spacetime we may set

φ =
f(t, r)

r
Ylme

−iωt.

The wave equation (2 +m2)φ for reduces to the radial equation

∂2f

∂t2
− ∂2f

∂r2∗
−

(

1 − 2M

r

)(2M

r3
+
l(l + 1)

r2
+m2

)

f = 0, (32)

where the tortoise coordinate r∗ has been defined above, M is the mass of the
black hole and m the mass of the Klein-Gordon field. This equation can be
identified with the wave equation for a massless scalar field in 2-dimensional
flat spacetime with scalar potential

V (r∗) =
(

1 − 2M

r

)(2M

r3
+
l(l + 1)

r2
+m2

)

.
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As r∗ → −∞ (i.e. r → 2M) the potential falls off exponentially, V ∼
exp(r∗/2M), and as r∗ → ∞ the potential behaves as ∼ m2 − 2Mm2/r∗ in
the massive case and ∼ l(l + 1)/r2 in the massless case. In the asymptotic
region r → ∞ this equation possesses outgoing solution ∼ eiωr∗ and ingoing
solutions ∼ e−iωr∗ . In terms of the null-coordinates the asymptotic solutions
look like

outgoing:
1

r
e−iωu, ingoing:

1

r
e−iωv . (33)

Because of the potential term in (32) the incoming waves will partially scat-
ter off the gravitational field to become a superposition of incoming and
outgoing waves.

We decompose φ into a complete set of positive frequency modes denoted
by uωlm:

φ =
∑

l,m

∫

dω
(

aωlmuωlm + a†ωlmu
†
ωlm

)

,

which are normalised according to

(uω1l1m1
, uω2l2m2

) = δ(ω1 − ω2)δl1l2δm1m2
,

where we used the conserved ’norm’ introduced earlier,

(u1, u2) = i

∫

Σ

(

u†1n
µ∇µu2 − (nµ∇µu

†
1)u2

)√
hd3x,

and are chosen to reduce to the incoming spherical modes (33) in the remote
past. The state should correspond to the absence of incoming radiation,

aωlmψ0 = 0. (34)
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6 Back-reaction

It is natural to postulate that the back-reaction effects are governed by the
semiclassical Einstein equation (see the lectures of Kiefer)

Gµν = 8πG〈Tµν 〉.

The main effect of the quantum field will be a decrease of M at the rate at
which energy is radiated to infinity by particle creation. Since the spacetime
is static outside the collapsing matter, the expected energy current

Jµ = 〈Tµν〉Kν

is conserved in that region. The calculation showed, that there will be a
steady nonzero Flux F . In [27] the contribution of the different particle
species to this flux has been determined. The contribution of massive par-
ticles of rest mass m is exponentially small if m > κ. Black holes of mass
M > 1017 can only emit neutrinos, photons and gravitons. Black holes of
mass 5 · 1014 ≤M ≤ 1017 can also emit electrons and positrons. Black holes
of smaller mass can emit heavier particles. A non-rotating black hole emits
almost as a body heated to the temperature

T [0K] =
h̄κ

2πc
=

h̄c3

8πGkM
∼ 1026 1

M [g]
.

The deviation from thermal radiation is due to the frequency dependence
of the penetration coefficient Γsωl. This coefficient is also strongly spin-
dependent

Γsωl ∼ ω2s+1.

As spin increases, the contribution of particles to the radiation of a non-
rotating black hole diminishes. The distribution of the radiated particles in
different mass-intervals is shown in the following table:
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M [g] L erg
sec particles radiated

M > 1017 3.5 × 1012
(

1017g
M

)2
81.4% νe, ν̄e, νµ, ν̄µ

16.7% γ 1.9% g

1017 > M > 5 × 1014 6.3 × 1016
(

1015g
M

)2
45% νe, ν̄e, νµ, ν̄µ

9% γ 1% g
45% e−, e+

1014 > M > 1013.5 1019
(

1014g
M

)2
48% νe, ν̄e, νµ, ν̄µ

28% e−, e+ 11% γ
1% g 12% N, N̄

The following formula describes the rate of mass loss

−dM
dt

∼ 4 · 10−5f ·
(mpl

M

)2mpl

tpl
= 7.7 · 1024f ·

( 1

M [g]

)2 g

sec
=

α

M2
. (35)

The contributions of the (massless) particle species are encoded in f(M).
From Page we take

f = 1.02h(
1

2
) + 0.42h(1) + 0.05h(2),

where h(s) is the number or distinct polarisations of spin-s particles.

The rate equation (35) is easily integrated to yield

M(t) = (M 3
0 − 3αt)1/3,

We see that a black hole radiates all of its mass in a finite time τ ∼M 3
0 /3α.

Inserting for α yields

τ ∼ 1071 M

M�
sec.

If primordial black holes of mass ∼ 5 · 1014g were produced in the early
universe, they would be in the final stages of evaporation now. Primordial
black hole of smaller mass would have already evaporated and contributed
to the γ-ray background. See the review of Carr [28] for the possibility of
observing quantum explosions of small black holes.
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The magnitude of the Kruskal coordinate components of 〈Tµν〉H near the
black hole are found to be of order 1/M 4 in Planck units, as expected on
dimensional grounds. Since the background curvature is of order 1/M 2 the
quantum field should only make a small correction to the structure of the
black hole for M � 1, or M � 10−5g.

7 Generalisations and Discussion

In the previous section we have studied the Hawking effect in the case of
the Schwarzschild black hole. Lets us consider now different generalisations
of this effect and its possible consequences.

7.1 Hawking radiation of rotating and charged holes

The Kerr solution has hypersurfaces

r = r± = M ±
√

M2 − a2,

where a = J/M , which are Killing horizons of the Killing fields

K± = k + Ωm = k +
( a

r2± + a2

)

m k = ∂t, m = ∂φ,

with surface gravities

κ± =
r± − r∓

2(r2
± + a2)

.

For the extreme Kerr solution with a2 = M2 the surface gravity vanishes.

For a Schwarzschild hole the number of particles per unit time in the fre-
quency range ω to ω + dω passing out through a surface of the sphere is

1

e8πMω − 1

dω

2π
.

For a Kerr Black hole at large r, ω is replaced by ω −mΩ in this formula,
where m is the azimuthal quantum number of the spheroidal harmonics, and
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Ω is the angular speed of the event horizon. Hence, the Planck factor at J+

becomes

1

e2π(ω−mΩ)/κ ± 1
, + fermion, +bosons.

The emission is stronger for positive m than negative ones. In the boson
case, when ω < mΩ,

e2π(ω−mΩ)/κ − 1 < 0,

and super-radiance occurs: the effect of radiation amplifies the incoming
classical wave with positive m. The result admits the following interpreta-
tion: Consider a rotating black hole enclosed in a mirror-walled cavity. A
scattering of a ’particle’ in a superradiant mode by the black hole increases
the number of quanta. After reflection by the mirror, these quanta are again
scattered on the black hole and their number increases again, and so on. No
stationary equilibrium distribution is possible for such modes. However, if
the size of the cavity is not too large, r < 1/Ω, then the superradiative mode
are absent and equilibrium is possible. An related effect is that the rotation
of the hole enhances the emission of particles with higher spins.

For a charged Hole with Reissner-Nordstrom metric

ds2 =
(

1 − 2M

r
+
e2

r2

)

dt2 − 1

1 − 2M
r + e2

r2

dr2 + r2dΩ2

the event horizon is at

r = r+ = M + (M2 − e2)1/2

and the surface gravity is found to be

κ =
1 − 16π2e4/A2

4M
,

where A = 4πr2
+ is the area of the horizon. The temperature of the charged

hole is

T =
1 − 16π2e4/A2

8πkM
.

If follows that the presence of the charge depresses the temperature of the
hole and hence the radiation of neutral particles. For an extremal holes with
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charge e = M or with a2 = M2, the surface gravity and hence the tempera-
ture of the hole is zero, whereas the area is not (A = 4πM 2 for the extreme
Reissner-Nordstrom hole). In the laws of black hole thermodynamics the
entropy of a black hole is S = A/4h̄ and hence non-vanishing for extreme
black holes. The formulation of the third law, namely that S → 0 as T → 0,
holds not true for extremal holes. The failure of the formulation of the third
law may not be too disturbing. There other quantum systems (e.g. with a
degenerate ground state) for which it fails as well.

7.2 Loss of Quantum Coherence

Consider the behaviour of the quantum field in the spacetime of a collapse,
fig. 7 in which backreaction effects are not taken into account. The state
of the field at late times in region I, and in particular the flux of thermal
particles reaching infinity, must be described by a density matrix. The
particles which entered the black hole at early times are correlated with
the particles in region I. There is always a loss of information whenever
one performs an inclusive3 measurement outside the horizon. Such entropy
increase is common to all inclusive measurements in physics. Perhaps we can
understand this situation better if we recall the resolution of the well-known
question raised by Einstein, Podolsky and Rosen. A pure quantum state
is defined globally; its coherence may extend over field variables located at
well-separated point on a space-like surface.

From the algebraic viewpoint, this effect may be understood as follows:
Consider the Cauchy surface Σ = ΣI ∪ ΣII . The domains of dependence
D(ΣI) and D(ΣII) (more accurately, their interior) are globally hyperbolic
spacetimes. Let us distinguish between the set of out-states corresponding
to particles moving away from the black hole (the visible ones) and those
falling into the hole (the invisible ones). When one calculates expectation
values

〈A〉 = (ψ,Aψ)

of operators A depending only on the creation and annihilation operators
belonging to the visible modes this expectation value can be written as

〈A〉 = tr ρA.

3not all commuting observables are measured
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Figure 7: A conformal diagram of the spacetime resulting from a complete collaps of a

spherical body. The region II lies outside of the chronological past of J+.

In a Fockspace construction one can derive an explicit formula for the density
matrix ρ in terms of the pure state ψ. Here it suffices to sketch the emergence
of a mixed state from a pure one. let ψ = ψI

i ⊗ ψII
j be orthonormal pure

states in the big Hilbertspace H = HI ⊗ HII . Let us further assume that
the observable A is the identity in HII . Then the expectation value

(ψ,Aψ) in the pure state ψ =
∑

αiψ
I
i ⊗ ψII

i ,
∑

|αi|2 = 1

becomes

(ψ,Aψ) =
∑

ij

ᾱiαj(ψ
I
i ⊗ ψII

j , Aψ
I
j ⊗ ψII

j )

=
∑

pi(ψ
I
i , Aψ

I
i ) = tr (ρA),

where pi = |αi|2 and ρ =
∑
piPi. The Pi are the projectors on the states

ψI
i . We have used, that the ψII

i are orthonormal. Thus, if we are only
measuring observables in the region I outside of the black hole and ignore
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the information about the inside, then pure states become indeed mixed
states. As is also clear, there are operators for which (ψ,Aψ) cannot be
written as tr ρA.

Consider now the spacetime (8) in which back-reaction causes the black hole
to ’evaporate’. The visible particles propagating to infinity can be described

J

r = 0

r = 0 (singularity)

event of complete evaporation
M = M

M = 0

0

−

J +

Figure 8: A conformal diagram of a spacetime in which black hole formation and evapo-

ration occurs. The contour labelled M = 0 lies at the (retarded) time corresponding to

the final instant of evaporation.

by a (thermal) density matrix. The particle creation and scattering will be
described by an unitary S-matrix, provided that the invisible particles are
represented in the ’out’-Hilbertspace. What happens now when the black
hole disappears from the spacetime? Apparently at late times, if one takes
the ’out’-Hilbert space to be the Fock space associated with visible particles,
the entire state of the field is mixed. Then one cannot describe particle
creation and scattering by a unitary S-matrix, since an initial pure state
evolved into a density matrix. This is the phenomenom of loss of quantum

coherence. What are the possible ways out of this problem? A complete
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calculation including all back-reaction effects might resolve the issue, but
even this is controversial, since the resolution very probably requires an
understanding of the Planck scale physics. For example, QFT predicts that
Tloc → ∞ on the horizon of a black hole. This should not be believed when
T reaches the Planck energy. The quantum aspects of gravity cannot be any
longer ignored and this temperature is then of the order of the maximum
(Hagedorn) temperature of string theory.

A natural approach to dealing with this situation is to consider ’toy models’,
for example in 2 spacetime dimensions, in which the semiclassical analysis
could be done. In lower dimensions one adds a ’dilaton’ field to render
gravity non-trivial (this field naturally arises in low energy string theory).
The resulting 2-dimensional theories are dynamically nontrivial and mimic
many features of four-dimensional general relativity: they possess black-hole
solutions, Hawking radiation and there exist laws of black hole thermody-
namics which are completely analogous to the laws in 4 dimensions. The
topic became fashionable after Ed Witten’s paper on ’string theory and
black holes’ [34]. In the string-context the (effective) action for the mass-
less string modes should be a renormalisable Weyl-invariant 2-dimensional
sigma-model, containing a dilaton field. Callen et.al [35] studied the model

S =
1

2π

∫

d2x
√−g

(

e−2σ [R+ 4(∇σ)2 + 4λ2] +
1

2
(∇f)2

)

,

containing a metric field gµν , a dilaton field σ and a matter field f . The
Hawking radiation of the f -’particles’ can be calculated the way we explained
in our two-dimensional model calculations above. I am not aware that these
model calculations have so far resolved the problems with the final stage of
the black hole evaporations (the problems are the same as those with the
Liouville theory at strong-coupling). It would be of considerable interest to
study these toy models beyond the semiclassical approximation. One may
hope that they will yield some further insights into the nature of black hole
evaporation.

In these lectures I had now time to discuss the powerful (albeit formal)
path integral approach to quantum fields in curved spacetimes. At present
this approach seems to be best suited to include interaction, in particular
in explicit calculation [33]. With path integral methods it has been shown,
that in certain interacting toy models the interaction does not change the
thermal character of the Hawking radiation [21], in accordance with general
arguments of Gibbons and Perry. Also, I did not touch the new results
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about perturbative renormalisability of field theories in curves spacetimes
[1].
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