
Chapter 12

Path Integral for Fermion Fields

After introducing path integrals in quantum mechanics we now turn to the path integral rep-

resentation of field theories. In this chapter we discuss the fermionic sector of the Schwinger

model, which is probably the simplest non-trivial field theory. The Schwinger model is just

QED for massless fermions in 2 dimensions [42]. This model shows at least two (related)

striking features. First the classically massless ’photon’ acquires a mass due to its interaction

with the massless fermions and second the operator ψ̄(x)ψ(x) has a non-vanishing vacuum

expectation [43]. Clearly, since this model contains fermions we first must discuss the path

integral for fermionic, and in particular the path integral representation of the n-point functions.

The zero-temperature Schwinger model has been solved some time ago by using operator

methods [44] and more recently in the path integral formulation [45]. Some properties of the

model (e.g. the non-trivial vacuum structure) are more transparent in the operator approach

and others (e.g. the role of the chiral anomaly) are better seen in the path integral approach.

More recently the Schwinger model has been solved in the path integral approach on the 2-

dimensional sphere and the role of the fermionic zero modes has been emphasized [46].

12.1 Dirac fermions

To arrive at the path integral for Dirac fermions (e.g. electrons). we generalize the above results

to field theory, that is, we replace

ᾱi(t) → ψ̄(x , t) and αi(t) → ψ(x , t).

The discrete index i becomes the continuous position in space and the summation is to be

replaced by an integration over space.

For the Dirac fermions minimally coupled to a gaute field Aµ the action reads

S =
∫

Ω
L with L = ψ̄(i /D −m)ψ. (12.1)
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The canonical momentum density is proportional to the field,

π =
δL
δψ̇

= iψ̄γ0 = iψ†, (12.2)

and not to the time-derivative of the field, since the Lagrangian density only contains first order

derivatives. The Hamiltonian is given by a Legendre transform,

H =
∫

H, H = πψ̇ − L = −iψ̄γjDjψ +mψ̄ψ. (12.3)

Inserting this into the field-theoretical generalization of (10.25) we obtain the functional integral

representation

Z =
∫

DψDψ̄ eiS[ψ̄,ψ], (12.4)

where S is the action for fields on a space-time region Ω. The boundary conditions for the fields

on the boundary ∂Ω must be specified. Here we choose for Ω the Minkowski space to avoid

boundary effects.

We are primarily interested in the generating functional in the presence of external currents,

which now is constructed by using two anticommuting sources η̄(x) and η(x):

Z[η̄, η] =
∫

DψDψ̄ exp
(

iS[ψ̄, ψ] + i
∫

[η̄(x)ψ(x) + ψ̄(x)η(x)]ddx
)

. (12.5)

We can simplify this path integral by expanding the exponent about its extremum. The exponent

is extreme for

ψcl = −(i /D −m)−1η and ψ̄cl = −η̄(i /D −m)−1.

Shifting the variables according to ψ → ψcl + ψ etc. the exponent becomes

iScl + iS[ψ̄, ψ], where Scl = −η̄ 1

i /D −m
η = −

∫

η̄(x)GF (x, y)η(y), (12.6)

and GF denotes the Feynman propagator

(i /Dx −m)GF (x, y) = δ(x− y). (12.7)

For example, for the free field (A = 0) one has

GF (ξ) = −(i/∂ +m)∆F (ξ), (12.8)

where ∆F is the Feynman propagator of the Klein-Gordon field:

∆F (ξ) = − 1

(4π)2

∫

d4xe−ipξ
1

p2 −m2 + iǫ
=⇒ (∂µ∂

µ +m2)∆F = δ4(ξ). (12.9)

————————————
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Since Scl is independent of the integration variables, the path integral (12.5) reads

Z[η̄, η] = det(i /D −m) exp
(

− i
∫

η̄(x)GF (x, y)η(y)d
dxddy

)

. (12.10)

Differentiating (12.5) with respect to the sources η and η̄ yields the correlation function

T 〈0|ψα1
(x1)ψ̄β1(y1)...ψαn

(xn)ψ̄βn(yn)|0〉

=
1

Z[0]

δ2n

δηβn(yn)δη̄αn(xn)...δβ1η(y1)δη̄α1(x1)
Z[η̄, η]|η̄=η=0. (12.11)

The n-point functions, for n odd, vanish since the source term is even in the current. In particu-

lar, for n = 2 we recover the propagator (Feynman propagator). Using Wick’s theorem (which

we shall proof later) one shows that the 2n-point function can be expressed in terms of the two

point function only. This shows already the equivalence of the Berezin path integral approach

and the canonical approach.

We conclude this section with the proof of Wick’s theorem for fermions. This theorem is

extensively used in quantum field theory. Originally it was proven using canonical methods.

Now we shall see how to derive this theorem using functional integration. What we show is the

following representation for the 2n-point function in terms of the 2-point function:

T 〈0|ψ(x1)ψ̄(y1)...ψ(xn)ψ̄(yn)|0〉 =
1

Z[0]

∫

DψDψ̄ ψ(x1)ψ̄(y1)...ψ(xn)ψ̄(yn)eiS[ψ̄,ψ]

= (−i)n
∑

π∈Sn

sign(π)
n
∏

j=1

GF (xj , yπ(j)). (12.12)

To prove this identity we use the generating functional (12.5) and expand the exponent contain-

ing the source-terms in a power series:

Z[η̄, η] =
∫

DψDψ̄ eiS
∑

n

i2n

(2n)!

∫

dx1...dx2n
2n
∏

i=1

(η̄(xi)ψ(xi) + ψ̄(xi)η(xi))

=
∑

n

(−)n

(2n)!

∫ 2n
∏

1

dxiη̄
α1(x1)...η

βn(x2n)
(2n)!

n!n!

∫

DψDψ̄ eiSψα1
(x1)...ψ̄βn(x2n),(12.13)

where we have used the anticommutation properties of the fields and sources and the fact that

the functional integral is nonzero only if there are as many fields as adjoint fields. On the other

hand using (12.10) we may expand the generating functional as

Z[η̄, η]

Z[0]
=

∑

n

(−i)n
n!

∫

dx1...dxndy1...dynη̄(x1)η(y1)...η(yn)
n
∏

i=1

GF (xi, yi) (12.14)

and using again the anticommutation properties we can rewrite Z as

Z[η̄, η]

Z[0]
=

∑

n

(−i)n
n!n!

∫ n
∏

1

dxidyiη̄(x1)η(y1)...η(yn)
∑

π∈Sn

n
∏

i=1

sign(π)GF (x2, yπ(i)). (12.15)

————————————

A. Wipf, Path Integrals



CHAPTER 12. FERMION FIELDS 12.1. Dirac fermions 107

Comparing with (12.13) and using the fact that the sources are arbitrary, proves the Wick theo-

rem (12.12).

Finally we turn to the fermionic thermal Green’s functions. As we have already seen in in

quantum mechanics, the transition to the Euclidean sector is made by replacing t → −iτ such

that

∂0 → i∂0, A0 → iA0, A0 → −iA0, γ0 → iγ0, γ0 → −iγ0 (12.16)

(and keeping the other quantities fixed) or equivalently by replacing xj → ixj such that

∂j → −i∂j , Aj → −iAj , Aj → iAj , γj → −iγj , γj → iγj . (12.17)

Since we prefer to use a Minkowskian metric with signature (+,−,−,−) we continue accord-

ing to (12.17) rather than (12.16). In the case of Dirac fermions the exponent in (12.5) becomes

then

iS + i
∫

(η̄ψ + ψ̄η) −→ −SE +
∫

(η̄ψ + ψ̄η),

SE =
∫

LE, LE = −iψ̄ /Dψ +mψ̄ψ. (12.18)

When calculating the partition function Z(β) at finite temperature we must choose antiperiodic

boundary conditions for the fields, in contrast to to the bosonic case (see (8.22)). The reason is

that the fermionic Green’s functions are β-periodic in imaginary time [48]. This is taken into

account if antiperiodic boundary conditions in the path integral are chosen and then the partition

function becomes

Z(β) = const ·
∫

a.p.

DψDψ̄ e−SE [ψ̄,ψ], (12.19)

where a.p. should indicate that we integrate over anti-periodic fields ψ(h̄β, x ) = −ψ(0, x ) and

analog for ψ̄. In analogy to (12.5) the generating functional for the thermal Green’s functions

reads

Z[β, η̄, η] =
∫

a.p.

DψDψ̄ exp
(

− S[ψ̄, ψ] +

βh̄
∫

0

ddx [η̄(x)ψ(x) + ψ̄(x)η(x)]
)

(12.20)

and the thermal correlation functions are obtained by differentiation with respect to the external

current

T 〈0|ψα1
(x1)ψ̄β1(y1)...ψ̄βn(yn)|0〉β =

(−)n

Z[0]

δ2n

δηβn(yn)...δα1 η̄(x1)
Z[η̄, η]|η̄=η=0 (12.21)

where T denotes the Euclidean time ordering. Note the presence of the factor (−1)n in contrast

to (12.11). This is due to the Wick rotation to imaginary time.

————————————
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Next we simplify (12.21). We could calculate a ’classical’ path with antiperiodic boundary

conditions, calculate the partition kernel and then integrate over the boundary conditions. This

approach analogous to is rather involved in the present situation. Therefore we choose a some-

what different (and more formal) approach which can be applied for quadratic actions (and for

simple boundary conditions). We just apply the Gauss integral formula to (12.20)

Z[β, η̄, η] = det(i /D −m) e−(η̄(x),Gβ(x,y)η(y)), Gβ(x, y) = 〈x| 1

i /D −m
|y〉. (12.22)

Gβ(x, y) is the thermal Green’s function of (i /D−m) (that is the Green’s function on the space

of the functions antiperiodic in β). The formula (12.22) then implies in particular

T 〈ψ(x)ψ̄(y)〉β = − 1

Z[β, 0]

δ2

δη(y)δη̄(x)
Z[β, η̄, η]|η̄=η=0 = Gβ(x, y). (12.23)

More generally, the Wick-theorem (12.12) still holds if we drop the (−i)n and replace the

Feynman propagator by the thermal Green’s function (or Euclidean propagator) on the right

hand side of (12.12). This concludes our proof of the equivalence between the functional inte-

gral approach and the canonical approach for fermionic systems. We have seen that formally

there is a close analogy of fermionic path integrals with those in quantum mechanics. So far

we haven’t dealt with the inherent divergences of field theories, a feature with is not present

in ordinary quantum mechanics. Finally we have seen the path integral formalism allows for a

unified treatment of zero-temperature and finite temperature systems.

12.2 The index theorem for the Dirac operator

When solving the (Euclidean) Schwinger model we must calculate the partition Z in (12.19) or

equivalently its logarithm, the effective action

Γ = logZ = log det /D (12.24)

(see (12.22)), where we assume the fermions to be massless. As we shall see later, this deter-

minant can be calculated explicitly in 2 dimensions by integrating the chiral anomaly. As a first

step we now determine the number of zero modes of /D. It will turn out that this number is a

physically and mathematically interesting number.

We use the notation and convention as in (8.67-8.70) and assume that space-time is even

dimensional so that we can introduce γ5 = (−i)n(n−1)/2γ1γ1 · · ·γn (the factor is chosen such

that γ25 = Id) which anti-commutes with all γ’s

{γ5, γµ} = 0 =⇒ {γ5, /D} = [γ5, /D
2
] = 0. (12.25)

————————————
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In Euclidean space-time we may take γ1, . . . , γn to be hermitean so that i /D is selfadjoint and

we shall assume that its spectrum is discrete. Since γ5 anticommutes with the Dirac operator all

’excited’ eigenfunction of /D come in pairs,

i /Dχ = 〈χ =⇒ i /D(γ5χ) = −γ5(i /Dχ) = −〈(γ5χ) (12.26)

i.e. the γ5-transform of an eigenmode has the opposite eigenvalue (note that γ5χ has the same

norm as χ and hence cannot be zero). This implies that all excited states of − /D
2

are (at least)

double degenerate, more precisely to each left-handed eigenmode γ5ψL = ψL there is a right-

handed partner γ5ψR = −ψR with the same eigenvalue E = λ2. In terms of the eigenfunctions

of i /D they read ψL = 1
2
(1 + γ5)χ and ψR = 1

2
(1 − γ5)χ. This pairing need not and generally

does not occur for the zero-energy states. The ground states of − /D
2

are also eigenstates of i /D

with eigenvalue zero (this is not true for the excited states) and thus have fixed chirality. Now

we define the index of the Dirac operator as the number of left-handed minus the number of

right-handed zero modes of − /D
2

or i /D:

index (i /D) = n+ − n−. (12.27)

This index can be computed quite differently. For that we note that the (super) trace tr γ5 exp(β /D
2
)

can be computed via path integrals similarly to the partition function in (8.3) and (8.4). Using

the eigenfunction of − /D
2

in evaluating the trace we find

tr γ5e
β /D

2

=
∑

n

(

e−βEL,n − e−βER,n

)

= n+ − n− = index (i /D), (12.28)

where we have used that due to the pairing of the excited states only the zero-modes contribute

to the sum. Note in particular that the super-trace is β-independent.

The supertrace can now be calculated by using the density (8.65) of the partition function.

This way we find for the index

n+ − n− = tr γ5e
β /D

2

=
∫

dnx tr
(

γ5Z(β, x)
)

(12.29)

where the last trace is over spin- and internal color indices and Z(β, x) possesses the path

integral representation (8.74). Since the super-trace is independent of β we may assume β to be

very small and use the high temperature expansion (8.78).

In two dimensions ΣF = γ5F01 and we find

∫

tr γ5Z(β, x) =
1

4π

∫

tr (γ25)F01 +O(β). (12.30)

With our sign convention for γ5 we obtain in four dimensions tr (γ5ΣµνΣαβ) = ǫµναβ and thus

∫

tr γ5Z(β, x) =
1

(4π)2

∫

1

2
ǫµναβFµνFαβ +O(β). (12.31)

————————————
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The higher orders in β must be identically zero and we conclude

index (i /D) =
1

2π

∫

d2xtrF01 n = 2 (12.32)

and

index (i /D) =
1

32π2

∫

d4xǫµναβ tr (FµνFαβ) =
1

16π2
tr F ∗F n = 4. (12.33)

These identities and their analog in higher dimensions relate the index of i /D to certain flux-

integrals (Chern-densities). In particular we conclude that these fluxes are always integers, at

least if the spectrum of the Dirac operator is discrete. The spectrum is certainly discrete if the

Euclidean space-time is bounded, for example a sphere or a torus. On unbounded spaces or

spaces with boundaries the index-theorem is modified [49] (since the fluxes are not integers in

general).

12.3 The Schwinger model, Part I

As already mentioned earlier, the Schwinger model [42] is Quantum-electrodynamics for mass-

less fermions in 2 dimensions and the corresponding action contains the fermion field coupled to

the electromagnetic field, that is (12.18) with a vanishing mass, and the addition of the Maxwell

term for the ’photons’:

S[A, ψ̄, ψ] =
∫

LF + LB, LF = −iψ̄ /Dψ, LB =
1

4
FµνF

µν + Lgf , (12.34)

where Lgf are gauge terms due to the gauge fixing procedure (see below). We solve the

Schwinger model at zero temperature, so that the integrals in (12.34) are over the whole Eu-

clidean plane. The (Euclidean) generating functional may also contain a source term for the

electromagnetic field, so that

Z[J, η̄, η] =
∫

DADψDψ̄ exp
(

− S[A, ψ̄, ψ] +
∫

d2x [AµJ
µ + η̄ψ + ψ̄η]

)

(12.35)

In a first step we treat the fermionic part of the path integral only and thus may assume the

photon field to be an external field. Integrating out the fermionic degrees of freedom according

to (12.22) yields

Z[J, η̄, η] =
∫

DA det(i /DA)e
−
∫

LB+i
∫

η̄(x)G(x,y)η(y)+
∫

AµJµ

. (12.36)

The reason which allows the model to be solved exactly is that the electron propagator and the

fermionic determinant in an arbitrary external field can be found explicitly, as has been observed

by Schwinger. For that purpose we introduce

Φ =
1

∆

(

∂αA
α + iΣαβFαβ

)

(12.37)

————————————
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where the matrices Σαβ have been introduced in (8.71). Note that under a gauge transformation

A→ A+ dΛ this functions transforms as Φ → Φ+Λ. Using the identity 2iΣαβ = γαγβ − δαβ

one sees that

/∂Φ =
1

∆

(

γµγαγβ∂µ∂αAβ
)

=
1

∆
γβ∆Aβ = γβAβ. (12.38)

In particular in 2 dimensions ΣF = γ5F01 and

Φ =
1

∆

(

∂A + iγ5F01

)

. (12.39)

Taking into account that γ5 anti-commutes with the Dirac operator we can rewrite the Dirac

operator as

/D = /∂ − iγµAµ = /∂ − i/∂Φ = eiΦ
†
/∂e−iΦ. (12.40)

Note, that the last identity holds only in 2 dimensions since we have used that γµΦ = Φ†γµ.

Now it is clear that the exact propagator which obeys the equation

i /DG(x, y, A) = δ2(x− y) (12.41)

has the form

G(x, y, A) = eiΦ(x)G0(x− y)e−iΦ
†(y) (12.42)

where G0 denotes the free massless propagator

G0(ξ) = −i/∂∆0(ξ) where ∆0(ξ) = − 1

4π
log(µ2ξ2). (12.43)

(µ is an infrared cut-off which could be left out if we would quantize the model on a finite

region instead of R2).

To compute the fermionic determinant in (12.36) we employ the zeta-function method. We

formally define det(i /D) as the square root of det(− /D
2
). From and (6.93) and (6.94) we see

that

ζ
− /D

2(s) =
1

Γ(s)

∫

dtts−1tr et /D
2

(12.44)

and

log det(i /D) =
1

2
log det(− /D

2
) = −1

2

d

ds
ζ
− /D

2(s)|s=0. (12.45)

Let us now define a one parametric family of Dirac operators which interpolates between /D and

/∂, namely

/Dα = eiαΦ
†
/∂e−iαΦ, (12.46)

————————————
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such that

δ /Dα = i(Φ† /Dα − /DαΦ). (12.47)

The variation of the zeta-function becomes then (we suppress the index α)

δζ
− /D

2(s) =
1

Γ(s)

∫

ts−1tr et /D
2

t(δ /D /D + /D δ /D) =
2i

Γ(s)

∫

tstr et /D
2

/D
2
(Φ† − Φ)

=
4

Γ(s)

∫

tstr et /D
2

/D
2
γ5

1

∆
F01 = − 4s

Γ(s)

∫

ts−1tr et /D
2

γ5
1

∆
F01,

where we have partially integrated to obtain the last equality. Since finally s → 0 only the

singular part (more precisely the single pole at s = 0) of the integral survives, because of the

factor s. We may split the integration over t into an integration from 0 to ǫ and from ǫ to ∞.

The second integral is finite for s = 0 (recall that the free heat kernel falls off like t−1) and we

need only consider the interval near 0. Here we may use the asymptotic expansion (8.78) for

the heat kernel of /D
2
α and find (Fα = αF ):

δζ
− /D

2(s) = − s

πΓ(s)

ǫ
∫

0

dt[ts−2tr (γ5
1

∆
F01) + ts−1αtr (γ5F01γ5

1

∆
F01) +O(ts)

]

. (12.48)

Since the first term in (12.39) vanishes the integration over t yields

− 2α

πΓ(s)
ǫs
(

F01
1

∆
F01 +O(s)

)

.

Finally, since Γ(s) ∼ 1/s for s→ 0 the s-derivative in (12.45) yields

d

dα
log det(i /D) =

α

π
tr
(

F01
1

∆
F01

)

. (12.49)

Integrating α from 0 to 1 yields

log det(i /D)− log det(i/∂) =
e2

2π

∫

F01
1

∆
F01 = − e2

2π

∫

Aµ(
δµν − ∂µ∂ν

∆
)Aν , (12.50)

where we have reinserted the electric charge e. In what follows we may drop the (divergent) de-

terminant of the free Dirac operator, since it is independent of the gauge potential and chancels

in expectation values. Hence the effective action in (12.36) entering the integration over the

remaining ’photon’-field is

Γ[A] =
1

4

∫

FµνF
µν +

e2

2π

∫

Aµ(δµν −
∂µ∂ν

∆
)Aν . (12.51)

This effective action belongs to a free particle with mass e/
√
π. We see that, due to the in-

teraction of the photons with the electrons, the classically massless photons acquire a mass.

————————————
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This so-called Schwinger mechanism happens without gauge symmetry breaking. We see that

the statement that a mass-term for the photon field breaks the gauge symmetry is not true in

general, in particular if we allow non-local interactions like in (12.51). Note, however, that

in the Lorentz gauge ∂A = 0 the effective action becomes local in the gauge-potential. This

observation will simplify the remaining path integral considerably.

Let us now discuss two consequences of (12.51). From

det(i /D) =
∫

DψDψ̄ e
∫

(iψ̄ /∂ψ+Aµψ̄γµψ) (12.52)

we see that

jµ = 〈ψ̄γµψ〉 = 1

det(i /D)

δ

δAµ
det(i /D) = −e

2

π
(δµν −

∂µ∂ν
∆

)Aν (12.53)

and hence

∂µ j
µ = 0, (12.54)

that is that the vector current is conserved. This is just a consequence of the gauge invariance

of the effective action (or the gauge invariant zeta-function regularization). Using the identity

γ5γ
µ = iǫµνγ

ν , valid in 2 dimensions, we can also calculate the axial current:

jµ5 = 〈ψ̄γ5γµψ〉 = iǫµνj
ν = −ie

2

π
(ǫµα − ǫµν

∂ν∂α
∆

)Aα. (12.55)

Hence we find

∂µj
µ
5 = −ih̄e

2

π
ǫµν∂µAν = −ih̄ e

2

2π
ǫµνFµν , (12.56)

and thus the axial current, contrary to the vector current, is not conserved. We have reinserted

h̄ in order to see that this non-conservation is a quantum effect. Classically the axial current is

conserved since it is the Noether current belonging to the chiral transformation

ψ −→ eαγ5ψ and ψ̄ −→ ψ̄ eαγ5 (12.57)

which in any even dimension (for which γ5 exists) leave the classical action invariant since γ5
anti-commutes with the Dirac operator. What we have shown then is that a classically con-

served current is not anymore conserved after quantization or that the classical axial symmetry

is broken due to quantum effects. Such a phenomena is called an anomaly.

Let us now return to the problem of computing the correlation functions of the Schwinger

model. We begin with the representation for the 2-point function

〈ψ(x)ψ̄(y)〉 = 1

Z(0)

∫

DAe−Γ[A]G(x, y) =
1

Z(0)

∫

DAe−Γ+i[Φ(x)−Φ(y)]G0(x, y) (12.58)

which only involves a Gaussian integral over the photon field. The same is of course true for the

higher correlation functions. To proceed we must first study how one evaluates path integrals

over gauge potentials. Due to the gauge invariance of the action we have to extend the path

integral to systems subject to constraints (coming from the gauge-invariance).
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