
Chapter 16

Effective potentials

We have already pointed out the difficulty with (local) mass terms in pure gauge theories. Ex-

plicit mass terms spoil the crucial gauge invariance of the massless theory (however, as we have

seen in the Schwinger model, non-local gauge invariant mass terms are possible). The problem

of generating masses in a manner consistent with gauge invariance was solved by Weinberg and

Salam. For a historical account and references see [53]. They used the idea of spontaneous sym-

metry breaking. A familiar example of this mechanism is the magnetisation of a ferro-magnetic

material below its Curie temperature.

In field theory the symmetry breaking is implemented by scalar fields which minimally

couple to gauge fields and interact with themselves. The electro-weak Lagrangian for the gauge,

scalar and fermion fields has the form

L = −1

4
FµνF

µν + ψ̄(i /D)ψ + (Dµφ)
†Dµφ− Γψ̄φψ − V (φ), (16.1)

where Fµν is the field strength tensor (8.71), /D the Dirac operator (8.66) acting on quarks and

leptons, Dµφ = (∂µ − iAµ)φ the covariant derivative of the scalar field, Γψ̄φψ the Yukawa

interaction between the fermions and scalars and V (φ) the self-interaction of the scalars. All

fields transform under certain representation of the electro-weak gauge group SU(2)L × U(1).

If the scalar field acquires a non-vanishing vacuum expectation value, 〈φ〉 = v, then both

the gauge bosons and fermions may become massive, mA = ev, mψ = Γv, due to the third and

fourth term on the right hand side of (16.1). In what follows we shall concentrate on the scalar

sector to understand how φ can acquire a non-vanishing vacuum expectation value. The proper

quantities to describe the spontaneous symmetry breaking mechanism are effective potentials.
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16.1 Legendre transformation

First we study these effective potential in quantum mechanics. We have already seen that the

Schwinger function

W (β, j) =
1

β
log tr e−β(H−jq) =

1

β
log

[

c ·
∫

Dx exp
(

− S + j

β
∫

0

x(τ)
)]

, (16.2)

where j is a constant external current, has the property that

W (j) = lim
β→∞

W (β, j) = −E0(j). (16.3)

HereE0(j) denotes the ground state energy of the shifted HamiltonianH−jq. The conventional

effective potential is obtained from the Schwinger function by a Legendre transformation

Γ(β, φ̄) = (LW )(φ̄) = sup
j

[

jφ̄−W (β, j)
]

. (16.4)

The maximizing current (if it exists) is called the current conjugate to φ̄.

Since Legendre transformations play an important role in the classical mechanics, thermody-

namics and quantum field theory, let us first collect some relevant properties of these transfor-

mations. In the following φ̄ and j are elements of a convex set inRn.

1. The Legendre transform of a function which is convex for sufficient large arguments (here

we are not concerned with domain problems) is always convex.

To see that let

φ̄α = (1−α)φ̄1 + αφ̄2, 0 ≤ α ≤ 1 (16.5)

be a point between φ̄1 and φ̄2. Then

Γ(φ̄α) = sup
j

[

(1−α)(j, φ̄1) + α(j, φ̄2)− {(1−α) + α}W (j)
]

≤ (1−α) sup
j

[

(j, φ̄1)−W (j)
]

+ α sup
j

[

(j, φ̄2)−W (j)
]

= (1− α)Γ(φ̄1) + αΓ(φ̄2),

where we have used that the supremum of the sum is less or equal to the sum of the

suprema. The last expression is just the linear interpolation between the points (φ̄i,Γ(φ̄i)).

Thus we have shown that the graph of Γ is always below the segment between two points

on this graph and this proves the convexity of Γ.

————————————
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2. The Legendre transform is involutive on convex functions.

For convex W ’s there is a hyperplane passing through (j0,W (j0)) and lying below the

graph of W . In other words, there is a φ̄ such that

W (j0) + (φ̄, j − j0) ≤W (j) for all j.

It follows that

(φ̄, j)−W (j) ≤ (φ̄, j0)−W (j0) =⇒ Γ(φ̄) ≤ (φ̄, j0)−W (j0).

Since this is true for any j0, we conclude

W (j0) ≤ (φ̄, j0)− Γ(φ̄) =⇒W (j0) ≤ (L2W )(j0),

that is the double-Legendre transform is always greater or equal to the original function.

On the other hand

Γ(φ̄) ≥ (φ̄, j)−W (j) for all φ̄ =⇒W (j) ≥ (φ̄, j)− Γ(φ̄).

Taking the supremum over all φ̄ of the last inequality we conclude

W (j) ≥ (L2W )(j),

or that the double-Legendre transform is always less or equal to the original function.

Together with the above inequality we conclude that for any convex function

(L2W )(j) = W (j). (16.6)

3. If a continuous Schwinger function is not differentiable and possesses a cusp, then Γ =

LW develops a plateau. In the one-component case the width of the plateau is equal to

the jump of W ′ at the cusp. Conversely, a plateau is transformed into a cusp.

This property follows from the graphical representation of the Legendre transformation:

Γ(φ̄) is just L(0), where the linear function L(j) = φ̄j − c is uniquely defined by the

requirement that its graph (which is a plane) touches W (j). For a given φ̄ and differen-

tiable and strictly convex Schwinger function the conjugate current is determined by the

requirement that L(j) is tangential to the graph of −W (j) at the conjugate current. The

constant c in the linear function is then just c = φ̄j+W (j) where j denotes the conjugate

current.

4. An immediate consequence of the previous properties is that the double-Legendre trans-

form of any function (which is convex for large arguments) is the convex hull of this

function.

————————————
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5. In the differentiable case the conjugate variables φ̄ and j are related by

φ̄ =W ′(j) and j = Γ′(φ̄). (16.7)

If we replace (j, φ̄) → (p, ẋ) and (W,Γ) → (H,L) this is the familiar Legendre transfor-

mation in classical mechanics from the Hamiltonian to the Lagrangian formulation.

6. One can prove the following identities

LW = Γ =⇒ LWα = Γα, where Fα(x) = αF (x/
√
α)

W (j) + Γ(φ̄) ≥ (j, φ̄), = ⇐⇒ (j, φ̄) are conjugate

W (j) =
1

α
jα ⇐⇒ Γ(φ̄) =

1

β
φ̄β, where

1

α
+

1

β
= 1.

After this excursion to the property of Legendre transformation we note that the Schwinger

function is always convex, since

d2

dj2
W (β, j) =

1

β

β
∫

0

dsdτ
〈[

x(s)− 〈x(s)〉j
][

x(τ)− 〈x(τ)〉j
]〉

j
≥ 0,

where the expectation values are taken with respect to the shifted action S − j
∫

x, and thus

are current-dependent. To get a better intuition for its Legendre transform Γ we note that for

β → ∞

W (j) = sup
ψ
〈jq −H〉 = sup

ρ
tr ρ[jq −H ] = sup

φ̄

[

jφ̄− inf
trρq=φ̄

tr (ρH)
]

, (16.8)

where we have used that the set of density matrices {ρ|tr ρ = 1, ρ = ρ† > 0} is a convex and

compact set, and hence the infimimum of the linear functional tr ρ(jq −H) is attained for pure

states, ρ = Pψ.

On the other hand, the constraints (there may be more than one q and thus several constraints)

tr ρq = φ̄ define a plane and thus the density matrices obeying these constraints form again a

convex (and compact) set. It follows that the infimum of tr ρH on the constraint plane is attained

on the intersection of this plane with the boundary of the set of density matrices. Let us assume

that

inf
trρ=φ̄i

tr ρH = tr ρiH, i = 1, 2

that is, ρ1 and ρ2 are the densities which minimize tr ρH under constraints tr ρiq = φ̄i. Defining

ρα = (1−α)ρ1 + αρ2 one easily sees that tr ραq = φ̄α (see 16.5) and hence

inf
tr ρq=φ̄α

tr ρH ≤ tr ραH = (1−α)tr ρ1H + αtr ρ2H

= (1−α) inf
trρq= φ̄1

tr ρH + α inf
tr ρq= φ̄2

tr ρH.

————————————
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This implies that the function

Γ(φ̄) = inf
tr ρq=φ̄

H (16.9)

is convex. From (16.8) it follows thatW is the Legendre transform of the convex potential Γ and

from our general consideration about Legendre transformations we conclude that the Legendre

transform of Γ must be W :

Γ(φ̄) = sup
j

[

jφ̄−W (j)
]

and W (j) = sup
φ̄

[

jφ̄− Γ(φ̄)
]

. (16.10)

The infimum of Γ is

inf
φ̄
Γ(φ̄) = inf

φ̄
inf

tr ρq=φ̄
tr ρH = inf

ρ
H = inf

ψ
〈ψ|H|ψ〉 = E0(j = 0) (16.11)

and thus just the vacuum energy of the (un-shifted) Hamiltonian.

The field φ̄which minimizes Γ is then the expectation value φ̄ = tr ρq of q in the minimizing

state ρ. If ρ is a pure state, then φ̄ is the unique vacuum expectation value of q. Else ρ can be

written as convex combination of two pure states ρ1 and ρ2 with the same energy. It follows

that for all φ̄ between φ̄1 and φ̄2, where φ̄i = tr ρiq, the value Γ(φ̄) is the same. In particular

we conclude that Γ need not be strictly convex. More precisely, if the boundary of the set of

states contains a ”plane part” then any convex combination of two states on this plane is on the

boundary. Thus the inequality above (16.9) becomes an equality and Γ develops a plateau. Ac-

cording to what we have said earlier, the Schwinger function is non-differentiable if Γ develops

a plateau.

16.2 Effective potentials in field theory

Consider a field theory described by a Lagrangian density

L(φ(x)) =
∫

{1

2
∂iφ(x)∂iφ(x) + V (φ(x))

}

, (16.12)

where φ(x) is a Higgs field which generally transforms non-trivially under the action of a sym-

metry group G. The classical vacuum is defined by the minimum of the classical action and

thus is given by a constant field which minimizes the classical potential V (φ). This value is not

necessarily the vacuum expectation value of the quantum field 〈φ(x)〉. To study the quantum

corrections to the classical value one introduces effective potentials.

Similarly to the quantum mechanical situation we begin with the partition function

Z(Ω, j) =
∫

Dφ exp
(

− S[φ] + j
∫

Ω
φ(x)

)

(16.13)

————————————
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in the presence of a constant external current j. The current is chosen constant so as to preserve

the translational invariance of Z(j). For finite volumes Ω, translational invariance is understood

to be with respect to periodic boundary conditions. Again the Schwinger function

W (Ω, j) =
1

Ω
log Z(Ω, j) (16.14)

is strictly convex since its second derivative is (Ω times) the expectation value of the positive

quantity (M−〈M〉j)2, whereM = (1/Ω)
∫

φ(x)ddx. The current-dependent expectation values

are to be computed with the shifted action as in (16.13). W (j) allows one to compute the

effective field, defined as

〈φ(x)〉j =
∫ Dφ φ(x) e−S[φ]+j

∫

φ

∫ Dφ e−S[φ]+j
∫

φ
=
dW

d j
. (16.15)

Of course, in cases where W is non-differentiable (or equivalently Γ shows at least one plateau)

we must be cautious what we mean by formulae like (16.15). We shall come back to this point

later on.

The conventional effective potential Γ(Ω, φ̄) in (16.4) is the Legendre transform of W . If

the minimum of Γ occurs at a unique point φ̄ = φ̄0, the point φ̄0 defines the vacuum state

of the theory, and the semiclassical expansion around φ̄0 generates the one-particle-irreducible

Feynman graphs [54]. The minimum is unique if either the volume is finite, or the classical

potential is convex (or both). When the classical potential is not convex, as happens in particular

for spontaneous broken potentials, the minimal points φ̄0 of Γ(φ̄) = Γ(∞, φ̄) are not unique but

lie on a plane in φ̄-space, as pointed out above. In this case the vacuum is not determined by

Γ(φ̄) but by Γ(φ̄) plus the direction from which a trigger current j approaches the value zero.

Such a trigger current forces the system into a pure state. As we have seen, the expectation

value φ̄ in a pure state lies on the edge of the plane of Γ. Furthermore, in the degenerate case

the naive semiclassical expansion for the effective potential breaks down and must be replaced

by some alternative approximation.

Since for Ω = ∞, V non-convex, the loop expansion (semiclassical expansion) has problems,

a computational approach is more desirable, and in that case Γ may not be the best quantity to

consider. Also note that we haven’t been able to write down an explicit path integral represen-

tation for the conventional effective potential Γ. A much more suitable and direct (at least in

the path integral approach) quantity is the effective potential defined by

exp
(

− ΩU(Ω, φ̄)
)

=
∫

Dφ δ(M − φ̄) e−S[φ], M =
1

Ω

∫

ddxφ(x), (16.16)

which we called constraint effective potential in [55]. Clearly, if the classical potential is invari-

ant under the action of the symmetry group, then U(Ω, φ̄) is invariant as well. The constraint

effective potential is relates to similar definitions in statistical mechanics and spin systems and

P (φ̄) ≡ e−ΩU(Ω,φ̄)

∫

dφ̄ e−ΩU(Ω,φ̄)
(16.17)

————————————
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it to be interpreted as the probability density for the system to be in the state of ”magnetization”

φ̄. The probability for the occurrence of a state whose averaged field is not a minimum of

U then becomes less and less as Ω → ∞. Also, the constraint effective potential is a more

direct quantity to compute with Monte Carlo simulations, since an external current need not be

introduced.

Multiplying both sides of (16.16) by exp(Ωjφ̄) and integrating over φ̄, yields

∫

eΩ[jφ̄−U(Ω,φ̄)]dφ̄ = eΩW (Ω,j). (16.18)

Hence W is related to U by a Laplace transformation. Note that since Γ is the Legendre trans-

form of W , the function Γ(Ω, φ̄) is uniquely defined by U(Ω, φ̄). Conversely, since W is the

Legendre transform of Γ, U can be recovered from Γ by an inverse Laplace transformation.

Thus there is a one-to-one correspondence between U(Ω, φ̄) and Γ(Ω, φ̄).

Now let us discuss what happens in the infinite-volume limit Ω → ∞. In this limit the saddle-

point approximation to the ordinary integral (16.18) becomes exact. Then

W (j) = sup
φ̄

(

jφ̄− U(φ̄)
)

= (LU)(j). (16.19)

It follows that Γ = LW = L2U . Thus Γ is the convex hull of U . Although U(Ω, φ̄) is in general

not convex for finite volumes, one can prove that it becomes convex for Ω → ∞ [55] so that

Γ(φ̄) = U(φ̄). (16.20)

Thus in the infinite-volume limit the two potentials become identical. However, in a finite

volume the two potentials are not identical and U(Ω, φ̄) need not necessarily be convex.

The constraint effective potential is also useful for extracting information directly about the

gross properties of the system such as whether is suffers a spontaneous symmetry breakdown

or whether it has a finite correlation length. To see this ones notes that

∫

φ̄p exp
[

Ω(jφ̄− U(Ω, φ̄))
]

dφ̄
∫

exp
[

Ω(jφ̄− U(Ω, φ̄))
]

dφ̄
=

1

Ωp

∫

ddx1 . . . d
dxp〈φ(x1) · · ·φ(xd)〉Ωj , (16.21)

i.e. that the moments of N−1 exp
[

Ω(jφ̄− U(Ω, φ̄))
]

are the averaged Schwinger (correlation)

functions. For p = 1 this gives the vacuum expectation value

〈φ(x)〉Ωj = N−1
∫

φ̄eΩ[jφ̄−U(Ω,φ̄)]dφ̄. (16.22)

For any finite volume the symmetry of U leads to 〈φ(x)〉Ω0 = 0 To get a non-trivial result one

must keep a trigger current, and only after the infinite-volume limit has been taken can the

trigger be removed. If there remains a non-trivial expectation value after setting j = 0 then

there is a spontaneous symmetry breaking.

————————————
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For p = 2 and j = 0 the formula (16.21) reads

N−1
∫

φ̄2eΩ[jφ̄−U(Ω,φ̄)]dφ̄ =
1

Ω2

∫

ddx1d
dx2〈φ(x1)φ(x2)〉Ω0 .

The expectation value of the r.h.s. is the 2−point Schwinger function S2(x2 − x1) which only

depends on the difference of the coordinates because of translational invariance. So we end up

with the explicit formula for the susceptibility

χ =
∫

S2(x)d
dx = Ω

∫

φ̄2e−ΩU(Ω,φ̄)

∫

e−ΩU(Ω,φ̄)
. (16.23)

16.3 Lattice approximation

For the above formal manipulations to make sense we need to define the functional integrals

for scalar fields. In the previous chapters we have dealt with functional integrals fermions (see

12.4) and gauge bosons (see 14.32). Fermionic integrals are Gaussian integrals for Grassmann-

valued variables (at least for fermions without explicit self-interaction as in the Thirring model).

Thus fermionic path integrals always lead to determinants and can be given a precise meaning

by defining determinants ”properly”. Similarly, for the Schwinger model the integral over all

gauge fields lead to a functional determinant as well and the DAµ integral can be defined via the

corresponding determinant. For a genuinely self-interacting field this ins not possible anymore,

at least if we go beyond perturbation theory.

One of the more popular, non-perturbative definition uses the lattice regularization. As in

quantum mechanics (see 6.21) one first puts the field theory on a d−dimensional space-time

lattice discretizing the euclidean space-time by a hypercubic lattice with lattice spacing a. The

action for a scalar field becomes

S[φ] =
∑

〈ij〉

ad−2 1

2
(φi − φj)

2 +
∑

i

adV (φi), (16.24)

where φi = phi(xi), (i = 1, 2, . . . , N = Ω/ad) and
∑

〈ij〉 is the sum over all nearest neighbour

pairs. We take periodic boundary conditions. By introducing a dimensionless lattice field φL =

ad/2−1φ, (16.24) can be rewritten as

S[φ] = SL[φL] =
∑

〈ij〉

1

2

(

φLi − φLj
)2

+
∑

i

V L(φLi ), (16.25)

where the lattice potential V L is equal to the classical potential, but with rescaled parameters.

The masses and coupling constants are rescaled according to their dimensions, e.g. mL = a2m

etc. By using the lattice field as new integration variable the constraint effective lattice potential,

which is related to the continuum potential as

ΩU(Ω, φ̄) = NUL(N, φ̄L) + const(a), (16.26)

————————————
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where φ̄L = ad/2−1φ̄ is dimensionless, is easily found to be

e−NU
L(N,φ̄L) =

∫

∏

dφLi δ
(

1

N

∑

φLi − φ̄L
)

e−S
L[φL]. (16.27)

This lattice version (or rather the corresponding lattice version for the partition function) should

be compared with the analog expression (6.21) in quantum mechanics. For a finite a one recov-

ers U(Ω, φ̄) from UL(N, φ̄L) by a trivial rescaling of UL and φ̄L. In what follows the subscript

L will mostly be dropped. Note that in terms of dimensionless quantities the theory is defined

only on a unit lattice of size N . For a fixed lattice constant a the volume is proportional to N .

Hence, studying the volume dependence of U(Ω, φ̄) is equivalent to studying theN-dependence

of the corresponding lattice potential.

Let us first consider models in which there are no kinetic terms, which we shall call inco-

herent models since the field on different lattice points then behave independently. At first sight

these models may appear to be trivial, but there are good reasons for studying them. First, they

show properties which one encounters in the full theory and secondly we can extract the influ-

ence of the kinetic term on the effective potentials by comparing the incoherent models with

those of the full theory. In addition, the incoherent models deliver upper and lower bounds for

the true effective potentials.

In order to factorize the functional integral (16.27) in the absence of the kinetic term we

replace the constraint

δ(M − φ̄) = Nδ
(

∑

φi − φ̄
)

=
N

2π

∫

dp exp
[

ip(Nφ̄−
∑

φi)
]

.

As a consequence

e−NU0(N,φ̄) =
N

2π

∫

dp eN[ipφ̄+log f(p)],

where f(p) =
∫

exp[−ipφ − V (φ)]dφ. For large N this integral approaches its saddle-point

value. The saddle point of ipφ̄+ log f(p) in the complex p-plane is the point p = ij, where j is

a solution of φ̄ = dW0/dj and exp(W0(j)) =
∫

dφ exp[jφ − V (φ)]. Hence we find that in the

limit N → ∞

U0(φ̄) = Γ0(φ̄) = (LW0)(φ̄), (16.28)

where W0 is the Schwinger function of the zero-dimensional theory with potential V , i.e.

eW0(j) =
∫

ejφ−V (φ)dφ. (16.29)

Clearly, since we have neglected the positive kinetic energy in the action the incoherent potential

Γ0 yields a lower bound on the exact potential,

U(φ̄) ≥ Γ0(φ̄). (16.30)

————————————
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Also note that since W0 is a differentiable and strictly convex function the constraint potential

Γ0 is strictly convex as well.

Next we derive an upper bound for U . Since 1
2
(φi − φj)

2 ≤ φ2
i + φ2

j we find

T [φ] =
1

2

∑

〈ij〉

(φi − φj)
2 = T [φ− φ̄] ≤ 2d

∑

φ2
i − 4dφ̄

∑

i

φi + 2dNφ̄2, (16.31)

where we have taken into account that in d dimensions every site has 2d nearest neighbours.

Inserting this inequality into (16.27) one obtains

e−NU(N,φ̄) ≥ e2dNφ̄
2

∫

δ(M − φ̄)e−V2d[φ],

where V2d[φ] = 2d
∑

φ2
i +

∑

i V (φi). This yields the upper bound

U(φ̄) ≤ −2dφ̄2 + Γ2d(φ̄), (16.32)

where

Γ2d(φ̄) = (LW2d)(φ̄) and W2d = log
∫

dφ ejφ−V2d(φ) (16.33)

is the incoherent constraint effective potential which corresponds to the classical potential with

shifted mass V2d(φ). In general the function on the r.h.s. of (16.32) is not convex. However,

since U(φ) is known to be convex, (16.32) actually implies that

U(φ̄) ≤ L2
(

−2dφ̄2 + Γ2d(φ)
)

. (16.34)

We conclude our discussion of the analytic properties of U(φ̄) by deriving an Ehrenfest equation

which is very useful for Monte-Carlo simulations. For that purpose we shift the field by a

constant φi → φi + φ̄ in (16.27). Because of the translational invariance of the measure Dφ we

obtain

e−NU(N,φ̄) =
∫

Dφ δ(M)e−S[φ+φ̄].

Only the potential term in the action is affected by the shift and therefore

d

dφ̄
U(N, φ̄) =

1

N
〈V ′[φ]〉φ̄ , (16.35)

where

〈O[φ]〉φ̄ =
∫ Dφ δ(M − φ̄)O[φ]e−S[φ]
∫ Dφ δ(M − φ̄)e−S[φ]

(16.36)

————————————
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and this is the required Ehrenfest equation which relates the derivative of the quantum potential

to the expectation value of the derivative of the classical potential. For example, for the Higgs-

model

V (φ) = λ(φ2 − σ2)2 (16.37)

the Ehrenfest equation reads

U ′(φ̄) = 4λ
[

〈φ3(x)〉φ̄ − σ2φ̄2
]

, (16.38)

where we have used the translational invariance, i.e. that 〈∑φ3
i 〉φ̄ = N〈φ3

i 〉φ̄. For the Higgs

model this equation can be used and has been used for the MC simulations. The following

figures show the two effective potentials Γ and U for the Higgs models (16.37) in various di-

mensions and for different ”volumes” N . Also the lower and upper bounds (16.30) and (16.34)

are plotted in the figures. The calculation has been done with a modified Metropolis algorithm

(see section 9.2).

So far we considered the regularized scalar theories, that is we kept the lattice constant a

fixed. At the end we wish to let the lattice constant tend to zero in order to remove the regu-

larization. Then the bar quantities have to be related to physical quantities by renormalization.

First one introduces a dimensionless lattice length ǫ(a = ǫΛ−1, ) where Λ is a scale parameter

with a mass dimension) and compares the latticesZd and ǫZd when ǫ is allowed to take values in

the interval 0 < ǫ ≤ 1. The parameters and field are scaled so that the scaled potential becomes

U ǫ(φ̄, m, g) = ǫ−dU ǫ=1
(

Zǫ(d−2)/2φ̄, m(ǫ), g(ǫ)
)

(16.39)

has a continuum limit. We define a ”physical” mass µp and coupling constant gp in terms of U ǫ

by some typical equation such as (for d = 4)

〈φ2〉ǫ =
Λ2

µ2
p

and 〈φ4〉ǫ − 〈φ2〉2ǫ =
1

gp
, (16.40)

where

〈O〉ǫ =
∫

dφ̄O(φ̄)e−U
ǫ

∫

dφ̄ e−Uǫ . (16.41)

Of course, µp and gp as defined in (16.40) will not necessarily be the physical mass and quartic

coupling constant for the scalar field, but just some related physical quantities.

Now the lattice renormalization consists in letting the bare mass and coupling constant m, g

depend on ǫ in such a way that the physical constants µp, gp do not depend on ǫ. Given the

dependence of U ǫ on ǫ,m, g and given m(1) = m, g(1) = g the ǫ-dependence of the bare pa-

rameters is then determined implicitly by (16.40). In other words, the renormalization consists

of constructing an ǫ-dependent map from (µp, gp) to (m, g) by means of (16.40).
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In the broken phase it maybe preferable to choose different renormalization conditions.

Since the vacuum expectation value of the Higgs field is related to masses of the fermions and

massive gauge bosons and the curvature of the effective potential at its minimum is related to

the mass of the Higgs particles one may take the renormalization conditions

U ǫ(φ̄) = minimal for φ̄ = φp and
d2

dφ̄2
U ǫ|φp = mp, (16.42)

where the physical quantities (φp, mp) are measured w.r. to some mass scale Λ. We have already

pointed out that in the broken phase Γ and hence U (recall that Γ = U in the thermodynamic

limit N → ∞) develop a plateau. As minimizing value φp in (16.42) we take the maximal

φp which minimizes U since this belongs to a pure phase of the theory. Also we evaluate the

second derivative near φp but a little bit away from the plateau.

16.4 Mean field approximation

Let us see how this renormalization works for the mean field approximation to the exact effec-

tive potential. In this approximation one replaces the interaction of φi with its nearest neigh-

bours in the classical action

S[φ] = d
∑

i

φ2
i −

∑

〈ij〉

φiφj +
∑

i

V (φi) (16.43)

by its mean interaction with all spins

∑

〈ij〉

φiφj =
∑

i

φi
1

2

∑

j:|i−j|=1

φj −→
∑

i

φi
d

N

∑

j

φj =
d

N

(

∑

i

φi

)2

.

After this replacement the constraint effective potential simplifies to

e−NUMF (φ̄) = edNφ̄
2

∫

Dφ δ(M − φ̄)e−
∑

Vd(φi), where Vd(φ) = dφ2 + V (φ), (16.44)

and hence becomes an incoherent model. Analog to (16.30) and (16.33) we obtain

UMF (φ̄) = −dφ̄2 + Γd(φ̄), where Γd = LWd, Wd = log
∫

dφ ejφ−Vd(φ). (16.45)

Note that UMF (φ̄) is half way between the lower bound Γ0(φ̄) in (16.30) and the upper bound

−2dφ̄2 + Γ2d(φ̄) in (16.33). One can actually prove that UMF is also an upper bound for the

exact potential. Note that UMF is differentiable and in the non convex case (the broken phase of

the MF-model) it displays no plateau. Hence the apparent problem with the conditions (16.42)

mentioned after (16.42) do not arise and we may take these conditions literally.
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We shall need the minimum φ0 of UMF and the curvature at this minimum. Using j(φ̄) =

Γ′
d(φ̄), which relates the current to its conjugate field, one sees at once that the minimum con-

dition becomes

j0 = j(φ0) = 2dφ0. (16.46)

Since Γd is the Legendre transform ofWd the inverse relation reads φ(j) =W ′
d(j). By inserting

the minimum condition into that equation we find the self-consistency equation

φ0 =

∫

dφ φ ej0φ−Vd(φ)
∫

dφ ej0φ−Vd(φ)
= 〈φ〉j0, where j0 = 2dφ0, (16.47)

for the expectation value of the Higgs field. To compute U ′′
MF (φ0) we use the relation Γ′′(φ̄) =

W ′′[j(φ̄)]−1 between the curvatures of two Legendre-related functions. Together with the min-

imum conditions one obtains

m0 = U ′′
MF = −2d+

〈

(φ− φ0)
2
〉−1

j0
(16.48)

for the Higgs-boson mass in the broken phase. Clearly the incoherent Schwinger function in

(16.45) is strictly convex and symmetric (if V is symmetric) and hence j(φ̄) vanishes when

φ̄ does. From (16.48) we conclude that the curvature of UMF at the origin is negative when

〈φ2〉0 > 1/2d. Consequently the potential (16.45) is spontaneously broken in case where

∫

φ2e−Vd(φ)
∫

e−Vd(φ)
= 〈φ2〉0 >

1

2d
. (16.49)

Suppose, for example, that the mass m in V (φ) = mφ2 + gφ4 is less than −d. Since the m-

derivative of the expectation value 〈φ2〉0 decreases with increasing mass the expectation value

becomes smaller when m is replaces by −d. However, for m = −d the effective mass m + d

in Vd vanishes and the expectation value can be computed explicitly. In this way one finds from

(16.49) that UMF is spontaneously broken when

m < −d and g <

[

2d
Γ(3/4)

Γ(1/4)

]2

. (16.50)

The continuum limit for the mean-field theory: As physical parameters we take the expec-

tation value of the Higgs field φp and the Higgs-boson mass mp in the broken phase (see 16.42).

One can prove that in the mean field approximation the wave function renormalization constant

Z in (16.39) is one [56] so that the potential on (ǫZ)d becomes

U ǫ
MF (φ̄) = ǫ−dUMF (ǫ

d/2−1φ̄) = −dǫ−2φ̄2 + ǫ−dΓd
(

m(ǫ), g(ǫ), ed/2−1φ̄
)

,

where the scaled bare parameters are to be determined by the renormalization conditions. Here

we take the conditions (16.42).
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Clearly, when φp minimizes U ǫ
MF then ǫd/2−1φp minimizes UMF and satisfies the self-

consistency equation (16.47). Thus, the first renormalization condition reads

ǫd/2−1φp = 〈φ〉jp, where jp = 2dǫd/2−1φp (16.51)

and the expectation values have been defined in (16.47). In the same way, using (16.48), one

obtains the second renormalization condition

ǫ2mp = ǫ2 (U ǫ
MF )

′′ (φp) = −2d+
〈

(

φ− ǫ
d
2
−1φp

)2
〉−1

jp

. (16.52)

The following asymptotic renormalization flows for ǫ → 0 in 2 and 3 dimensions can be de-

rived:

d = 2 : g(ǫ) ∼ mp

8φ2
p

ǫ2, m(ǫ) ∼ −
(

3

2
+ 2φ2

p

)

g(ǫ)

d = 3 : g(ǫ) ∼ mp

8φ2
p

ǫ, m(ǫ) ∼ −g(ǫ). (16.53)

For details I refer to [56].
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