
Chapter 11

Supersymmetric Quantum Mechanics

In this section we examine simple 1 + 0-dimensional supersymmetric field theories. In 1 + 0

dimensions the Poisson-algebra reduces to time translations generated by the Hamiltonian H

and the hermitian field and momentum operators φ(t) and π(t) may be viewed as position and

momentum operators of a point particle on the real line in the Heisenberg-picture. Hence susy

field theories in 1+0 dimensions are particular quantum mechanical systems [35]. Such systems

are interesting in their own right since they describe the infrared-dynamics of supersymmetric

field theories in finite volumes. In mathematical physics supersymmetric QM has been useful

in proving index theorems for physically relevant differential operators [36]. There exist several

extensive texts on susy quantum mechanics [37, 38, 39] in which the one-dimensional systems

are discussed in detail. First we consider the simple Hamiltonian

H = HB +HF , where HB = ωa†a, HF = ωb†b, (11.1)

and a and b are bosonic and fermionic annihilation operators: [a, a†] = 1 and {b, b†} = 1. The

Fockspace is generated by acting with the creation operators on the vacuum defined by

a|0〉 = b|0〉 = 0. (11.2)

Using the commutation and anticommutation relations for the creation and annihilation oper-

ators one finds that besides the non-degenerate zero-energy ground state all excited states are

double degenerate since (a†)n|0〉 and b†(a†)n−1|0〉 have both energy E = nω. Introducing the

fermion number operator NF = b†b we see that there is always a bosonic state (NF = 0) and

a fermionic one (NF = 1) with the same energy. This system is the simplest supersymmetric

quantum mechanical system, namely the supersymmetric harmonic oscillator (we have set the

mass to one and shall also set h̄ = 1 in what follows).

Let us now generalize the above Hamiltonian and consider

H = HB +HF , where HB =
1

2

(

p2 +W 2
)

and HF = W ′b†b, (11.3)
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where W (x) is an arbitrary function. Using the formula (10.25) and the corresponding bosonic

result (2.32) yields the following path integral representation for the evolution kernel

K(t, q, q′, ᾱ, α′) =
∫

DwDαDᾱ eiS[w,α,ᾱ], (11.4)

where one sums over all paths w(t), α(t), ᾱ(t) with

w(0) = q′, w(t) = q, α(0) = α′ and ᾱ(t) = ᾱ.

The action contains the familiar bosonic part SB and an additional term depending on the Grass-

mann values path,

S =
∫

dtL = SB[w] + SF [w, α],

with Lagrangian density

L =
1

2
ẇ2 −

1

2
W 2(w) + iᾱα̇−W ′(w)ᾱα. (11.5)

This models are supersymmetric. Under a supersymmetry transformation

δw = ǭα + ᾱǫ, δα = −(iẇ +W )ǫ δᾱ = −ǭ(−iẇ +W ) (11.6)

with constant anticommuting parameters ǫ, ǭ, the variation of the Lagrange function is a total

time-derivative,

δL =
d

dt

(

ẇᾱǫ− iW ǭα
)

(11.7)

and thus the action is invariant.

It has been observed by Nicolai [40] that the following transformation of the bosonic field

w(t) −→ y(t) = ẇ(t) + iW (w(t)) (11.8)

for which

1

2
y2 =

1

2
ẇ2 −

1

2
W 2 + iWẇ and

δy(t)

δw(t′)
=

(

d

dt
+ iW ′

)

δ(t− t′) (11.9)

simplifies the analysis considerable, due to supersymmetry. To see that we first note that

Dw

∫

DαDᾱ e−(ᾱα̇+iW ′ᾱα) = Dw det

(

d

dt
+ iW ′

)

= Dy, (11.10)

which means that the Jacobian of the bosonic transformation is canceled by the fermionic inte-

gral. We have been a bit sloppy with the boundary conditions, for a more detailed analysis of

this point I refer you to the paper of Ezawa and Klauder [41]. Second we observe that

1

2

∫

y2dt =
1

2

∫

(

ẇ2 −W 2
)

dt+ i

∫

Wẇdt = SB + i

∫ q

q′
W (w)dw. (11.11)
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Inserting the last two identities into the evolution kernel (11.4) we see that this kernel is given

by a Gaussian integral in terms of the new variables,

K(t, . . .) = exp
(
∫ q

q′
W

)
∫

Dy eiy
2/2. (11.12)

To obtain the partition function we continue to imaginary time t = −iτ such that the action

changes into the Euclidean action

SE =
∫

dτL with L =
1

2
ẇ2 +

1

2
W 2 + ᾱα̇ +W ′ᾱα, (11.13)

and the supersymmetric transformations are modified to

δα = (ẇ −W )ǫ δᾱ = ǭ(−ẇ −W ) with δL =
d

dτ
(ẇᾱǫ− ǭαW ) . (11.14)

Note that the transformation of w is unchanged. The Nicolai map of the Euclidean model reads

w(τ) −→ y(τ) = ẇ(τ) +W (w(τ)). (11.15)

To obtain the ’partition function’ one integrates over β-periodic paths w(τ) and β-antiperiodic

paths ᾱ(τ), α(τ) (see below). Such finite temperature boundary conditions break supersymme-

try which transforms periodic bosonic fields into periodic fermionic fields. Physically this is

not surprising since a equilibrium state is not invariant under Lorentz transformation and hence

cannot be supersymmetric. After all, supersymmetry is an extension of Lorentzsymmetry. If we

instead integrate only over periodic paths then supersymmetry is not violated by the boundary

condition. This corresponds to the Euclidean model and for β → ∞ expectation values become

vacuum expectation values. For periodic boundary conditions we can transform to Nicolai vari-

ables and obtain

Zper =
∮

Dy e−y2/2, (11.16)

where one integrates over β-periodic paths y(τ). When treating the boundary conditions more

carefully one can indeed show that for matrix elements the cancellation between the fermionic

determinant and the bosonic Jacobian occurs for a certain definition of the fermionic path inte-

gral and thus the above formal manipulations are justified.

Note that the correlation functions can now be evaluated as

〈w(τ1) . . . w(τn)〉 =
∫

w(τ1) . . . w(τn)dµ0(y)

with the Gaussian measure as in (11.16) rather than with the complicated interaction measure.

However, the moments are not that easy to calculate because w(t) is generally a nonlinear and

nonlocal function of the fluctuating y-path as determined by the inverse Nicolai map.
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