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Abstract

Investigations of the non-perturbative effects of N = 1 Super-Yang-Mills (SYM) theory on
the lattice are demanding. The lattice breaks translation invariance to a discrete subgroup
and consequently also supersymmetry. With a fine-tuning of the Wilson fermions to a
critical point, it can be achieved that supersymmetry (as well as chiral symmetry) are
restored in the continuum limit. This thesis is intended to contribute to weaken the
associated restrictions.

A significant fraction of the runtime is spent in the inversion of the huge Wilson
Dirac matrix. By adopting a multigrid library to our needs, we could accelerate this
task by a factor of 20. Further improvements were mainly motivated by the N = 1 SYM
theory itself. Unbroken supersymmetry in the continuum arranges the bound states in
supermultiplets. When supersymmetry is broken, for example by the lattice discretization,
then the mass-degeneracy ends. Based on this observation, we tried to modify the fermionic
lattice action to minimize the mass difference of states within a supermultiplet and thus
the supersymmetry breaking.

The first extension of the Wilson Dirac operator was a clover term. It is known from
the Symanzik improvement program that a proper choice of the coefficient reduces the
lattice discretization artifacts to the order O(a2) in the lattice spacing. There are several
possibilities to determine this coefficient and we compared them with a heuristic parameter
scan. With the latter no distinct value could be determined.

As an alternative, we added a twisted mass term to the Wilson Dirac operator. When
the difference of the untwisted mass parameter to its critical value corresponds to the value
of the parity-breaking mass, then the two mesonic partners a-η′ and a-f0 approach at finite
lattice spacing the same mass. After we observed this improvement of the supermultiplet
in the numerical data, we also found an analytical proof. Additionally we investigated the
eigenvalues of the free Dirac operator with twists in the mass term and the Wilson term.
There we found an O(a) improvement when those two terms are orthogonal to each other.

With the 45◦-mass-twisted Wilson Dirac operator, we performed simulations on
a 163 × 32 lattice and analyzed all states of the Veneziano-Yankielowicz and Farrar-
Gabadadze-Schwetz supermultiplet. Extrapolated to the critical point, mass-degenerated
ground states are found and the first excited states have comparable masses.
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Zusammenfassung

Simulationen der N = 1 Super-Yang-Mills (SYM) Theorie auf dem Gitter zur
Untersuchung von nicht-perturbativen Effekten ist herausfordernd. Das Gitter bricht
die Translationsinvarianz in eine diskrete Untergruppe und dadurch wird auch die
Supersymmetrie gebrochen. Durch ein Fine-Tuning der Wilson-Fermionen zum kritischen
Punkt kann erreicht werden, dass die Supersymmetrie (und die chirale Symmetrie) im
Kontinuumslimes wieder hergestellt werden. Diese Arbeit soll dazu beitragen, die damit
verbundenen Einschränkungen zu mildern.

Ein erheblicher Anteil der Laufzeit wird durch die häufige Invertierung der riesigen
Wilson-Dirac-Matrix verbraucht. Durch die Anpassung einer Multigrid-Bibliothek an
unsere Bedürfnisse, konnten wir diese Berechnung um den Faktor 20 beschleunigen.
Weitere Verbesserungen waren hauptsächlich von der N = 1 SYM Theorie selbst motiviert.
Bei ungebrochener Supersymmetrie im Kontinuum sind die gebundenen Zustände in
Supermultipletts angeordnet. Wenn die Supersymmetrie gebrochen ist, bspw. durch die
Gitterdiskretisierung, dann endet diese Massenentartung. Darauf aufbauend haben wir
versucht die fermionische Gitterwirkung anzupassen, um die Massendifferenz innerhalb
eines Supermultipletts und damit die Supersymmetriebrechung zu minimieren.

Die erste Erweiterung des Wilson-Dirac-Operators war ein Clover-Term. Vom Symanzik-
Verbesserungsprogramm ist bekannt, dass eine geeignete Wahl des Koeffizienten zu einer
Reduktion der Gitterartefakte auf die Ordnung O(a2) im Gitterabstand führt. Es gibt
mehrere Möglichkeiten diesen Koeffizienten zu bestimmen und wir haben diese mit
einem heuristischen Parameterscan verglichen. Mit dem Letzteren konnten wir keinen
aussagekräftigen Wert ermitteln.

Als Alternative haben wir einen Massenterm mit Twist zum Wilson-Dirac-Operator
hinzugefügt. Wenn die Differenz des ungetwisteten Massenparameters zu seinem kritischen
Wert dem Wert der paritätsbrechenden Masse entspricht, dann erreichen die beiden
mesonischen Partner a-η′ und a-f0 bei einem endlichen Gitterabstand dieselbe Masse.
Nachdem wir diese Verbesserung des Supermultipletts in den numerischen Daten beobachtet
haben, sind wir auf einen analytischen Beweis gestoßen. Zusätzlich haben wir die Eigenwerte
des freien Dirac-Operators mit Twists in dem Massenterm und demWilson-Term untersucht.
Dort fanden wir eine O(a) Verbesserung, wenn die beiden Terme orthogonal zueinander
gewählt werden.

Mit dem 45◦-massengetwisteten Wilson-Dirac-Operator haben wir Simulationen auf
einem 163 × 32 Gitter durchgeführt und alle Zustände des Veneziano-Yankielowicz-
Supermultipletts und Farrar-Gabadadze-Schwetz-Supermultipletts untersucht. Durch
Extrapolation zum kritischen Punkt haben wir eine Massenentartung der Grundzustände
gefunden und auch die ersten angeregten Zustände haben vergleichbare Massen.
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CHAPTER 1

Introduction

Our current knowledge of particle physics is based on experimental observations and
theoretical investigations. On small scales, quantum theory is an extraordinary successful
description of nature. The standard model (SM) of particle physics contains three
types of interactions, namely the electromagnetic, the strong and the weak nuclear force.
Symmetries are a fundamental ingredient in its formulation as SU(3)× SU(2)× U(1)
gauge theory. Only the gravitational interaction described by general relativity has no
satisfactory description compatible with the SM despite an intense search for a theory of
everything. However, the gravitational force is much weaker than the other interactions in
terrestrial experiments. Only the strong gravitation of a black hole or energies near the
Planck scale O(1019GeV) would require a theory of quantum gravity.

The SM very successfully describes all processes mediated by the electromagnetic,
weak and strong forces at low energies . 10 TeV, but its 19 free parameters, which are
only fixed by experimental measurements, motivate the search for a more fundamental
theory. Furthermore, several open questions cannot be answered within the scope of the
SM. The Higgs boson was discovered in 2012 by ATLAS and CMS collaborations [1, 2]
with mass mH = (125.18± 0.16) GeV [3]. Since the Higgs field is a scalar, this value seems
unreasonably light. A one-loop calculation reveals a quadratic divergence and a mass
of the order of the Planck mass would be more likely [4, 5]. The situation improves
considerably in a supersymmetric theory, where every bosonic particle has a fermionic
superpartner with the same quantum numbers (besides the spin) and vice versa. In a
supersymmetric standard model a small Higgs mass is more natural to accommodate
since at leading order bosonic and fermionic divergences cancel such that there is no
quadratic divergence [6–8]. Another urgent problem of modern physics is the large amount
of dark matter in our universe seen by cosmological observations [9, 10]. Most likely,
dark matter cannot be detected through electroweak or strong interactions and only
its gravitational force is observable. It outweighs the visible matter by a factor of six,
making up about 27 percent of the total mass-energy of the universe [11]. Supersymmetric
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models naturally provide a dark matter candidate, the so-called lightest supersymmetric
particle (LSP) [12]. This particle is stable and cannot decay if R-parity is conserved [13].
Furthermore, supersymmetry brings the possibility of unifying the gauge theories of the
SM at high energies in a so-called grand unified theory (GUT), which can be achieved
by a modified running of the coupling constants [14]. Another fine-tuning problem arises
in QCD, where the θ-term of the Lagrangian would break CP-invariance [15, 16]. No
CP-violation is observed in experiments and therefore the value of θ should be unnaturally
small or zero. With the help of supersymmetry, natural explanations for a vanishing θ
angle exist [17, 18].

A straightforward extension of the SM is the minimal supersymmetric standard
model (MSSM). This phenomenologically relevant model contains one supercharge [13].
Supersymmetry and the accompanying cancellation of quantum corrections simplify
perturbative calculations of the electroweak subsector. Although supersymmetry has
been studied for many years, the low-energy region of the strongly coupled subsector is
only explored a little, because it is inaccessible with perturbation theory. It is inevitable to
perform calculations with a non-perturbative method. An extraordinarily successful method
to study strongly interacting theories from first principles is lattice gauge theory. The
present work is intended to shed some light on the rich non-perturbative phenomena of an
important building block of the MSSM: four-dimensional N = 1 Super-Yang-Mills (SYM)
theory with gauge group SU(3). It is the supersymmetric extension of pure Yang-Mills (YM)
theory describing gluons in interaction with their superpartners, the so-called gluinos.
As members of the same N = 1 vector supermultiplet the gluons and gluinos are (in
perturbation theory) massless. Both are in the adjoint representation of the gauge group
and on-shell the degrees of freedom match. The latter statement holds true since the
gluinos are Majorana fermions. Similar to QCD, the theory is asymptotically free and
shows confinement.

Early analytic studies of supersymmetric lattice systems go back to Dondi and
Nicolai [19], who studied the discretized Wess-Zumino model. Subsequently, the restoration
of supersymmetry in the continuum limit and the spectrum of particles have been studied
for these Yukawa-type lattice models [20–26]. Early simulations of four-dimensional
N = 1 SYM theory with quenched fermions were performed in [27, 28]. Clearly, dynamical
fermions are an integral part in any supersymmetric field theory and the inclusion of light
dynamical fermions in simulations is essential [29].

Extensive investigations and simulations of N = 1 SYM theory with gauge group SU(2)
and with dynamical fermions where performed by the DESY-Münster collaboration during
the past 20 years. In [30] the chiral symmetry breaking was investigated and two ground
states were spotted. A comprehensive lattice study including the mass spectrum was first
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1. Introduction

presented in [31] and concluded with [32]. Later, those results were refined with the help
of a variational analysis [33]. Ward identities were exploited in [34] to determine the gluino
mass as well as the mixing coefficient of the supercurrent. An investigation of the theory at
finite temperature revealed that deconfinement and chiral symmetry restoration occur at
the same temperature [35]. This insight was confirmed recently using the gradient flow [36].
Also the compactified theory with periodic boundary conditions was examined [37].

The lattice studies are supplemented with a one-loop calculation of the supersymmetric
Ward identities [38], the analysis of the adjoint pion within partially quenched chiral
perturbation theory [39] and the perturbative calculation of the clover coefficient [40].
More recently the spectrum of the low-lying bound states [41] and supersymmetric Ward
identities [42] have been calculated for N = 1 SYM with gauge group SU(3). Additionally,
the measurement of baryonic states has been started [43, 44].

Besides these studies with Wilson fermions, first investigations and simulations
with domain wall and overlap fermions have been presented in [45–48] and [49, 50].
With Ginsparg-Wilson fermions no fine-tuning should be necessary to end up with a
supersymmetric continuum theory [51]. In addition to the numerical studies, there exist also
many analytical results, e.g. concerning the chiral condensate and beta function [52–54].

A dimensional reduction of N = 1 SYM theory from four to two spacetime dimensions
leads to the N = (2, 2) SYM theory and the two theories have supermultiplets of identical
length. The mass spectrum of the reduced theory [55], the Ward identities [56], the
dynamical breaking of supersymmetry [57] and the large-Nc behavior [58] were investigated
in detail. Certain field theories with extended supersymmetry can be formulated such
that some (nilpotent) supersymmetry transformations are preserved exactly on the
lattice [59, 60]. Two-dimensional N = (2, 2) SYM theory [61–65] and its extensions with
fermions in the fundamental [66, 67] or adjoint [68] representation are fields of application.
Other examples for models with an exact supersymmetry are the four-dimensional N = 4
SYM theory [69–73] and its cousins, the four-dimensional N = 2∗ SYM theory [74] and
the two-dimensional N = (8, 8) SYM [75, 76]. Further supersymmetric models under
investigation are for example the N = 2 Landau-Ginzburg model [77], the supersymmetric
nonlinear O(3) sigma model [78, 79] and applications in gauge-gravity duality [80, 81].

In the present work we aim with analytical and numerical investigations for a better
understanding of the low-energy properties of N = 1 SYM theory. Unfortunately all
lattice regularizations break supersymmetry explicitly and, as a result of this breaking,
one observes a mass-splitting within a given supermultiplet. Concretely we propose and
carefully study a deformation of the N = 1 SYM lattice action by twisting the mass term.
We provide an analytical proof and numerical evidence that the twisting leads to a sizable
improvement of the mass-degeneracy within the Veneziano-Yankielowicz supermultiplet.
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As a result, the fine-tuning problem to the chiral and supersymmetric continuum limit
is less severe. Originally the concept of a twisted mass was introduced to lattice QCD
in [82] with the aim to remove exceptional configurations. Later, O(a) improvement at
maximal twisting angle ±π/2 was recognized as particularly interesting for measuring
physical quantities [83]. Also a study of the two-dimensional Wess-Zumino model with
a twisted lattice action revealed a dramatic suppression of the discretization errors for
optimal twisting [22].

An alternative approach to improve the lattice formulation is the addition of a clover
term to the Wilson fermions. With this modification, the lattice artifacts can be reduced
from order O(a) to O(a2) in the lattice spacing a, when the coefficient of the clover term
is chosen appropriately [84–86]. Various perturbative and non-perturbative values of the
numerical value of this coefficient exist in the literature for different lattice actions. As a
complement, we try to find an optimal value by a heuristic parameter scan.

This thesis is structured as follows. Chapter 2 introduces the foundations of the
following investigations and starts with a short introduction to (non-supersymmetric) YM
theory in section 2.1. In the next section 2.2, the concept and properties of supersymmetry
are summarized in a general context. Afterwards those two ingredients are combined in
section 2.3 about the N = 1 SYM theory and its predicted mass spectrum. Subsequently,
the two-dimensional N = (2, 2) is addressed briefly in section 2.4. As a connection between
the continuum theory in Minkowski spacetime and the lattice formulation, section 2.5
covers Euclidean field theory.

Chapter 3 consists of two parts. In the first part 3.1, basics of lattice field theory such as
the Monte Carlo sampling 3.1.1, rational approximation, conjugate gradient and multigrid
algorithm 3.1.2 are recapitulated. Furthermore the procedure of mass spectroscopy 3.1.3
and smearing 3.1.4 are addressed. The second part 3.2 of this chapter deals with specific
challenges of N = 1 SYM theory on the lattice and the applied lattice formulations of
the gauge fields (section 3.2.1) and Majorana fermions (section 3.2.2). In section 3.2.3
the properties of the mass-twisted Wilson Dirac operator, which we employed in many
simulations, are discussed. This chapter is concluded with an overview of the investigated
lattice observables 3.2.4.

Our analytical investigations are found in chapter 4. First, the transformation of
the mesonic correlators under a chiral rotation is calculated 4.1, which reveals as a key
finding the special twist α = 45◦. Subsequently, we apply in section 4.2 supersymmetry
transformations to the states of the Veneziano-Yankielowicz supermultiplet to check that
the chiral rotation does not spoil the supermultiplet structure. We complete our analytical
chapter with the calculation of the eigenvalues of the free Wilson Dirac operator with
twists and find hints for O(a) improvement 4.3.
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1. Introduction

In chapter 5, preparatory examinations pave the way for the physical results.
The parameter scans of the clover fermions and twisted-mass fermions are shown in
the sections 5.1 and 5.2. In the following, technical topics such as the sign of the
Pfaffian in section 5.3, the scale setting in section 5.4, and the finite size effects in
section 5.5 are analyzed. Further insights are gained with the double-twisted Wilson
Dirac operator in section 5.6. The last part 5.7 contains numerical studies of the fermion
smearing (section 5.7.1) and multigrid acceleration (section 5.7.2).

Chapter 6 covers the numerical results and is divided into two parts. In the first
part 6.1, we present briefly results obtained in the two-dimensional N = (2, 2) SYM theory
before turning to the four-dimensional N = 1 SYM theory in part 6.2. The promising
direction of 45◦ mass twist is explored with the mesonic states 6.2.1, the gluino-glue 6.2.2
and the glueballs 6.2.3. Finally, all those results are combined in an extrapolation to the
critical point, see section 6.2.4.

We conclude with chapter 7 and give an outlook. In the appendix, our conventions (A),
the calculation of the properties of the untwisted (B.1) and mass-twisted (B.2) Wilson
Dirac operator, and the details of the supersymmetry transformation of the gluino-glue (C)
can be found. In addition, it is shown that the Euclidean (continuum) action is invariant
under supersymmetry (D). We provide a proof that the pion is the lightest meson (E), an
overview of our ensembles (G), short notes on the data analysis (H), and benchmarks of
the strong and weak scaling (I).

The compilation of this thesis is solely due to the author. However large parts of the
work were in collaboration with Andreas Wipf, Björn Wellegehausen and André Sternbeck.
We published different interim results in conference proceedings [87–89]. A publication
encompassing most N = 1 SYM results shall appear in JHEP and is available as a
preprint [90]. The N = (2, 2) SYM results are published together with Daniel August [55].
All numerical simulations are based on a code developed over many years mainly by Björn
Wellegehausen and during my PhD I was involved in its extension. The simulations
were performed at Leibniz Supercomputing Center on SuperMUC and SuperMUC-NG, the
clusters Ara and Omega of the University of Jena, and on compute servers of the theoretical
physics institute.
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CHAPTER 2

Basics

This chapter serves a twofold purpose. Firstly, it recapitulates the basic knowledge required
for the study of supersymmetric Yang-Mills theory. Secondly, we can fix our notation for
the upcoming chapters.

In the beginning, Yang-Mills theory without supersymmetry is addressed in Minkowski
spacetime. Afterwards, the concept of supersymmetry is introduced in a general manner.
Subsequent to those two sections, these topics are combined to discuss Super-Yang-Mills
theory in four and two spacetime dimensions. In the last section, we turn to Euclidean
field theories.

2.1 Yang-Mills theory

Our understanding of the standard model (SM) of particle physics is based on gauge
theories. Yang and Mills introduced in [91] the concept of non-Abelian Lie groups to
treat quantum chromodynamics (QCD). The gauge invariance in QCD permits local
transformations Ω(x) ∈ SU(3). Requiring that the gauge transformations

ψ(x) 7→ ψ′(x) = Ω(x)ψ(x) , ψ̄(x) 7→ ψ̄′(x) = ψ̄(x) Ω†(x) (2.1)

leave the fermionic action

SF[ψ, ψ̄, A] =
∫

d4x ψ̄(x)
(

iγµ
(
∂µ − igAµ(x)

)
−m

)
ψ(x) (2.2)

invariant leads to the definition of the covariant derivative

Dµ(x) = ∂µ − igAµ(x) (2.3)

and the transformations

Aµ(x) 7→ A′µ(x) = Ω(x)Aµ(x) Ω†(x)− i
(
∂µΩ(x)

)
Ω†(x) , (2.4)

Dµ(x) 7→ D′µ(x) = Ω(x)Dµ(x) Ω†(x) . (2.5)
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2.2. Supersymmetry

Pure Yang-Mills (YM) theory consists only of the gauge field Aµ(x), which describes gluons
in QCD. With the covariant derivative of eq. (2.3) we define the field strength tensor

Fµν(x) ≡ i
g

[Dµ(x), Dν(x)] = ∂µAν(x)− ∂νAµ(x)− ig[Aµ(x), Aν(x)] . (2.6)

Under a gauge transformation it transforms as the covariant derivative in eq. (2.5),

Fµν(x) 7→ F ′µν(x) = Ω(x)Fµν(x) Ω†(x) . (2.7)

Then we can define the gauge action

SG[A] = −1
4

∫
d4x tr

(
Fµν(x)F µν(x)

)
, (2.8)

which is invariant under Lorentz and gauge transformations. For the lattice formulation it
is beneficial to rescale the gauge fields Aµ(x) 7→ 1

g
Aµ(x), such that the action takes the

form

SG[A] = − 1
4g2

∫
d4x tr

(
Fµν(x)F µν(x)

)
, (2.9)

where the covariant derivative is now Dµ(x) = ∂µ − iAµ(x).

2.2 Supersymmetry

A general spacetime symmetry is an element of the Poincaré group

iL =
{

(Λ, a)
∣∣∣ a ∈ Rd, Λ ∈ O(1, d− 1), ΛTηΛ = η

}
, (2.10)

where we assume flat spacetime with the signature (+,−, . . . ,−). In a Poincaré
transformation xµ 7→ Λµ

νx
ν + aµ, a Lorentz transformation is combined linearly with

a translation. The corresponding generators of the individual transformations

(Λ, 0) = e i
2ω

µνMµν , (1, a) = eiaµPµ (2.11)

are the momenta Pµ and the antisymmetric matrices Mµν with the elements

[Mµν ]ρσ = −i(ηµρηνσ − ηνρηµσ) , (2.12)

describing infinitesimal rotations and boosts. Those generators obey the Poincaré algebra

[Pµ, Pν ] = 0 ,
[Mµν ,Mρσ] = i(ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνρMµσ) , (2.13)

[Mµν , Pρ] = i(ηµρPν − ηνρPµ) .
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2. Basics

The Coleman-Mandula theorem prohibits in d > 2 dimensions the non-trivial combination
of spacetime symmetry with internal symmetries. In short, a direct product of the
Poincaré group and an internal symmetry group is the most general symmetry group of
the scattering matrix [92]. However, this theorem can be circumvented with the help
of fermionic generators and the usage of the anti-commutator [93, 94]. Consequently,
the Poincaré group can be extended. Therefore the infinitesimal parameter ε of the
supersymmetry transformation δε has to be an anti-commuting spinor. The supercharge Q
is the generator of supersymmetry transformations and has 2bd/2c components. It
enters the supersymmetry transformation via δε(. . .) = ε̄Q(. . .) . Models with extended
supersymmetry contain multiple supercharges Qi, i = 1, . . . ,N , but we focus on the
N = 1 SYM theory with a single supercharge. The superalgebra is a Z2 graded Lie algebra,
which consists of

[Pµ,Qα] = 0 , (2.14)

[Mµν ,Qα] = 1
4i (ΣµνQ)α , (2.15)

{Qα, Q̄β} = 2(γµ)αβPµ , (2.16)

and the Poincaré algebra given in eq. (2.13) [95]. The definition of the Dirac matrices γµ

can be found in appendix A and their commutator is Σµν ≡ [γµ, γν ]. From the superalgebra,
properties of the supercharge Q can be derived. Eq. (2.14) implies that the supercharge
is translation-invariant. As can be seen in eq. (2.15), the supercharge transforms under
a Lorentz transformation like a spin-1

2 particle. The product of two spinor operators in
eq. (2.16) has to transform like a vector operator and the only allowed vector operator is
the momentum operator Pµ. Thus the composition of two supersymmetry transformations
leads to a translation.

In the following we will address further important properties of supersymmetry. First
of all, every supersymmetry transformation transforms a fermion |F〉 into a boson |B〉 and
vice versa:

Q|B〉 = |F〉 , Q|F〉 = |B〉 . (2.17)

All quantum numbers of two superpartners are identical, except their spin. In particular,
the O’Raifeartaigh theorem [96] states that superpartners have identical mass as long as
supersymmetry is unbroken. With the help of eq. (2.14) we can prove that

m2
B|B〉 = PµP

µ|B〉 = PµP
µQ|F〉 = QPµP µ|F〉 = m2

FQ|F〉 = m2
F |B〉 . (2.18)

This means that two massive superpartners have degenerate mass, mB = mF . All particles
which are transformed into each other by supersymmetry are grouped in a so-called
supermultiplet. We can deduce with eq. (2.16) that the energy

E = 〈ψ|P0|ψ〉 = 1
8
∑
α

〈ψ|{Qα,Q†α}|ψ〉 = 1
8
∑
α

(
‖Q†α|ψ〉‖2 + ‖Qα|ψ〉‖2

)
≥ 0 (2.19)
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of all states is non-negative. The translation-invariant vacuum |0〉 is the only state
with zero energy and it is annihilated by all supercharges if supersymmetry is unbroken,
Qα|0〉 = Q†α|0〉 = 0. Conversely the energy of the lowest state is an order parameter
and supersymmetry is broken if E0 > 0. The discrepancy between the calculated
cosmological constant and its observed value can be explained by supersymmetry without
any renormalization or unnatural addition [97]. Experimental data suggests that the
cosmological constant is 1.1× 10−52 m−2 [11].

States with positive energy cannot be invariant under supersymmetry and thus each
particle requires a superpartner. Concretely, each supermultiplet with Pµ 6= 0 has the same
amount of bosonic and fermionic degrees of freedom. Only in the vacuum, the number of
bosonic and fermionic ground states can differ due to its invariance under translations,
Pµ = 0. The Witten index

IW = tr
(
(−1)F

)
= n0

B − n0
F (2.20)

with the fermion number F and the trace over the Hilbert space is a useful quantity [98].
Because all states with positive energy come in pairs, only the difference of the bosonic
and fermionic ground states remains. Consequently the Witten index can be used to
distinguish between scenarios of supersymmetry breaking. If the Witten index is non-zero,
supersymmetry cannot be broken spontaneously and at least one fermionic (IW < 0) or
bosonic (IW > 0) ground state is present. In this scenario, supersymmetry can only be
broken explicitly by adding terms to the Lagrangian. For vanishing Witten index, IW = 0,
supersymmetry may be broken (n0

B = n0
F = 0) or unbroken (n0

B = n0
F 6= 0). In section 2.3

we will show that the N = 1 SYM theory with gauge group SU(Nc) has the Witten
index IW = Nc and thus no spontaneous supersymmetry breaking is possible.

One further important feature of supersymmetric theories is the non-renormalization
theorem [99], which states that supersymmetry is unbroken at all orders of perturbation
theory if the classical theory is supersymmetric. The underlying mechanism is the
cancellation of bosonic and fermionic loops at each order. Accordingly, supersymmetry
cannot be broken perturbatively. In the discussion of the Witten index, we already
mentioned the spontaneous and explicit breaking of supersymmetry. A further variant is
the so-called soft supersymmetry breaking, which affects only the low-energy regime of a
theory and the supersymmetry stays intact in the ultraviolet regime, i.e. the solution to
the hierarchy problem of the Higgs mass keeps its validity. Such a soft supersymmetry
breaking can be achieved by adding a mass to all superpartners. If this additional mass
is large enough, the superpartners become so heavy that they cannot be observed with
today’s accelerator facilities and the postulated supersymmetry remains compatible with
the experimental data. Superpartners may have masses of tens of TeV [100]. Still, an open
question is the nature of a presumable soft supersymmetry breaking [101, 102].
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2. Basics

2.3 Four-dimensional N = 1 Super-Yang-Mills theory

In four-dimensional Minkowski spacetime the on-shell action of N = 1 SYM theory reads

SM
SYM =

∫
d4x tr

(
−1

4FµνF
µν + i

2 λ̄
/Dλ− m

2 λ̄λ
)

(2.21)

and its structure resembles the action of Quantum Chromodynamics (QCD). In the
supersymmetric theory the fermion and the gauge boson are members of the same vector
supermultiplet. The fermion in the N = 1 SYM theory is called gluino and described
by a Majorana field λ(x), which transforms in the same adjoint representation as the
gauge potential Aµ(x). A Majorana fermion is characterized by λ = λC , that means it
is its own anti-particle. The action in eq. (2.21) contains a finite gluino mass m which
breaks supersymmetry softly. On the lattice this mass is fine-tuned such that after
continuum extrapolation a supersymmetric limit is reached which at the same time is
chirally symmetric.

For the same gauge group SU(Nc), the chiral symmetry of N = 1 SYM theory has a
different breaking pattern in comparison to QCD. For vanishing gluino mass the classical
theory has a global U(1)A symmetry λ 7→ eiαγ5λ. The axial anomaly reduces this U(1)A
via instantons to the discrete subgroup Z2Nc ,

λ 7→ e2πinγ5/2Ncλ with n ∈ {1, . . . , 2Nc} . (2.22)

A gluino condensate 〈λ̄λ〉 6= 0 spontaneously breaks this remnant symmetry further to a
Z2 symmetry [103, 104]. Therefore Nc physically equivalent vacua are expected, which
differ in their phase of the gluino condensate [30]. Thus the Witten index is IW = Nc.
A gluino mass m 6= 0 lifts this degeneracy and the chiral condensate Σ becomes ≷ 0
for m ≷ 0 [30].

A key point of the action (2.21), is its invariance under the supersymmetry
transformation

δεAµ(x) = iε̄γµλ(x) , δελ(x) = 1
4ΣµνF

µν(x)ε , δελ̄(x) = −1
4 ε̄ΣµνF

µν(x) . (2.23)

Therein, ε is a constant majorana-valued anticommuting parameter. We can check
that the supersymmetry transformation of each field respects the following criteria.
Firstly, each bosonic field is transformed into a fermionic field and vice versa. Secondly,
the transformations are in accordance to the mass dimensions of the fields [ε] = L1/2,
[∂µ] = [Aµ] = L−1, [λ] = L−3/2 and [Fµν ] = L−2. Thirdly, the open indices match to
guarantee the correct Lorentz transformations. Finally, the Hermiticity is implemented by
appropriate imaginary units. In appendix D, we will show that the N = 1 SYM Lagrangian
transforms under these supersymmetry transformations into a total derivative and thus
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Table 2.1: Veneziano-Yankielowicz supermultiplet.

1 bosonic scalar s = 1, l = 1, 0++ gluinoball a-f0 ∼ λ̄λ

1 bosonic pseudoscalar s = 0, l = 0, 0−+ gluinoball a-η′ ∼ λ̄γ5λ

1 majorana-type s = 1
2 , l = 1, 1

2
i+ gluino-glueball g̃g ∼ FµνΣµνλ

Table 2.2: Farrar-Gabadadze-Schwetz supermultiplet.

1 bosonic scalar s = 0, l = 0, 0++ glueball 0++ ∼ FµνF
µν

1 bosonic pseudoscalar s = 1, l = 1, 0−+ glueball 0−+ ∼ εµνρσF
µνF ρσ

1 majorana-type s = 1
2 , l = 0, 1

2
(−i)+ gluino-glueball g̃g ∼ FµνΣµνλ

the action is invariant. When the off-shell Lagrangian

LoffSYM = −1
4tr(FµνF µν) + i

2tr(λ̄ /Dλ) + 1
2tr(G2) (2.24)

with the auxiliary field of mass dimension [G] = L−2 is considered, then the supersymmetry
transformations are modified to

δεAµ(x) = iε̄γµλ(x) , δελ(x) = 1
4ΣµνF

µν(x)ε+ iG(x)γ5ε ,

δεG(x) = ε̄γ5 /Dλ(x) , δελ̄(x) = −1
4 ε̄ΣµνF

µν(x) + iε̄G(x)γ5 .
(2.25)

At high energies or high temperatures, N = 1 SYM can be considered as a gas of
free gluons and gluinos. On the other hand, at low energies it is a confining theory with
color-singlet bound states similar to gauge theories without supersymmetry. The spectrum
has been investigated with the method of effective field theory based on the theory’s
symmetries and application of anomaly matching. Three different types of bound states
are expected to arise: pure glueballs, pure meson-like gluinoballs and gluino-glueballs.

Supersymmetry arranges these bound states in mass-degenerate supermultiplets.
Veneziano and Yankielowicz (VY) predicted a chiral supermultiplet [105] of bound states
listed in table 2.1. The names of the particles are chosen in analogy to QCD, with the
prefix “a-” indicating the adjoint representation. As usual, the quantum numbers JPC

specify the total angular momentum J , the parity P and the charge conjugation C. Note
that for Majorana fermions the intrinsic parity has to be imaginary [106].

Subsequently Farrar, Gabadadze and Schwetz (FGS) suggested the existence of a second
supermultiplet [107] consisting of the particles listed in table 2.2. Based on symmetry
arguments they suggested the more general effective Lagrangian

LeffSYM = 1
α

(S†S)1/3

∣∣∣∣∣∣
D

+ γ

{S log
(
S

µ3

)
− S

} ∣∣∣∣∣∣
F

+ h.c.
+ 1

δ

(
− U2

(S†S)1/3

) ∣∣∣∣∣∣
D

(2.26)
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mass

a-f0

g̃g
a-η′

susy

susy
with
mass
mixing

softly
broken
susy

m = 0 m = 0 m 6= 0

0−+

g̃g
0++

Figure 2.1: Mass hierarchy of the VY- and FGS-supermultiplets. To the left of the dashed
line, where the gluino mass m vanishes, supersymmetry guarantees the mass-degeneracy
within each supermultiplet and a mass mixing increases the mass difference between
those two supermultiplets. On the right, the gluino mass is turned on to softly break
supersymmetry. Consequently the states within each supermultiplets split. Note that the
pseudoscalar states are shifted the most and the masses of the scalar states are modified
the least. This figure is adopted from [108].

with chiral superfield S, real tensor superfield U , dynamically generated scale µ and
further low-energy constants α, γ and δ.[1] Eq. (2.26) is written in superspace and
the F -term with θ1θ2 resp. the D-term with θ1θ2θ̄1θ̄2 has to be taken as indicated. In
the limit δ →∞ the effective action of Veneziano and Yankielowicz is recovered. The
effective Lagrangian (2.26) describes propagating massive fields, among others the scalar
and pseudoscalar glueball. The physical states will be mixtures of states from the VY-
supermultiplet and the FGS-supermultiplet with same quantum numbers [107].

Figure 2.1 combines those two supermultiplets and visualizes their mass hierarchy. Both
multiplets are chiral Wess-Zumino supermultiplets consisting of a scalar, a pseudoscalar and
a fermionic spin-1

2 particle. As proposed in [107], it is assumed that the FGS-supermultiplet
is lighter than the VY-supermultiplet. Without a supersymmetry-breaking gluino mass,
both supermultiplets have presumably different masses, but each is degenerated. The scalar,
pseudoscalar and majorana-type states of both supermultiplets have the same quantum
numbers and mixing occurs. In [108], it was calculated that mass mixing of the physical

[1]In [108], the same authors suggest an alternative formulation with two chiral superfields.
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2.4. Two-dimensional N = (2, 2) Super-Yang-Mills theory

states increases the mass difference between the supermultiplets as sketched. As soon as a
gluino mass is added, supersymmetry will be broken softly and the mass-degeneracy ends.
By perturbation of the effective action with a small gluino mass, the authors of [108] found
that the pseudoscalar mesonic state is lighter than the scalar mesonic state. In analogy
to another proof with glueballs [109], they then conjectured that the lightest state is the
scalar glueball. Thus the FGS-supermultiplet should be the lightest supermultiplet.

Generally, the ordering of the supermultiplet depends on free parameters of the effective
action. In [110], it was shown that the effective Lagrangian can also be constructed such
that the mass hierarchy of the two supermultiplet is inverted. These authors introduced a
tunable mixing angle between the two supermultiplets and applied the large-Nc equivalence
between SYM theory and QCD. They argued that this mixing should be small in accordance
to QCD, where the η′ is much lighter than the 0++ glueball. Consequently, the VY-
supermultiplet should be the lightest supermultiplet.

Therefore, non-perturbative lattice simulations are a promising approach to shed light
on the question of the lightest supermultiplet. For the numerical results in [33], an
argument is found in favor of the FGS-supermultiplet to be the lightest: The lightest state
in the scalar channel is dominantly a glueball. At the same time, their results agree with
the argumentation of [110], because the mesonic contribution dominates the pseudoscalar
ground state and has negligible mixing with the pseudoscalar glueball. Although in [110]
the scalar and pseudoscalar channel were treated equally, the numerically found mixing
angles are not equal. In summary, the mass hierarchy of the supermultiplets is not clarified
yet and future lattice investigations may provide a definitive answer.

2.4 Two-dimensional N = (2, 2) Super-Yang-Mills

theory

With the idea of Kaluza and Klein [111, 112], the four-dimensional N = 1 SYM theory can
be reduced to the two-dimensional N = (2, 2) SYM theory. Therefore the four-dimensional
Majorana spinors are decomposed into two-dimensional spinors, λ =

(
χ1

χ2

)
. The Kaluza-

Klein reduction R4 → R2 × T2 compactifies two spatial dimensions and consequently
the corresponding gauge fields become scalars A2 = φ1, A3 = φ2. By absorbing the
compactified volume V23 =

∫
dx2dx3 in the gauge coupling g →

√
V23g, the latter comes in

units of length and leads to superrenormalizability. Dimensionally reducing the gauge term
and the kinetic term of the four-dimensional Lagrangian (2.21) without any gluino-mass
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results in the two-dimensional action

S2d = 1
2g2

∫
d2x tr

(
− 1

2FµνF
µν −DµφmD

µφm + 1
2[φm, φn][φm, φn] + iχ̄mσ2D0χm

− χ̄mσ3D1χm − χ̄m(iσ1)mnσ1[φ1, χn]− χ̄m(iσ3)mnσ1[φ2, χn]
)
.

(2.27)

In the previous equation, the Dirac matrices are given by the Pauli matrices and the indices
run over µ, ν = 0, 1 and m,n = 1, 2. To formulate the two-dimensional superalgebra,
it is helpful to introduce light-cone coordinates z = x0 + x1 and z̄ = x0 − x1 [113].
Vectors Vµ are also rearranged to Vz = 1

2(V0 + V1) and Vz̄ = 1
2(V0 − V1). Decomposing

the four-dimensional Majorana supercharge Q into two left-handed Q1
+,Q2

+ and two right-
handed Q1

−,Q2
− Majorana-Weyl spinors, we label our superalgebra as N = (2, 2). With

the definition M = M01, the superalgebra is given by

{Qi+,Q
j
+} = 2iδijPz , [Qi+,M ] = −1

2Q
i
+ , [Qi+, Pz] = 0 , [Pz,M ] = −Pz ,

{Qi−,Q
j
−} = 2iδijPz̄ , [Qi−,M ] = 1

2Q
i
− , [Qi−, Pz̄] = 0 , [Pz̄,M ] = Pz̄ ,

{Qi+,Q
j
−} = 0 , [Qi+, Pz̄] = [Qi−, Pz] = 0 , (2.28)

as the direct sum of the left algebra (2, 0) and the right algebra (0, 2). Although the
dynamics of the reduced N = (2, 2) SYM theory are different and the constituents of
the particle operators differ, the supermultiplet structure is identical to N = 1 SYM
theory [55, 114]. The VY-supermultiplet consists of the a-η′, a-f0, and a mixture of gluino-
glue and gluino-scalarball. In the FGS-supermultiplet all states contain the scalar fields
and they are a glue-scalarball, a mixture of 0++-glueball and pure scalarball, and a mixture
of gluino-glue and gluino-scalarball [55, 114].

2.5 Euclidean field theory

For the lattice formulation of a theory, its definition in Euclidean spacetime is required [115].
Axiomatic field theory states that there exists an analytic continuation to Euclidean
spacetime [116, 117]. Wightman functions W (x1, . . . , xn) = 〈0|φ(x1) . . . φ(xn)|0〉 are
vacuum expectation values of products of fields[2] φ(xi) at spacetime coordinates xi = (ti, ~xi).
A Wightman function evaluated at Euclidean points xEi = (~xi,−iti) is called Schwinger
function, W (xE1 , . . . , xEn) = S(x1, . . . , xn). With the Schwinger function

S(x1, . . . , xn) = 1
Z

∫
Dφφ(x1) · · ·φ(xn) e−SE[φ] = 〈φ(x1) · · ·φ(xn)〉 (2.29)

[2]For simplicity in the notation, we consider scalar fields φ(x) here. Analogously, positivity can be defined
for lattice fermions [118, 119] and gauge theories [120].
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the Euclidean action SE[φ] is defined [121, 122]. The most important requirement
in order that Euclidean correlation functions can be continued back to Minkowski
spacetime is reflection positivity, also called Osterwalder-Schrader positivity [123].
We define a Euclidean scalar field operator[3] at spacetime coordinate x = (~x, x4)
as φ(x) ≡ eHx4

φ(~x, 0) e−Hx4 with Euclidean spacetime translations e−Hx4 and analogously
the Hermitean conjugated operator O†(x) ≡ eHx4

O†(~x, 0) e−Hx4 . The Euclidean time
reflection is then given by

θ(~x, x4) = (~x,−x4) , (2.30)
Θφ(x) = φ∗(θx) , (2.31)
Θ(cF ) = c∗ΘF , (2.32)

Θ(FG) = ΘF ΘG , (2.33)

where the asterisk stands for complex conjugation, F,G are functionals of fields and c is
a complex number [124]. The time reflection Θ is the Euclidean equivalent of conjugate
transpose (dagger) in Minkowski spacetime. It is evident, that Hermitean conjugation
of the Minkowskian time evolution operator eiHt reverses the time, t↔ −t, and the
same does the time reflection Θ with eHx4 . Now we can define the reflection positivity
condition [123, 124]: 〈

(ΘF )F
〉
≥ 0 . (2.34)

Given the expectation value 〈 〉 of a Euclidean reflection-positive classical field theory,
then there exists a Hilbert space H and a Poincaré group representation U(a; Λ) with
positive energy such that

〈
(ΘF )T (~x, x4)F

〉
=
〈
F, U(t, ~x)F

〉
H
, (2.35)

where T (~x, x4) is a Euclidean spacetime translation and U(t, ~x;1) = e−itH+i~x~P is a
Minkowski spacetime translation [115]. For t = 0, ~x = ~0 this theorem guarantees the
existence of the Hilbert space H with positive inner product. Or, the other way around, it
shows that a self-adjoint transfer matrix T (t, ~x) exists on the lattice. With the help of the
transfer matrix T we can define the Euclidean lattice Hamiltonian

T = e−Ha , (2.36)

where a is the lattice spacing.
[3]In the Schrödinger picture the operators OS and its Hermitean conjugate O†S are time-independent,
while the states |φS(t)〉 = e−iHSt|φS(0)〉 evolve in time. Conversely, in the Heisenberg picture considered
here the states |φH〉 are constant and the operators are time-dependent OH(t) = eiHStOS e−iHSt and
similarly its conjugate transpose O†H(t) = eiHStO†S e−iHSt [124].
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Returning to the YM theory introduced in section 2.1, the Euclidean Lagrangian after
the Wick rotation t 7→ −ix4 is

LE[A] = 1
4tr (FµνF µν) . (2.37)

Note that the definitions of the field strength Fµν and the covariant derivative Dµ are not
affected by the Wick rotation. The Euclidean continuum on-shell action of N = 1 SYM
theory is

SE
SYM =

∫
d4x tr

(1
4FµνF

µν + 1
2 λ̄

/Dλ+ m

2 λ̄λ
)
. (2.38)

To fulfill the Clifford algebra after the transition from Minkowski to Euclidean metric, the
Dirac matrices have to be modified according to γi 7→ iγi, γ0 7→ γ4 .

At this point, the Majorana nature of the spinors in N = 1 SYM theory has to be
addressed. In Minkowski spacetime the relation λ = λC = Cλ̄T resp. λ̄ = λ†γ0 = λTC
hold. Consequently a Majorana spinor has only two complex parameters and is therefore
sometimes referred to as a half Dirac spinor. Euclidean spacetime does not allow the
definition of Majorana fermions [125]. Therefore a simple Wick rotation of the Minkowskian
quantum field theory to imaginary times is not sufficient, unlike for Dirac spinors. A
solution is to employ the Euclidean action (2.38) and to ensure the correct degrees of
freedom for the spinor by requiring the formal Majorana condition λ̄ = λTC while giving
up the reality condition λ̄ = λ†γ0 [126–128].

In the next chapter, the ingredients of lattice gauge theory are introduced. Together
with the foundations presented in this chapter, the formulation of N = 1 SYM theory on
the lattice and the necessary fine-tuning process with Wilson fermions are addressed in
section 3.2.
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CHAPTER 3

Method

This chapter is intended to give an overview of the lattice techniques and methods in use.
Additionally, some input parameters and our default values are discussed. For further
details of the foundations, see textbooks like [124, 129–131].

In the first part of this chapter, we summarize basics of lattice field theory with
N = 1 SYM theory in mind. Therefore generality is restricted sometimes in favor of a
straight-forward presentation. After section 3.1.1 about Monte Carlo sampling, we address
the rational approximation, the conjugate gradient and the multigrid approach in 3.1.2.
Further topics in 3.1.3 include the fundamentals of mass spectroscopy and approximations
of the propagator. Subsequently, smearing methods for the improvement of the lattice
interpolators are presented 3.1.4.

The second part 3.2 focuses on the additional requirements and implementation of
N = 1 SYM theory on the lattice. In detail, the gauge and fermion actions are introduced
including their properties. Finally, the lattice observables are defined.

3.1 Lattice field theory

Lattice simulations are used to simulate theories like the N = 1 SYM theory or QCD in a
Euclidean spacetime. For our purpose we choose a four-dimensional hyper-cubic lattice Λ
with lattice spacing a and coordinates xµ = anµ, n ∈ Z4. In temporal direction, we choose
a lattice extent NT , which is typically twice as long as the spatial extent NS. We want to
work at zero temperature and that way the effects of finite temperature (corresponding to
the inverse temporal lattice length L = aNT ) are reduced. Furthermore the longer time
extent is useful for the evaluation of the correlators in hadron spectroscopy.

For the lattice points, periodic boundary conditions are imposed leading to a torus
with discrete translation invariance. Furthermore periodic boundary conditions are chosen
for bosonic fields and spatial directions of fermionic fields. For the temporal direction of
fermionic fields anti-periodic boundary conditions are required.
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The lattice brings a natural regularization. On the one hand, the finite lattice spacing
leads to a UV cutoff 1

a
and on the other hand, the finite lattice volume V = |Λ| is a

regulator in the IR. At the same time, all lattice momenta can be restricted to the first
Brillouin zone, pi = 2πni

aNS
, 0 ≤ ni < NS.

The fermionic fields of the theory under investigation are placed on the lattice sites.
Two fermions of neighboring sites may interact for example through a discretized derivative.
To build gauge invariant objects, parallel transporters between those sites are required.
Such a parallel transporter contains the gauge field Aµ(x) = Aaµ(x)T a and is defined as

Uµ(x) ≡ eig
∫ x+µ̂
x

Aµ(y) dyµ . (3.1)

In this sense, the group-valued gauge links of the lattice are related to the underlying
continuum gauge fields, which are elements of the Lie algebra. The trace of the product of
gauge links along a closed path is a gauge invariant object, which will be used to construct
the discretized bosonic actions. A so-called plaquette

Uµν(n) ≡ Uµ(n)Uν(n+ µ̂)U−µ(n+ µ̂+ ν̂)U−ν(n+ ν̂) (3.2)

is the product of four links along the shortest loop.

3.1.1 Monte Carlo sampling

For the numerical simulation, the Euclidean action SE of eq. (2.38) is discretized on a
spacetime lattice Λ. The corresponding Euclidean partition functions is

Z =
∫

Λ
DU Dλ e−SE[U ,λ] . (3.3)

Since the Majorana fermions λ̄ = λTC and λ are not independent, the path integral measure
contains only Dλ. With the partition function, the expectation value

〈O〉 = 1
Z

∫
Λ
DU DλO[U , λ] e−SE[U ,λ] (3.4)

of an observable O[U , λ] can be defined, which is a very high-dimensional integral. As
a statistical Boltzmann weight, the exponential suppresses a lot of the configuration
space and thus the integral can be evaluated efficiently, for example with importance
sampling [132, 133]. Path integrals in theories with fermions contain Grassmann numbers
and the application of importance sampling is difficult. A possibility would be a
polymer representation, but due to the Pauli principle the contributions have alternating
signs [124, 134, 135]. Thus it is favorable to calculate the Grassmann integral analytically
and sample the effective bosonic theory with Markov Chain Monte Carlo (MCMC)
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methods [124]. Integrating out the Majorana fermions[4] gives the partition function [136]

Z =
∫

Λ
DU Dλ e−SB[U ]− 1

2 tr(λTCD[U ]λ) ∝
∫

Λ
DU Pf(CD[U ]) e−SB[U ] . (3.5)

Note that the generalized trace in the previous equation contains besides the summation
of the internal indices also the sum over spacetime. Up to a sign, the occurring Pfaffian
is proportional to the square root of the determinant. Therefore, a Majorana fermion
is sometimes called a half Dirac spinor. In order to apply algorithms, which require
Hermitean matrices, we define M ≡ DD† and rewrite the Pfaffian [137]

Pf(CD[U ]) = phase
(
Pf(CD[U ])

)∣∣∣Pf(CD[U ])
∣∣∣ = phase

(
Pf(CD[U ])

)∣∣∣(detM [U ])1/4
∣∣∣ . (3.6)

If phase
(
Pf(CD[U ])

)
is complex or negative, then a so-called sign-problem occurs and the

interpretation of the measure as a Boltzmann weight loses its validity. A mild sign-problem
may be compensated by reweighting [138].

An explicit calculation of the occurring Pfaffian in eq. (3.5) would be numerically too
costly. By introducing so-called pseudofermions, the Pfaffian can be approximated as a
Gaussian distribution [139], such that

Z ∝
∫

Λ
DU Dφ e−SB[U ]−tr(φ†M−1/4φ) . (3.7)

Pseudofermions are bosonic fields with the same degrees of freedom as the fermions they
describe. To approximate the fourth root, a rational approximation (see section 3.1.2) is
performed.

After this detour about the treatment of the fermionic fields on the lattice, we return
to the Monte Carlo procedure to calculate an observable, see (3.4). A Markov chain
describes a stochastic process, whose future probabilities depend only on its current state.
Additionally, the detailed balance condition is requested such that the stochastic process
is reversible under infinitesimal time-reversal. On the resulting field configurations Cn[U ]
of a reversible Markov chain, the ensemble mean of an observable

〈O〉 ≈ 1
N

N∑
n=1

O[Cn] (3.8)

is an approximation of the expectation value (3.4). The Markov chain guarantees that
in the limit N →∞ the correct expectation value is approached. An estimate for the
deviation with N configurations [129, 133] is

〈O〉 − 1
N

N∑
n=1

O[Cn] ∝ O
(

1√
N

)
. (3.9)

[4]Dirac fermions will not be discussed here. Similar equations as for Majorana fermions hold and the
determinant instead of the Pfaffian appears. For further details, many textbooks for lattice QCD are
available [124, 129–131].
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3.1. Lattice field theory

For theories with spinors, the fermionic expectation value is given by Wick’s theorem
as the solution of an integral of Gaussian type with Grassmann numbers [140]. Within the
scope of this thesis we will encounter Wick contractions with two, resp. four, Majorana[5]

spinors (written with multi-indices):

〈λI λ̄J〉F = D−1
IJ , 〈λI λ̄JλK λ̄L〉F = D−1

IJD
−1
KL −D−1

IKD
−1
JL +D−1

ILD
−1
JK . (3.10)

Higher orders can be computed from the generating functional

W [θ] =
∫
Dλ e− 1

2 trλ̄Dλ+trθ̄λ =
∫
Dλ e− 1

2 trλTCDλ+ 1
2 tr θTCλ+ 1

2 trλTCθ ∝ Pf(CD) e 1
2 tr θTCD−1θ .

Next, we will present an efficient algorithm for obtaining configurations of a Euclidean
action with fermions. The Hybrid Monte Carlo (HMC) algorithm is often used to generate
configurations according to the Markov chain condition [141]. If a rational approximation
is required like in eq. (3.7), then the slightly modified algorithm is called Rational Hybrid
Monte Carlo (RHMC) [142]. For each configuration, Hamiltonian equations of motion
resembling molecular dynamics are integrated along a fictive trajectory. The molecular
dynamics method combines classical dynamics with the ergodicity hypothesis to sample
the correct statistical distribution [143, 144].

At the beginning of a (R)HMC step, the pseudofermion field φ = Dχ is generated from
Gaussian distributed fields χ. Afterwards the (fictive) canonical conjugated momenta P
of the Hamiltonian

H[P,U ] = SG[U ] + P 2

2 + φ†(DD†)−1/4φ (3.11)

are initialized according to a Gaussian probability distribution. Then the molecular
dynamical equations of the momenta P and gauge fields U are evolved. At the end of
the trajectory, a Metropolis step [145] with probability min

(
1, e−δH

)
decides whether the

configuration is accepted or rejected. The calculation of

δH = H ′ −H = P ′2

2 −
P 2

2 + SG[U ′]− SG[U ] + φ†
(
(D′D′†)−1/4 − (DD†)−1/4

)
φ (3.12)

requires the calculation of (DD†)−1/4, which we calculate with a rational approximation
(see section 3.1.2). This final accept-reject step avoids that numerical integration errors
propagate along the Markov chain. Nevertheless, the errors of the integrator of the
Hamiltonian molecular dynamics influence the acceptance rate. To fulfill the detailed
balance condition, the integrator has to be (up to machine precision) time-reversible and
energy-conserving. Therefore, symplectic integrators are well-suited.

Several parameters enter the RHMC algorithm and their values influence how many
independent configurations can be created with a fixed amount of computational time.
[5]Note that we restrict ourselves here again to Majorana spinors. For Dirac spinors, see textbooks such
as [124, 129–131].
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Our default values are summarized in table 3.1. Generally we measure on every fifth
configuration to reduce auto-correlation. In total we need in three places a rational
approximation: Firstly in the creation of the pseudofermions, secondly in the calculation
of the force in the molecular dynamics and thirdly in the accept-reject step. The rational
approximation for the pseudofermions and the accept-reject step should be performed
with machine precision, whereas for the molecular dynamics a simpler approximation is
sufficient. The latter choice is especially important, because the force has to be calculated
very often and an appropriate choice saves computational time. For all approximations,
the interval I = [λmin, λmax] is chosen such that the smallest eigenvalue as well as the
largest eigenvalue of the operator M are enclosed. Table 3.2 summarizes the default values
of the mentioned parameters of the rational approximation.

If machine precision is used for the pseudofermions and the acceptance step, then the
RHMC algorithm is as exact as the HMC algorithm. “Exact” is related to the creation of
the Markov chain and its convergence [146]. The numerical simulations contain a statistical
uncertainty based on the finite ensemble size and it can be reduced subsequently by the
creation of additional configurations. On top of that, systematic errors enter our results.
The influence of the lattice spacing and the resulting discretization errors can be reduced
by choosing a smaller lattice constant or an improved lattice action (see section 3.2 for
further details). Additionally, the finite lattice volume may lead to a shift of the particle
masses as addressed in section 5.5.

Table 3.1: HMC parameters with their default values and further test values, which were
used to check if the default values are well-suited. The quotient δT = T/N defines the size
of a single integration step. The second order integrator is the leap-frog integrator [147],
the improved second order was published in [148], the fourth order can be found in [149]
and the sixth order is taken from [150].

default test
trajectory length T 0.6 0.4, 0.8, 1.2, 1.6, 2.0
time steps N along trajectory 15 8, 12, 16
order for fermion field improved 2 2, 4
order for gauge field 4 improved 2, 6

3.1.2 Rational approximation, conjugate gradient and multigrid

Many inversions of the linear system D · x = y with the Dirac operator D and a given y
are required to generate the ensembles and perform measurements on them. By integrating
out the fermions, pseudofermions are introduced and their calculation requires the Dirac
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3.1. Lattice field theory

Table 3.2: Parameters of the rational approximation. Therefore NR coefficients are used
to approximate the function in the interval [λmin, λmax] with the indicated digits for the
determination of the Remez coefficients and the given precision to calculate the inverse.

NR digits λmin λmax precision
pseudofermions 25 100 10−5 10 10−16

force 10 60 10−4 10 10−2

acceptance step 25 100 10−5 10 10−16

matrix to a negative rational power, M−q [139]. For 0 < q < 1, a rational approximation

r(M) = M−q ≈ α0 +
NR∑
r=1

αr
M + βr1

(3.13)

can approximate the rational power after the coefficients αr, βr have been specified, e.g.
with the Remez algorithm [151, 152]. Table 3.2 summarizes the default parameters, which
are used for the various rational approximations to calculate the pseudofermions, the
force and the acceptance step [137]. Each summand of the rational approximation needs
an inversion. An exact calculation of this inverse is numerically too costly for such a
huge matrix like the Dirac operator. Therefore, an iterative procedure is used and for
Hermitean, positive definite matrices the CG algorithm [153] is well-suited. With the multi-
shift CG solver all inversions of the rational approximation in eq. (3.13) can be calculated
simultaneously with only a small overhead [154]. This variant of the CG algorithm
utilizes that one Krylov space for all shifted systems (M + βr1) · x = y is sufficient and
it needs like the original algorithm one single matrix-vector product per iteration. The
condition number is the quotient of the maximal and minimal eigenvalue (by absolute
value), κ = |λmax|

|λmin| , and an indicator how many iterations are required for the inversion.
Preconditioning is a possibility to accelerate the inversion by reducing the condition

number. There exist two types of preconditioning, which can be applied independently,
either as factorization of the fermion determinant in eq. (3.6) or in the inversion. Even-odd
preconditioning [155–157] is used in both cases and independently of the usage of CG or
multigrid algorithms (see below).

For the measurement of the mesonic observables on the lattice, a significant part of
the runtime is spent to invert the Wilson Dirac operator. For a stochastic estimator one
inversion is required and for a point source one per internal index, of which there are
in total dimf · dims · dimc. In all our simulations only one flavor is present, dimf = 1,
and the spinor space dimension is dims = 4 in four spacetime dimensions. For the
fundamental representation of SU(Nc) the color space has dimension dimfund

c = Nc and in
the adjoint representation dimadj

c = N2
c − 1. If γ5-Hermiticity is not fulfilled (this is the

case for m5 6= 0), then the backward running propagator has to be calculated separately
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Figure 3.1: Left/Right: Red and black blocks of size 2d in d = 2/d = 3 used in the Schwarz
alternating procedure. In the algorithm all the red blocks are treated at once in alternation
with the black blocks.

and the number of inversions for the point sources doubles. In the measurements of the
observables, several inversions of the constant Dirac operator with different right-hand
sides y are performed. In this context so-called multigrid algorithms can accelerate the
calculations significantly compared to the CG algorithm. More precisely, we use the
domain decomposition adaptive algebraic multigrid (DDαAMG) library [158, 159]. Only
one setup of the coarsening is required for the measurements, where the Wilson Dirac
operator stays constant.

Generally, the inversion of a matrix becomes harder when its condition number grows.
In lattice simulations this happens typically when the critical point is approached. This
so-called critical slowing down can be reduced with a multigrid algorithm. Its strength lies
in the separate treatment of high and low modes by an alternating application of a domain
decomposition smoother and a coarse-grid correction [160]. With the Schwarz alternating
procedure (SAP) the lattice is decomposed into blocks (see figure 3.1), which is useful for
the inversion of the UV-modes [161, 162]. The inverse block size acts as a cutoff for the
low modes. Additionally to the domain decomposition smoother, a coarse-grid correction
is performed to approximate the small eigenvalues and address the IR-modes that way.
Therefore, a coarse-graining operator projects the current approximation of the vector x
to a coarser lattice. The low modes are preserved mainly and on the coarse lattice the
discretized Dirac equation D · x = y needs to be solved only with low precision. Finally
the solution is projected back to the finer lattice and used as a starting guess for SAP.

The efficiency of this decomposition is based on the local coherence [163]. That means
those eigenvectors of the Dirac operator, which correspond to small eigenvalues, have the
tendency to agree on many blocks. Consequently the eigenvectors with small eigenvalues
can be approximated with just O(20) eigenvectors [164] and with them the projection
operator to the coarse grid as well as the coarse-grid Dirac operator are calculated. This
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3.1. Lattice field theory

setup needs to be calculated only once in the beginning and can be used afterwards for all
right-hand sides [165]. A benchmark test for N = 1 SYM theory with a two-level multigrid
can be found in section 5.7.2. In general the DDαMG allows more levels when the lattice
is large enough.

For the generation of configurations multi-shift CG is our default solver, but we started
to test the DDαAMG within the molecular dynamics of the RHMC. Along the Monte
Carlo trajectory the gauge fields and the Wilson Dirac operator change. Therefore much
more time-consuming setups of the coarsening operator are necessary. In addition, the
precision for the inversion of the force is typically only 10−2. Consequently the inversion
stops after a few iterations and the ratio between setup time and inversion time is much
higher than in the measurements. Finally, the reversibility may suffer since an update of
the coarsening scheme in the trajectory propagates information. In [166] this problem was
discussed in the context of the Schwarz Alternating Procedure (SAP).

The DDαMG solver has been extended to twisted-mass fermions [158], the rational
approximation of a single quark [167] and a Davidson-type method to solve shifted linear
systems efficiently [168].

3.1.3 Mass spectroscopy

To determine masses of compound particles on the lattice, two-point functions are
considered. Using a basis |n′〉 we determine the expectation value of two interpolators Oi

(corresponding to Hilbert space operators Ôi) separated by a temporal distance [129]:

〈O2(t)O1(0)〉T = 1
ZT

∑
n,n′
〈n′|e−(T−t)ĤÔ2|n〉〈n|e−tĤÔ1|n′〉

= 1
ZT

∑
n,n′
〈n′|Ô2|n〉 e−(T−t)En′ 〈n|Ô1|n′〉 e−tEn

=
∑
n,n′〈n′|Ô2|n〉〈n|Ô1|n′〉 e−t(En−E0)e−(T−t)(En′−E0)

1 + e−T (E1−E0) + e−T (E2−E0) + . . .
. (3.14)

For a large temporal lattice extent T , the correlator is the sum of exponentials,

lim
T→∞
〈O2(t)O1(0)〉T =

∑
n

〈0|Ô2|n〉〈n|Ô1|0〉 e−t∆En , (3.15)

where we introduced ∆En ≡ En −E0 relative to the vacuum.[6] In order to extract masses
from the lattice operators they have to be projected in momentum space

Õ(~p, t) = 1√
|Λ3|

∑
~n∈Λ3

O(~n, t) e−ia~n·~p

[6]Only energies relative to the vacuum energy E0 occur, similar to an experiment where only energy
differences can be measured. The absolute value of the vacuum energy is arbitrary since we can always
add a constant term to the Hamiltonian without affecting the expectation value (3.14) [131].
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to zero momentum. Projecting to ~p = ~0 corresponds to averaging the operator over the
spatial lattice Λ3 = {~n = (n1, n2, n3) |ni = 0, 1, . . . , NS} with t = const (a time-slice):

Õ(~p = ~0, t) = 1√
|Λ3|

∑
~n∈Λ3

O(~n, t) ≡ S(t) . (3.16)

Taking into account the boundary conditions and defining the renormalized mass
mR ≡ E1 − E0 as well as the coefficients a0 = |〈0|S(t)|0〉|2, a1 = |〈1|S(t)|0〉|2 we get for
(E2 − E1)t� 1 the symmetric/antisymmetric correlator

〈S†(t2)S(t1)〉 = a0 + a1
(
e−|t2−t1|mR ± e−(T−|t2−t1|)mR

)
= a0 + 2a1 e−TmR/2

cosh
sinh


mR

(
T

2 − |t2 − t1|
) ,

with the ground state as leading contribution [124]. To extract the mass we measure the
connected two-point function

C(|t2 − t1|) = 〈S†(t2)S(t1)〉−〈S†(t2)〉〈S(t1)〉 = 2a1 e−TmR/2

cosh
sinh


mR

(
T

2 − |t2 − t1|
),

where the constant a0 is canceled, and fit the correlator directly to the hyperbolic
function [131]. In our fits we use the functions

cosh1(t) = ec1 · cosh
(
d1(T/2− t)

)
, (3.17)

cosh2(t) = ec1 · cosh
(
d1(T/2− t)

)
+ ec2 · cosh

(
d2(T/2− t)

)
, (3.18)

sinh1(t) = ec1 · sinh
(
d1(T/2− t)

)
, (3.19)

sinh2(t) = ec1 · sinh
(
d1(T/2− t)

)
+ ec2 · sinh

(
d2(T/2− t)

)
, (3.20)

with exponentials to guarantee positive factors. We refer to d = min(d1, d2) as the dominant
mass contribution, which corresponds to the ground state mass on sufficiently large
lattices. With d∗, we denote the mass contribution of the first excited state. To handle
excited contributions at the border of the correlator as well as statistical noise and lattice
artifacts in the center of the correlator, we adapt the fit range to t ∈ [t1, T/2− t2] and
t ∈ [T/2 + t2, T − t1]. In section 5.5, the fit window tcut = (t1, t2) will be discussed in the
context of finite size effects. For an estimate of the fit interval, the effective mass meff is a
helpful quantity. Calculated from

C(t)
C(t+ 1) =

cosh
(
meff(T/2− t)

)
cosh

(
meff(T/2− (t+ 1))

) (3.21)

for each t, it shows a plateau in the range where the ground state is the dominant
contribution. An analogue equation with sinh can be used for antisymmetric correlators.
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Approximating the propagator

To compute the correlation functions C(t), we need the propagator D−1
W (n′, n) of the large

Wilson Dirac operator. The explicit inversion of this NintV ×NintV matrix would be
computationally costly and very memory consuming. Although the Wilson Dirac operator
is sparse, its inverse is not. For the calculation of the connected contributions it is sufficient
to invert only one column, because the propagators on a gauge configuration are correlated.
Therefore we place a point source [Sn0,α0,a0

0 (n)]αa = δn,n0δα,α0δa,a0 for each internal degree
of freedom at the position of the interpolator O(n0) and calculate with an iterative solver
the point-to-all-propagator [129, 130]

[D−1
W (n′, n0)]βb,α0a0 =

∑
n,α,a

[D−1
W (n′, n)]βb,αa[Sn0,α0,a0

0 (n)]αa . (3.22)

If the Wilson Dirac operator is γ5-Hermitean, then the backward running propagator can
be calculated simply by

[D−1
W (n′, n0)]∗βb,αa =

∑
µ,ν

[γ5]α,µ[D−1
W (n0, n

′)]µa,νb[γ5]ν,β . (3.23)

For the disconnected contributions to the correlator, we use stochastic
estimators [169, 170]. Based on Nse column vectors ηn of length NintV the inverse of
the Dirac Wilson operator can be approximated. The stochastic vectors are filled with
white noise, that means their ensemble average fulfills

〈ηi〉 = 1
Nse

Nse∑
n=1

[ηn]i ≈ 0 and 〈η†i ηj〉 = 1
Nse

Nse∑
n=1

[ηn]∗i [ηn]j ≈ δij . (3.24)

Then we can invert the Nse equations DW · χn = ηn and calculate the inverse Wilson Dirac
operator by the ensemble average

[DW]−1
ij ≈

NintV∑
k=1

[DW]−1
ik 〈η

†
jηk〉 = 〈η†jχi〉 . (3.25)

For the random noise, we chose complex random numbers 1√
2(±1± i) isomorphic to Z4. The

equations (3.24)-(3.25) are exact in the limit Nse →∞, but a finite number of stochastic
estimators is sufficient for an adequate approximation of the so-called all-to-all-propagator.
Typically, we perform the inversions involved in the calculation of the point sources and
stochastic estimators with a precision of 10−12.

3.1.4 Smearing

Many observables are hard to extract due to their bad signal-to-noise ratio. One possibility
to improve this is to increase the ensemble size and reduce that way the impact of the
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gauge field fluctuations. Additionally it is often beneficial to improve the overlap of the
lattice operator and the physical state, which is measured. Typically this is done with
smearing of the gauge fields and/or the fermions. With stout smearing

Uµ(n) 7→ U ′µ(n) = eiBµ(n) Uµ(n) , (3.26)

the gauge links are broadened, which results in a suppression of unwanted states and
excitations [171]. The matrix

Bµ(n) = i
2
(
Ω†µ(n)− Ωµ(n)

)
− i

2Nc
tr
(
Ω†µ(n)− Ωµ(n)

)
(3.27)

contains Ωµ(n) = W̃µ(n)U †µ(n), which is defined with the staples

W̃µ(n) =
4∑

ν=1
ν 6=µ

ρµν
(
Uν(n)Uµ(n+ ν̂)U †ν(n+ µ̂) +U †ν(n− ν̂)Uµ(n− ν̂)Uν(n− ν̂ + µ̂)

)
(3.28)

and the weights ρmn = ρ, ρ4µ = ρµ4 = 0. Thus only the spatial directions are smeared and
the traceless Hermitean matrix Bµ(n) guarantees that the smeared link is again an element
of SU(Nc). In our simulations, we employ stout smearing for the mass spectroscopy of
the gluino-glue and glueballs (see section 3.2.4 for the definition of these observables and
sections 6.2.2 and 6.2.3 for their results). Alternative gauge field smearing procedures are
APE smearing [172] and HYP smearing [173].

Also the shape of the fermionic source can be smeared to improve the matching with
the physical size [174, 175]. In order to approximate a Gaussian shape, the starting point
for the Wuppertal smearing [176–178] is the three-dimensional Klein-Gordon equation

K(n, n′)S(n′) = Sn0,α0,a0
0 (n) with K = 1− κH . (3.29)

This equation contains the hopping parameter κ = 1
2(4+m) , the Hermitean hopping matrix

H(~n, ~n′) =
3∑
i=1

(
Vi(~n, nt) δ(~n+ î, ~n′) + V†i (~n− î, nt) δ(~n− î, ~n′)

)
, (3.30)

the smeared source with the components [S(n)]α,a and the point source with
[Sn0,α0,a0

0 (n)]α,a = δn,n0δα,α0δa,a0 . In the hopping matrix (3.30), the time coordinate
nt = const = [n0]4 has the temporal value of the point source and the gauge link Vi
is for N = 1 SYM theory in the adjoint representation, see definition in eq. (3.39). Instead
of inverting K explicitly, the inverse is approximated by Ns Jacobi iterations with smearing
parameter κs:

S(k)(~n, t) = (1 + κsH)S(k−1)(~n, t) . (3.31)

Thus the smearing matrix is
M = (1 + κsH)Ns (3.32)
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and the smeared source is calculated as S(n) = M Sn0,α0,a0
0 (n). Figuratively, the

neighboring sites of the fixed time-slice of the source at nt get connected by gauge
links. Another similar approximation called Jacobi smearing [129, 179] uses the smearing
matrix

M =
Ns∑
k=0

κksH
k (3.33)

and a third possibility is the series expansion of the exponential eκsH to the order O(κNss ):

M =
Ns∑
k=0

1
k! (κsH)k . (3.34)

Like the gauge field smearing, source smearing does not influence the time-direction and
acts only in the color space. Additional gauge field smearing may improve the fermion
smearing through the gauge links entering the hopping matrix in eq. (3.30). We used
mainly Jacobi smearing for the evaluation of the mesonic states to improve the noise of
their disconnected contributions. A comparison of the three discussed types of fermion
smearing showed no relevant difference, see section 5.7.1.

3.2 N = 1 SYM theory on the lattice

The formulation of N = 1 SYM theory on the lattice is challenging. Several important
symmetries such as the (remnant) chiral symmetry are broken by the lattice. Other
symmetries like the rotations and translations are realized only as a discrete subgroup of
their continuum counterparts. The breaking of translation invariance implies furthermore
the breaking of supersymmetry, see eq. (2.16). Another argument for broken supersymmetry
is the failure of the Leibniz rule on the lattice [19]. Thus the supersymmetry transformation
of the Lagrangian is not a total derivative at finite lattice spacing a. However, the additional
terms proportional to a are irrelevant and vanish in the continuum limit [180].

Different lattice formulations are feasible, depending on the discretization of the
continuum action and in particular on the choice of lattice fermions. In the present
work we shall use the lattice formulation with Wilson fermions introduced by Curci and
Veneziano [181]. At finite lattice spacing, supersymmetry and chiral symmetry are broken
and this leads to a relevant counter-term, which is proportional to the gluino mass term.
To compensate this, an explicit gluino mass term is added and fine-tuned such that the
(renormalized) gluino becomes massless in the continuum limit. Since the gluino mass
term is the only relevant operator, supersymmetry and chiral symmetry will be restored
in this limit.

Unfortunately, confinement prevents the direct measurement of the gluino. Here we
follow Veneziano and Yankielowicz who proposed to monitor instead the (unphysical)
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adjoint pion mass, defined in a partially quenched approximation, similarly as in 1-flavor
QCD [105]. Its mass squared m2

a-π ∝ mR is proportional to the renormalized gluino mass,
which can be calculated in partially quenched chiral perturbation theory [39].[7] This
quantity requires only low statistics and is easy to compute. To arrive at the continuum
theory, several steps are required. First of all, the simulations are performed at different
bare mass parameters to extrapolate to the critical point, where the adjoint pion and
renormalized gluino have minimal mass. After that extrapolation the thermodynamic
limit is required to remove finite volume effects. Finally, the continuum limit is performed
to restore the continuum symmetries, among them supersymmetry and chiral symmetry.

Different lattice formulations of a continuum theory vary in their discretization errors
and how fast the correct continuum limit is approached. The lattice action Slat = Sg + Sf

consists of discretized gauge and fermionic actions. Next, the different gauge actions are
presented and afterwards the fermion actions are addressed.

3.2.1 Gauge actions

In the scope of this work, we used sometimes the Wilson gauge action and mostly the
Symanzik-improved Lüscher-Weisz gauge action.

Wilson gauge action

Defining the lattice coupling as β = 2Nc
g2 , the Wilson gauge action is calculated via

SW
g [U ] = β

Nc

∑
�

trc (1− ReU�) , (3.35)

with the sum over all plaquettes � [183]. This lattice gauge action has discretization
artifacts of order O(a2) in the lattice spacing [129].

Symanzik-improved gauge action

With improved lattice actions, the discretization errors can be reduced and/or the
symmetries can be enhanced [184, 185]. The Symanzik-improved lattice gauge action with
rectangular paths over two plaquettes �� is

Sg[U ] = β

Nc

(
c0
∑
�

trc(1− ReU�) + c1
∑
��

trc(1− ReU��)
)
. (3.36)

The coefficients c0 = 1 and c1 = 0 would correspond to the Wilson gauge action (3.35).
Choosing c0 = 1− 8c1 and c1 = − 1

12 leads to a reduction of lattice artifacts and this choice
[7]The analog Gell-Mann-Oakes-Renner relation of QCD is m2

π ∝ mq [182].
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is known as the Lüscher-Weisz gauge action [84]:

SLW
g [U ] = β

Nc

(
5
3
∑
�

trc(1− ReU�)− 1
12
∑
��

trc(1− ReU��)
)
. (3.37)

Another variant with c0 = 3.648 and c1 = −0.331 was published by Iwasaki [186]. Note that
the factor c0 should be taken into account when the gauge coupling of a Symanzik-improved
gauge action is compared to results with the Wilson gauge action.

3.2.2 Fermion actions

The generic fermionic action

Sf[λ, λ̄,U ] = a4

2
∑

n,n′∈Λ
trc λ̄(n)D(n, n′)λ(n′) (3.38)

for the Majorana field (the gluino part) contains the lattice Dirac operator with gauge
links in the adjoint representation

[Vµ(n)]ab ≡ trc
[
U †µ(n)T a Uµ(n)T b

]
, a, b = 1, . . . , N2

c − 1 . (3.39)

Here the gauge links Uµ(n) enter in the fundamental representation and T a are the
generators of the Lie algebra (see appendix A). Furthermore, we define γ−µ ≡ −γµ
and V−µ(n) ≡ V†µ(n− µ̂) for a short notation. In the following paragraphs, the different
formulations of the fermion action are addressed. Starting from Wilson fermions we try to
improve the lattice formulation with a clover term or alternatively with twists in the mass
term and/or Wilson term.

Naive fermions

By discretizing the derivatives in the fermionic part of the Euclidean continuum action (2.38)
and taking into account the gauge transporters to assure gauge invariance [183], the naive
lattice Dirac operator is

D(n, n′) = mδn,n′ +
1
2a

±4∑
µ=±1

γµVµ(n) δn+µ̂,n′ . (3.40)

When analyzed in momentum space, so-called doublers are identified by poles containing
momentum components pµ = π

a
[129]. In four spacetime dimensions, there are 15 doublers

which can be removed with a momentum dependent mass as suggested by Wilson.

35



3. Method

Wilson fermions

The Wilson term damps all poles except p = (0, 0, 0, 0) and consequently the Wilson Dirac
operator

DW(n, n′) =
(4r
a

+m
)
δn,n′ −

1
2a

±4∑
µ=±1

(1r − γµ)Vµ(n) δn+µ̂,n′ , (3.41)

describes one single fermion [183, 187]. By explicitly breaking chirality, Wilson fermions
circumvent the Nielsen-Ninomiya theorem [188, 189]. For any Wilson parameter 0 < r ≤ 1
reflection positivity and the correct continuum limit are guaranteed [124]. If not stated
otherwise, we set r = 1. In leading order the discretization errors are O(a) in the lattice
spacing [129]. Within the scope of this work, two further types of lattice fermions with
reduced lattice artifacts are used, namely clover fermions and twisted-mass fermions. Both
variants are constructed in the following sections from the Wilson Dirac operator plus an
irrelevant operator.

Clover fermions

With the help of the anti-symmetrized clover plaquette

Fµν(n) = −i
8a2

(
Qµν(n)−Qνµ(n)

)
with (3.42)

Qµν(n) = Vµ,ν(n) + Vν,−µ(n) + V−µ,−ν(n) + V−ν,µ(n) (3.43)

consisting of four plaquettes (see figure 3.2), we define the clover Wilson Dirac operator:

Dcl
W(n, n′) =

(4
a

+m
)
δn,n′ −

1
2a

±4∑
µ=±1

(1− γµ)Vµ(n) δn+µ̂,n′ + cSW
a

4i
∑
µ<ν

Fµν(n)Σµνδn,n′ .

(3.44)

Vµ,ν(n)Vν,−µ(n)

V−µ,−ν(n) V−ν,µ(n)

Figure 3.2: Sketch of the clover plaquette Qµν(n) in the adjoint representation consisting
of four ordinary plaquettes V .,.(n) anchored at the central (black) lattice site n.
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3.2. N = 1 SYM theory on the lattice

Often, the Sheikholeslami-Wohlert coefficient cSW is calculated with lattice perturbation
theory such that O(a) discretization errors of quantities like the quark-gluon vertices vanish
at a certain loop order [84–86]. Most of the time, the 1-loop order is already sufficient.
Typically, the result depends on the chosen fermion representation and gauge action. A
general 1-loop result for the Wilson gauge action and arbitrary fermion representation,

cSW = 1 + g2
(
(0.167 64± 0.000 03)Crep + (0.015 03± 0.000 03)Nc

)
, (3.45)

was calculated in [40] for N = 1 SYM theory with gauge group SU(Nc). Therein, the
quadratic Casimir invariant Crep in the fundamental representation is Cfund = N2

c−1
2Nc

and
in the adjoint representation Cadj = Nc. We performed some simulations with the clover
coefficient determined that way (see the cyan line in figure 5.1 et seq.).

In order to use the Symanzik-improved Lüscher-Weisz gauge action of eq. (3.37), we
preferred the following way of determining the value of cSW. With the gauge-invariant
definition of the tadpole factor u0 ≡

〈
trc(U�)
Nc

〉1/4
the tadpole improvement at tree-level is

cSW = u−3
0 [32, 130, 190]. In the simulations the average is calculated self-consistently via

the plaquette U� from the current gauge field configuration and therefore cSW varies for
different bare mass parameters m. For the parameters of figure 5.1 this approach leads to
values cSW ∈ [2.09, 2.16] and they are highlighted with a green line.

Also non-perturbatively, the clover coefficient can be determined. With the help of the
Schrödinger functional, the partially conserved axial current (PCAC) relation is measured
on the lattice and the value of cSW is tuned such that the contribution of order O(a)
vanishes [191].

We tested a new heuristic approach to search for the clover coefficient, which is based
on the following feature of N = 1 SYM theory. Since the mass of the gluino vanishes in
the continuum, its lattice mass is purely a consequence of broken supersymmetry and
chiral symmetry. The same holds for the (unphysical) adjoint pion, whose mass squared is
proportional to the renormalized gluino mass. We search the point of the lattice theory
closest to the continuum, where the discretization errors and symmetry violations are
expected to be minimal. To this end, the value of cSW is varied for fixed bare gluino
mass m such that the adjoint pion mass ma-π is minimized. This resembles the procedure
of tuning the bare gluino mass m for Wilson fermions to the critical point.

To compare the different ways of determining cSW, figure 3.3 collects from the literature
several results for the Wilson gauge action. In the left panel, it is demonstrated for
the Wilson gauge action with SU(2) that the perturbative and non-perturbative results
approach each other in the limit g → 0. By comparing the clover values of the fundamental
representation to those of the adjoint representation, one clearly sees that the latter lie
higher. Turning to the gauge group SU(3) depicted in the right panel, the perturbative
values of cSW grow even further.
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Figure 3.3: Left/Right: Clover coefficient for the Wilson gauge action with gauge group
SU(2) resp. SU(3) and different representations. The non-perturbative results are from [192]
and the perturbative 1-loop result is given in eq. (3.45) and taken from [40].
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Figure 3.4: Approximations of cSW
for the Lüscher-Weisz gauge action
with gauge group SU(3)fund. The cor-
responding functions are summarized
in table 3.3.

Table 3.3: Different approximations of cSW for the Lüscher-Weisz gauge action with gauge
group SU(3)fund. The corresponding curves are plotted in figure 3.4.

type reference cSW

perturbative 1-loop [193] 1 + 0.196g2

tadpole tree-level [190] u−3
0

tadpole 1-loop [130] u−3
0

(
1 + g2u−4

0 (0.2659− 1/4)
)

non-perturbative [194] (1− 0.1921g2 − 0.1378g4 + 0.0717g6) / (1− 0.3881g2)
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3.2. N = 1 SYM theory on the lattice

No results exist in the literature for our favored choice of the Lüscher-Weisz gauge
action in combination with Majorana fermions in the adjoint representation. In section 5.1
we search heuristically for an optimal clover coefficient, but no obvious value is found.
The most promising option is the tadpole approximation at tree-level (see gray dashed
line in figure 3.4), because it is universal and can be calculated directly from the gauge
configuration during the simulations.

Mass-twisted fermions

The concept of twisted-mass was originally introduced to lattice QCD with the aim to
remove exceptional configurations [82]. Later, O(a) improvement at maximal twisting
angle ±π/2 was discovered [83]. Our purpose is primary to reduce the effects of the explicit
breaking of supersymmetry and chiral symmetry at finite lattice spacing. In section 4.1
the influence of the twisted formulation on the mesonic states is calculated analytically
and in section 4.3 the eigenvalues of the free twisted Wilson Dirac operator are discussed
in the context of O(a) improvement. The Wilson Dirac operator with parity-breaking
mass term im5γ5 is

Dmtw
W (n, n′) =

(4
a

+m+ im5γ5

)
δn,n′ −

1
2a

±4∑
µ=±1

(1− γµ)Vµ(n) δn+µ̂,n′ (3.46)

similar to twisted-mass lattice QCD, but for one single Majorana fermion.[8] In terms
of the polar mass M ≡

√
m2 +m2

5 and the twist angle α ≡ arctan(m5/m), the two mass
terms can be combined[9] as

m+ im5γ5 = Meiαγ5 . (3.47)

A special feature of N = 1 SYM motivates the additional twisted term: Particular values
of the phase of the remnant chiral Z2Nc symmetry (cf. eq. (2.22)) are favored in the
gluino condensate. The chiral symmetry is broken explicitly by the bare gluino mass
m = M cos(α), which triggers a condensate ∼ 〈λ̄λ〉. A further condensate ∼ 〈λ̄iγ5λ〉 is
triggered by the twisted mass m5 = M sin(α) and both condensates are related by a chiral
rotation. With the twist angle α, we can control the “direction” of the favored condensate.

Whereas in twisted-mass lattice QCD simulations the twisted basis is rotated back to
the physical basis for the calculation of observables, we interpret the m5-mass term as
a deformation which vanishes in the chiral limit m→ mcrit, m5 → 0. In section 5.2 we
investigate numerically different “directions” in the (m,m5)-plane for the extrapolation
to the critical point and we show that for optimal twist angles the chiral partners a-η′

[8]In contrast to 2-flavor twisted-mass QCD, where the twist term contains the Pauli matrix τ3, N = 1 SYM
theory contains only one flavor and thus τ3 is absent.

[9]The polar mass M and the twist angle α are always in respect to the untwisted critical point at mcrit.
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3. Method

and a-f0 have the same mass. This reduces the impact of explicitly broken chirality and
supersymmetry at finite lattice spacing.

A similar twist was used in [22] for the supersymmetric Wess-Zumino model in two
dimensions. There, a modified Wilson term was tuned such that the discretization errors in
the eigenvalues of the free lattice Dirac operator are reduced to O(a4). For the N = 1 SYM
theory, we perform an analogous calculation in section 4.3.

Double-twisted fermions

Later, we added a more general Dirac operator

Ddtw
W (n, n′) =

(4
a

(r + iγr5) +m+ im5γ5

)
δn,n′ −

1
2a

±4∑
µ=±1

(1r + iγ5r5 − γµ)Vµ(n)δn+µ̂,n′

=
(4R
a

eiϕγ5 +Meiαγ5

)
δn,n′ −

1
2a

±4∑
µ=±1

(
1R eiϕγ5 − γµ

)
Vµ(n)δn+µ̂,n′ . (3.48)

with twists in the mass term and Wilson term[10] to our investigations. A similar general
action was discussed in [195]. For most numerical simulations the Wilson parameter was
(r, r5) = (1, 0), see table G.4, and only some tests presented in section 5.6 are double-twisted.
If both twist angles α = ϕ are identical, then a chiral rotation

λ 7→ e−iαγ5/2λ , λ̄ 7→ λ̄ e−iαγ5/2 , (3.49)

transforms the action with double-twisted Wilson Dirac operator (3.48) into the ordinary
action with Wilson fermions:

Sf = a4

2
∑
n∈Λ

λ̄(n)
(4
a

eiαγ5 +m eiαγ5

)
λ(n)− a3

4
∑
n∈Λ

±4∑
µ=±1

λ̄(n)
(
1 eiαγ5 − γµ

)
Vµ(n)λ(n+ µ̂)

7→ a4

2
∑
n∈Λ

λ̄(n)
(4
a

+m
)
λ(n)− a3

4
∑
n∈Λ

±4∑
µ=±1

λ̄(n) (1− γµ)Vµ(n)λ(n+ µ̂) .

As can be seen, the discrete derivative term ∼ γµ stays always unchanged.

3.2.3 Properties of the twisted Wilson Dirac operator

In table 3.4 we compare the relevant properties of the Wilson Dirac operator with and
without mass twist. Most differences result from the loss of γ5-Hermiticity when a mass
twist is added and only a modified γ5-Hermiticity involving ±m5 holds. As a consequence,
the complex eigenvalues do not come in complex-conjugated pairs and the determinant
as well as the Pfaffian may have imaginary parts. Nevertheless, we shall demonstrate in
[10]The angle ϕ of the Wilson term determines the “direction” of the critical point, see section 5.6.
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3.2. N = 1 SYM theory on the lattice

section 5.3 that only a very mild sign problem emerges. For the particular choice α = ϕ in
the double-twisted Wilson Dirac operator (3.48), the chiral phase can be removed by a
change of variables and therefore the Pfaffian becomes real again.

More details and some derivations can be found in the appendices B.1 and B.2. In
section 4.3, the free twisted Wilson Dirac operator is analyzed to find a connection between
the twist angle α and discretization errors.

Table 3.4: Properties of the untwisted and mass-twisted Wilson Dirac operator.

DW of eq. (3.41) Dmtw
W of eq. (3.46)

Hermiticity D†W 6= DW (Dmtw
W )† 6= Dmtw

W

γ5-commutator [DW, γ5] 6= 0 [Dmtw
W , γ5] 6= 0

γ5-Hermiticity
(
γ5DW

)† = γ5DW
(
γ5D

mtw
W (m5)

)† = γ5D
mtw
W (−m5) = γ5D

mtw
W (m5)− 2im5(

D−1
W

)† = γ5D
−1
W γ5

(
(Dmtw

W )−1)†=(Dmtw
W +2im5γ5

)
·
(
γ5D

mtw
W γ5D

mtw
W +4m2

5
)−1

C-antisymmetry
(
C−DW

)T = −C−DW
(
C−Dmtw

W
)T = −C−Dmtw

W

eigenvalues double degenerated in
complex conjugated pairs complex

det R+ C
Pf R C

3.2.4 Lattice observables

An expectation value of an operator O[U , λ], which depends on the gauge field U as well
as on the fermion field λ, is given by the path integral

〈O〉 = 〈〈O〉F〉U = 1
Z

∫
DU e−Sg[U ]Dλ e−Sf[U ,λ] O[U , λ] , (3.50)

where first the fermionic integral is evaluated. The normalizing factor Z is the
partition function given by the path integral Z =

∫
DU Dλ exp(−S[U , λ]) with the action

S[U , λ] = Sg[U ] + Sf[U , λ]. The fermionic action is given by[11]

Sf[U , λ] = 1
2tr(λTCD[U ]λ) ≡ 1

2tr(λTD̃[U ]λ) (3.51)

with Wilson Dirac operator D[U ] and the effective action after integrating out the Majorana
fermions is Seff[U ] = Sg[U ]− log(Pf(D̃[U ])).

In our lattice investigations we measure different observables, the simplest ones consist
only of the gauge field. The plaquette

〈U�〉 = 1
V d(d− 1)/2

∑
n∈Λ

∑
1≤µ<ν≤d

Uµν(n) (3.52)

[11]Here, the trace contains again the spacetime summation.
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is a useful observable to estimate the statistical fluctuations, auto-correlations[12] or to
calculate the bosonic action

SB = 1
V
Sg[U ] . (3.53)

Observing the bosonic action can serve as an indicator for supersymmetry break-
ing, because the supersymmetric Ward identity 〈QO〉 = 0 with the operator
[O(n)]α = trc

(
λ̄β(n)[Σµν ]βαFµν(n)

)
reads

〈SB〉U = 3
2NG +O

(
β−1

)
(3.54)

and involves the bosonic action as well as the number NG of generators of the gauge
group [55, 59, 196, 197]. Fermionic observables of interest include the gluino condensate

Σ = 1
V

∂ ln(Z)
∂m

= − a4

2V
∑
n∈Λ

〈
λ̄(n)λ(n)

〉
= 1

2V
∑
n∈Λ

〈
trD−1

nn

〉
eff
, (3.55)

which is linked to the spontaneous breaking of the remnant chiral symmetry, see section 2.3.
Similarly defined is the parity condensate

Σp = − ia4

2V
∑
n∈Λ

〈
λ̄(n)γ5λ(n)

〉
= i

2V
∑
n∈Λ

〈
tr γ5D

−1
nn

〉
eff
. (3.56)

Note that the chiral condensate (3.55) calculated with Wilson fermions needs an additive
renormalization [129], but a subtracted condensate

Σsub ≡ Σ− ma-π

mref
a-π

Σref (3.57)

with a reference point can be used instead.
For hadron spectroscopy (see section 3.1.3), interpolating lattice operators for the

particles of interest are required. The Hermitean interpolating operators for mesons are
bilinears of the form O(n) = λ̄(n)Γλ(n). Specifically the interpolating operators for the
adjoint mesonic states a-η′ and a-f0 are [181]

Oa-η′(n) = iλ̄(n)γ5λ(n) and Oa-f0(n) = λ̄(n)λ(n) . (3.58)

For convenience, lattice units are used from now on if not stated otherwise. To return
to physical units, all energies, masses and momenta have to be multiplied by the lattice
constant a. We use the antisymmetric charge conjugation matrix C which commutes

[12]Note that the thermalization and autocorrelation of different observables may differ.
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3.2. N = 1 SYM theory on the lattice

with γ5, the definition λ̄ = λTC and the antisymmetry of the product Cγ5 to contract〈̄
λnΓ1λnλ̄n′Γ2λn′

〉
F
=
〈
λT
nCΓ1λnλ

T
n′CΓ2λn′

〉
F

= Cα1δ1Γ1
δ1β1Cα2δ2Γ2

δ2β2

〈
λT
nα1c1λnβ1c1λ

T
n′α2c2λn′β2c2

〉
F

= Cα1δ1Γ1
δ1β1Cα2δ2Γ2

δ2β2

(
D̃−1
nβ1c1,nα1c1D̃

−1
n′β2c2,n′α2c2

−D̃−1
n′β2c2,nα1c1

D̃−1
nβ1c1,n′α2c2

)
− Cβ1δ1Γ1

δ1α1Cα2δ2Γ2
δ2β2D̃

−1
nα1c1,n′α2c2

D̃−1
n′β2c2,nβ1c1

= tr(CΓ1D̃−1
nn ) tr(CΓ2D̃−1

n′n′)− 2 tr(CΓ1D̃−1
nn′CΓ2D̃−1

n′n)
= tr(Γ1Gnn) tr(Γ2Gn′n′)− 2 tr(Γ1Gnn′Γ2Gn′n) . (3.59)

The fermion contraction leads to connected and disconnected contributions with products
of the fermion lattice propagator Gnn′ ≡ D−1

nn′ . In particular, the correlators between the
source at y = (~y, 0) and the sink at x = (~x, t) is

C(t) =
〈
Õ(~p = ~0, t) Õ†(~p = ~0, 0)

〉
= 1
|Λ3|2

∑
~n,~n′∈Λ3

〈
O(~n, t)O†(~n′, 0)

〉
= 1
|Λ3|2

∑
~n,~n′∈Λ3

〈
λ̄(~n, t)Γλ(~n, t) λ̄(~n′, 0)Γλ(~n′, 0)

〉
(3.59)= 1

|Λ3|2
∑

~n,~n′∈Λ3

〈
tr(ΓGnn)tr(ΓGn′n′)

〉
U
− 2
|Λ3|2

∑
~n,~n′∈Λ3

〈
tr(ΓGnn′ΓGn′n)

〉
U

(3.60)

with Γ ∈ {14, γ5}. For the connected[13] two-point correlator, the contribution of the
position-independent vacuum expectation value

1
|Λ3|2

∑
~n,~n′∈Λ3

〈
tr(ΓGnn)

〉
U

〈
tr(ΓGn′n′)

〉
U

(3.61)

must be subtracted from the correlator in eq. (3.60) [131]. Instead of fitting the constant
vacuum contribution (3.61), it is beneficial to calculate the large cancellations between
〈tr(ΓGnn)tr(ΓGn′n′)〉U and 〈tr(ΓGnn)〉〈tr(ΓGn′n′)〉U numerically. This procedure is further
stabilized when n′ is consistently described by point sources and n is averaged over the
whole lattice with the stochastic estimator technique. In parameter sets with small
ensemble sizes these signals are too noisy and we use instead the (unphysical) correlators

Ca-π(t) = 2
|Λ3|2

∑
~n,~n′∈Λ3

〈
tr(γ5Gnn′γ5Gn′n)

〉
U

and Ca-a(t) = 2
|Λ3|2

∑
~n,~n′∈Λ3

〈
tr(Gnn′Gn′n)

〉
U
,

(3.62)

[13]We encounter a misuse of language. Here “connected” is understood in the sense of QFT calculations,
where W = lnZ is used to compute connected Feynman diagrams approaching zero at large spatial
separation. This should not be confused with the term “connected” to distinguish between contributions
like the last term of eq. (3.60) compared to the “disconnected” contributions of the first term.
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which are defined in a partially-quenched framework and contain just the connected
contributions.[14]

In N = 1 SYM theory there exist also mixed states containing bosonic and fermionic
building blocks. To measure the gluino-glueballs we define the interpolating operator[15]

[Og̃g(n)]α = [Σij]αβ trc
(
Fij(n)λβ(n)

)
(3.63)

with Σij ≡ [γi, γj] and the spatial part of the anti-symmetrized clover plaquette, see
eq. (3.42). According to the fermionic nature of the gluino-glue interpolator, one Dirac
index is open and it transforms with a γ4 matrix under parity transformations [129].
Generally, a correlator built from [Og̃g(n)]α and [Ōg̃g(n)]α couples to arbitrary parity and
the lowest mass dominates the signal [124]. We introduce an additional matrix Γ to
contract the spinor indices and select channels from the correlator

Cg̃g(n, n′) =
〈
Γµδ[Og̃g(n)]µ [Ōg̃g(n′)]δ

〉
= −

〈
[ΓT]δµ[Σij]µβ trc

(
F ij(n)T a

)
(Gnn′)βρab trc

(
F lm(n′)T b

)
[Σlm]ρδ

〉
U
. (3.64)

This gluino-glue correlator has a time-symmetric and a time-antisymmetric component,
which are identified as the components of Γ = γ4 and Γ = 14 respectively. In our simulations
those two variants as well as the combinations Γ = 1

2(14 ± γ4) are measured. It is reported
that the antisymmetric component has a longer plateau in the effective mass and thus
should be preferred for the determination of the ground state mass [198, 199]. The same
authors expect at the same time that the symmetric component have a better signal for
the excited states. Although the gluino-glue correlator has no disconnected contribution,
it requires a medium amount of statistics because of sizable gauge field fluctuations.

Besides those states with gluino content, there exist pure glueball states in the FGS-
supermultiplet. Typically, glueballs have noisy signals and thus require a large ensemble
size. The signal can be enhanced by choosing a larger operator basis or by smearing of the
gauge links (see chapter 3.1.4) [172, 200]. In the continuum, bosonic states transform under
tensor representations of the rotation group SO(3), but the lattice discretization breaks
this symmetry to the finite cubic group. With the help of the irreducible representations of
the cubic symmetry group the eigenstates can be classified and a restoration of the rotation
group in the continuum limit can be achieved [201]. For the scalar glueball FµνF µν with
quantum numbers JPC = 0++ we use the interpolating operator [200]

O0++(n) = Re
(

trc
(
U12(n) + U23(n) + U31(n)

))
. (3.65)

[14]The connected correlators (3.62) as two-flavor states do not allow any vacuum contribution as in
eq. (3.61).

[15]The indices i, j run only over the spatial directions to avoid any contributions of multiple time-slices [28].
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3.2. N = 1 SYM theory on the lattice

Figure 3.5: The three-dimensional standard path C applied to the 24 elements of the cubic
group for the calculation of the glueball 0−+.

In the correlator of the scalar glueball, the disconnected vacuum contribution has to be
subtracted [124] or an offset is required in the fit [130]. The pseudoscalar glueball F̃µνF µν

with quantum numbers JPC = 0−+ can be measured with the operator

O0−+(n) = Re
∑
R

(
trc
(
W(CR)

)
− trc

(
W(PCR)

))
(3.66)

using a specific standard loop along a suitable curve C [200]. The sum extends over all
rotations in the cubic group and the path CR is obtained by acting with the rotation R
on the standard loop. The Wilson loops W are evaluated along the path CR and their
reflections PCR, see figure 3.5
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CHAPTER 4

Analytical calculations

Now that the foundations of the physical theory and the numerical methods are laid, this
chapter contains analytical insights. In this sense, it establishes ties between the proposed
twisted lattice formulation and the corresponding numerical results. At the same time,
new properties are discovered.

First, the chiral transformation of the fermionic bilinears is analyzed and we prove
that the twist angle α = 45◦ is special. Afterwards, the supersymmetry transformations
of the lattice operators are calculated and the consequences of a mass twist are checked.
Finally, the eigenvalues of the free Wilson Dirac operator are calculated analytically and
they reveal the potential of O(a) improvement.

4.1 Chiral transformation of fermionic observables

Starting from the definition of the mass-twisted Wilson Dirac operator of eq. (3.46), the
following reasoning shows that this lattice formulation is meaningful and describes the
correct continuum theory. Afterwards, different choices of the twist angle α are discussed
explicitly for the chiral partners of the VY-supermultiplet. For the analytical argument, it
is helpful to twist also the irrelevant Wilson term with the same angle, which corresponds
to α = ϕ in eq. (3.48).

In the continuum N = 1 SYM theory, the scalar and pseudoscalar mesonic states
are mass-degenerated. Therefore they have the same correlators and their operators can
be combined in an arbitrary rotation of the operator basis.[16] Analogously, under the
chiral U(1)A rotation with angle α

2 of the gluino field,

λ 7→ eiαγ5/2λ , λ̄ 7→ λ̄ eiαγ5/2 , (4.1)

[16]See for example [107], where the a-f0 and a-η′ are described by one common complex field A of the
chiral multiplet S.
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4.1. Chiral transformation of fermionic observables

the Hermitean scalar and pseudo-scalar bilinear lattice operators form a doublet: λ̄λ

iλ̄γ5λ

 7→
 λ̄eiαγ5λ

iλ̄γ5eiαγ5λ

 =
 cosα sinα
− sinα cosα

 λ̄λ

iλ̄γ5λ

 . (4.2)

Consequently, we can combine the two components of the doublet (4.2) linearly:

Oa,b(n) = aλ̄nλn + biλ̄nγ5λn = O†a,b(n) . (4.3)

Here we assumed that a, b are real, which is the case for the mesonic states under
investigation. Without twist the operators for a-f0 and a-η′ (compare to eq. (3.58)) have
the form

Oa-f0(n) = O1,0(n) = λ̄nλn , Oa-η′(n) = O0,1(n) = iλ̄nγ5λn . (4.4)

Adding a chiral rotation as in eq. (4.1) to the spinors, those bilinears become

Oa-f0(n, α) = λ̄neiαγ5λn = cos(α)λ̄nλn + i sin(α)λ̄nγ5λn = Ocos(α),sin(α)(n) , (4.5)
Oa-η′(n, α) = iλ̄nγ5eiαγ5λn = i cos(α)λ̄nγ5λn − sin(α)λ̄nλn = O− sin(α),cos(α)(n) . (4.6)

Instead of implementing this rotation in the operator basis explicitly, this mixing is
naturally contained in measurements with the twisted Wilson Dirac operator and the
original lattice operators (3.58). If no anomaly enters the path integral, then a substitution
of the integration variable leads to∫

Λ
Dλ e− 1

2 trλ̄DWλO[eiαγ5/2λ] =
∫

Λ
Dλ e− 1

2 trλ̄Ddtw
W [−α,−α]λO[λ] (4.7)

with an twist angle −α in the twisted action. This statement is correct near the continuum
where the Wilson term is irrelevant. In section 5.6, we study the chiral and parity
condensates to check if the anomaly may invalidate this argumentation.

Next, we demonstrate that this chiral twist can enhance the mass-degeneracy of the
superpartners a-η′ and a-f0, which is non-trivial at finite lattice spacing. To interpret
the results obtained with a twisted mass in the action it is helpful to study the twist on
the level of observables without twisting the action. Then, we can calculate the (general)
expectation values

Ma,b(n, n′) ≡ 〈Oa,b(n)O†a,b(n′)〉F = 〈(aλ̄nλn + biλ̄nγ5λn)(aλ̄n′λn′ + biλ̄n′γ5λn′)〉F
= a2〈λ̄nλnλ̄n′λn′〉F − b2〈λ̄nγ5λnλ̄n′γ5λn′〉F (4.8)

+ abi〈λ̄nλnλ̄n′γ5λn′〉F + abi〈λ̄nγ5λnλ̄n′λn′〉F .

The two terms in the last row have negative parity and thus must vanish. This can be seen
explicitly, because the Green’s function with parity transformed gauge field configuration
UP is related to the Green’s function with the original configuration U as follows

G(UP ;~n, t;~n′, t′) = γ4G(U ;−~n, t;−~n′, t′)γ4 . (4.9)
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4. Analytical calculations

For our parity-invariant theory[17], U and UP have equal weight, such that indeed

Ca-f0,a-η′(t) = 1
|Λ3|

∑
~n

〈λ̄(~n, t)λ(~n, t) λ̄(~0, 0)γ5λ(~0, 0)〉

= 1
|Λ3|

∑
~n

〈
tr(G(~n, t;~n, t)) tr(γ5G(~0, 0;~0, 0))− 2 tr(G(~n, t;~0, 0)γ5G(~0, 0;~n, t))

〉
U

= −Ca-f0,a-η′(t) , (4.10)

i.e. Ca-f0,a-η′(t) vanishes. Thus, we get the expectation values
〈
Oa-f0(n)O†a-f0(n′)

〉
(α) =

〈
Mcos(α),sin(α)(n, n′)

〉
U
,〈

Oa-η′(n)O†a-η′(n′)
〉
(α) =

〈
M− sin(α),cos(α)(n, n′)

〉
U
. (4.11)

We see immediately that for the angle α = 45◦,

〈Oa-f0(n)O†a-f0(n′)〉F(45◦) = 〈Oa-η′(n)O†a-η′(n′)〉F(45◦) , (4.12)

the two mesons in the supermultiplet have identical correlators and consequently the same
mass. To contract the two non-vanishing terms in eq. (4.8), we use eq. (3.59). In the
untwisted case with α = 0◦ the correlator for the a-f0 contains traces of G only and the
correlator for the a-η′ traces of γ5G only,

〈Oa-f0(n)O†a-f0(n′)〉F(0◦) = M1,0(n, n′) = tr(Gnn) tr(Gn′n′)− 2 tr(Gnn′Gn′n) ,
〈Oa-η′(n)O†a-η′(n′)〉F(0◦) = M0,1(n, n′) = −tr(γ5Gnn) tr(γ5Gn′n′) + 2 tr(γ5Gnn′γ5Gn′n) .

(4.13)
For maximal twist angle α = 90◦, we conclude from

〈Oa-f0(n)O†a-f0(n′)〉F(90◦) = M0,1(n, n′) = −tr(γ5Gnn) tr(γ5Gn′n′) + 2 tr(γ5Gnn′γ5Gn′n) ,
〈Oa-η′(n)O†a-η′(n′)〉F(90◦) = M−1,0(n, n′) = tr(Gnn) tr(Gn′n′)− 2 tr(Gnn′Gn′n)

(4.14)
that a chiral rotation by 90◦ interchanges the mesonic states a-f0 and a-η′. Finally, for
twist angle α = 45◦ the identical correlators have the value

〈Oa-f0(n)O†a-f0(n′)〉F(45◦) = 〈Oa-η′(n)O†a-η′(n′)〉F(45◦)

= 1
2M1,1(n, n′)

= 1
2tr(Gnn) tr(Gn′n′)− tr(Gnn′Gn′n)

− 1
2tr(γ5Gnn) tr(γ5Gn′n′) + tr(γ5Gnn′γ5Gn′n) . (4.15)

[17]At the moment, the twist is only on the level of the observable and the action consists of the parity-
invariant Wilson Dirac fermion action and for example the Wilson gauge action.
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4.2. Supersymmetry transformation of the lattice operators

To summarize, we showed that a-η′ and a-f0 interchange their roles when the twist angle
increases by 90◦. In between, for α = 45◦, the two mesonic states have equal correlators.
This demonstrates that for a suitably chosen twist angle the two superpartners in the
VY-supermultiplet have equal mass without fine-tuning to a supersymmetric continuum
limit.

In section 5.2 this mass-degeneracy is verified on the lattice, although at finite lattice
spacing supersymmetry and chiral symmetry are broken. Actually, in the simulations
we do not chirally rotate the fermion field in the observables (as we did in our analytic
analysis here), but instead the twisted Wilson Dirac operator is used. We argued that (up
to a twist of the irrelevant Wilson term and as long as the anomaly is negligible) this is
equivalent to the previous calculation with chirally rotated fields in the observables. Even
for the twisted-mass Wilson Dirac operator Dmtw

W , that is the operator Ddtw
W with ϕ = 0

and α = π/4, we find mass-degenerated connected mesonic states. Though, the chiral and
parity condensates and consequently the noise in a-η′ and a-f0 differ, cf. section 5.6. This
aspect can be improved with the flexibility of the double-twist as discussed there.

Finally, let us analyze how the third particle in the VY-supermultiplet is affected by
a chiral rotation (4.1). The starting point is the interpolating operator (3.63) for the
fermionic gluino-glue state with a twisted spinor,

[Og̃g(n)]µ = [Σij]µν trc
(
F ij(n)

[
eiαγ5/2λ(n)

]ν)
.

Consequently, the corresponding correlator has the form
〈
Γµδ[Og̃g(n)]µ [Ōg̃g(n′)]δ

〉
=
〈

Γµδ[Σij]µνtrc(F ij(n)
[
eiαγ5/2λ(n)

]ν
)
(

[Σlm]ωρtrc(F lm(n′)
[
eiαγ5/2λ(n′)

]ρ
)
)†

[γ4]ωδ
〉

= −
〈
tr
(
ΓT F ij(n)Σijeiαγ5/2Gn,n′e

iαγ5/2F lm(n′)Σlm

)〉
U
. (4.16)

With the cyclicity of the trace one easily sees that for the antisymmetric correlator
with Γ = 14 a chiral phase factor eiαγ5 arises and for the symmetric correlator with Γ = γ4

the chiral twists cancel.

4.2 Supersymmetry transformation of the lattice

operators

Two chiral Wess-Zumino supermultiplets are predicted from the analysis of N = 1 SYM
theory with low-energy effective actions (see section 2.3). The VY- and FGS-supermultiplets
are independent of each other and closed under supersymmetry. Thus in each
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4. Analytical calculations

supermultiplet, the fermionic states have to transform into the bosonic state and vice
versa the bosonic state has to transform into a linear combination of the fermionic states.

The following calculation is primarily intended to check if a chiral rotation of the
spinors spoils the expected transformations within the VY-supermultiplet. For clarity
in the equations, we use the continuum notation of the supersymmetry transformations
and do not write the chiral twist explicitly. The additional chiral phase factor, which is
multiplied with each spinor field λ, can be carried through the whole calculation. No
additional terms arise in the supersymmetry transformations and thus the supermultiplet
stays intact. The bosonic glueball operators are not affected by the twist at all and
therefore only the interesting VY-supermultiplet is presented in the following.

Remember that the transformations have to respect the mass dimensions, Hermiticity
and Lorentz transformations as discussed in section 2.3. The mesonic states a-η′ and a-f0

have mass dimension L−3. As we will see below, these states transform into the gluino-
glue state FµνΣµνλ with mass dimension L−7/2 times the infinitesimal spinor ε of mass
dimension [ε] = L1/2. To calculate the supersymmetry transformations analytically, the
off-shell formulation of eq. (2.25) is more practical. The transformation of the a-f0 can be
computed straightforwardly:

δεOa-f0(x) =
(
δελ̄(x)

)
λ(x) + λ̄(x)

(
δελ(x)

)
= −ε̄14ΣµνF

µν(x)λ(x) + iε̄G(x)γ5λ(x) + λ̄(x)1
4ΣµνF

µν(x)ε+ λ̄(x)iG(x)γ5ε

= −1
2 ε̄ Og̃g(x) + 2iε̄G(x)γ5λ(x) . (4.17)

Analogously, the a-η′ transforms as

δεOa-η′(x) = i
(
δελ̄(x)

)
γ5λ(x) + iλ̄(x)γ5

(
δελ(x)

)
= −ε̄ i

4ΣµνF
µν(x)γ5λ(x)− ε̄G(x)γ2

5λ(x) + λ̄(x)γ5
i
4ΣµνF

µν(x)ε− λ̄(x)γ5G(x)γ5ε

=
(
−1

2 ε̄ γ5Og̃g(x) + 2iε̄G(x)λ(x)
)

i . (4.18)

To determine the supersymmetry transformation of the gluino-glue one needs the
transformation of the field strength tensor,

δεFµν(x) = ∂µδεAν(x)− ∂νδAµ(x)− i[δεAµ(x), Aν(x)]− i[Aµ(x), δεAν(x)]
= ∂µδεAν(x)− i[Aµ(x), δεAν(x)]−

(
∂νδAµ(x)− i[Aν(x), δεAµ(x)]

)
= Dµ(δAν(x))−Dν(δAµ(x))
= iε̄ (γνDµ − γµDν)λ(x) . (4.19)

After a longer calculation (see appendix C), one finds the transformation of the gluino-glue:

δε
(
Og̃g(x)− 4iG(x)γ5λ(x)

)
= 2i/∂Oa-f0(x)ε+ 2γ5/∂Oa-η′(x)ε+ . . . . (4.20)
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4.3. Eigenvalues of the free twisted Wilson Dirac operator

The terms linear in the auxiliary field G as well as further terms indicated with the dots in
eq. (4.20) vanish on-shell and thus the VY-supermultiplet defines a chiral supermultiplet.
This is in accordance to the expectation that the components of the supermultiplet
transform like the fields of the Wess-Zumino model [202]. Here, it should be emphasized
again that this calculation leads to the conclusion that the twist keeps the supermultiplet
structure intact.

After a Wick-rotation to Euclidean spacetime, the on-shell supersymmetry transforma-
tion of eq. (2.23) read [203–205]

δεAµ(x) = iε̄γµλ(x) , δελ(x) = 1
4iΣµνF

µν(x)ε , δελ̄(x) = − 1
4i ε̄ΣµνF

µν(x) . (4.21)

Since Majorana spinors in four-dimensional Euclidean spacetime cannot be defined with the
reality condition, the consistent condition λ̄ = λTC is used instead [127]. For the bilinears
with the four-dimensional Euclidean matrices (see appendix A) the same symmetries hold
as in Minkowski spacetime:

ψ̄χ = χ̄ψ , ψ̄γ5χ = χ̄γ5ψ , ψ̄γ5γµχ = χ̄γ5γµψ are symmetric and (4.22)
ψ̄γµχ = −χ̄γµψ , ψ̄γµνχ = χ̄γµνψ are antisymmetric. (4.23)

Furthermore, an analogous Euclidean Fierz identity exists and the above calculation can
be transferred to Euclidean spacetime. At finite lattice spacing supersymmetry is broken
and this will lead to additional terms in the transformation laws [205, 206].

4.3 Eigenvalues of the free twisted Wilson Dirac

operator

For particular twists of the free lattice Dirac operator in lower-dimensional Wess-Zumino
models an improvement up to order O(a4) can be achieved [22, 207]. In order to see whether
an improvement is also possible for the twisted lattice Dirac operator in N = 1 SYM
theory we determine the eigenvalues of the operator Ddtw

W (see eq. (3.48)) for free fermions,
that is for trivial link variables Vµ = 1.[18] Then, we expand them in powers of the lattice
spacing a to study the discretization errors in dependence on the twist angles α, ϕ and
analyze if O(a) improvement is possible for particular choices.[19] We decompose the
double-twisted lattice Dirac operator for free fermions,

Ddtw
W = γµ∂̊µ +M eiαγ5 − aR

2 eiϕγ5∆̂ = γµ∂̊µ +X + iγ5Y , (4.24)

[18]In our simulations, (r, r5) = (1, 0) resp. R =
√
r2 + r2

5 = 1 and ϕ = 0◦ is chosen if not stated otherwise.
[19]In this section we use physical units to recognize the powers of a.
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4. Analytical calculations

which contains the naive antisymmetric lattice derivative ∂̊µ and the symmetric lattice
Laplacian ∆̂ (we use the notation of [136]). The real operators X, Y in the last
decomposition are

X = M cosα− aR

2 ∆̂ cosϕ , Y = M sinα− aR

2 ∆̂ sinϕ . (4.25)

The periodic eigenfunctions are constant spinors times plane waves on a L3 × T lattice:

ψp(x) = up eipµxµ , p0 = 2π
aNT

(
n0 + 1

2

)
, pi = 2π

aNS

ni . (4.26)

Anti-periodic boundary conditions are imposed for fermions and thus the energy p0 of
their Matsubara modes is shifted compared to the spatial momenta pi [129]. Plane waves
are eigenfunctions of the derivative operators and the Laplacian,

∂̊µ 7→ ip̊µ , p̊µ = 1
a

sin(apµ) , ∆̂ 7→ −p̂µp̂µ , p̂µ = 2
a

sin
(
apµ
2

)
. (4.27)

In a sector with fixed momentum the operator X is a constant Xp which just shifts the
eigenvalues of Ddtw

W in eq. (4.24). Hence it suffices to determine the imaginary eigenvalues
of the four-dimensional anti-Hermitean matrix A in Ddtw

W = A+X for fixed momentum,

Apup = (iγµp̊µ + iγ5Yp)up = iµpup , µp ∈ R . (4.28)

Since ApA†p = p̊2 + Y 2
p is a multiple of the identity matrix we conclude that µ2

p = p̊2 + Y 2
p .

In Euclidean spacetime there exists an antisymmetric charge conjugation matrix C+ with

C+γ
T
µ C−1

+ = γµ , C+γ
T
5 C−1

+ = γ5 . (4.29)

Using that γµ and γ5 are Hermitean, taking the complex conjugate of the eigenvalue
equation (4.28), and acting with C+ on this equation we see that the charge conjugated
constant spinor C+u

∗
p is a second eigenvector with the same eigenvalue iµp. Finally, since

tr(Ap) = 0 we deduce, that Ap has two eigenvalues iµp and two eigenvalues −iµp. We
conclude that for fixed pµ the twisted Dirac operator Ddtw

W = A+X has the double
degenerated eigenvalues

λp = Xp + iµp and λ∗p = Xp − iµp with µp =
√
p̊2 + Y 2

p . (4.30)

Up to a possible sign the Pfaffian of the Dirac operator is the square root of its determinant
and hence given by the product of all |λp|2, where

|λp|2 = p̊2 +X2
p + Y 2

p = p̊2 +M2 + (aR)2

4 p̂2p̂2 + (aR)Mp̂2 cos(α− ϕ) . (4.31)

Inserting the small-a expansions of p̂µ and p̊µ from eq. (4.27) gives rise to

|λp|2 = p2 +M2 + (aR)Mp2 cos(α− ϕ) + a2

12

(
3R2(pµpµ)2 − 4

∑
µ

p4
µ

)
+O(a3) . (4.32)

52



4.3. Eigenvalues of the free twisted Wilson Dirac operator

Table 4.1: Eigenvalues |λp|2 of several lattice Dirac operators Di, expanded in powers of
the lattice spacing a. We defined κ ≡ −1

3
∑
µ p

4
µ + R2

4

(
pµp

µ
)2
.

lattice Dirac operator eigenvalues |λp|2

D1 = γµ∂̊µ +M − aR
2 ∆̂ p2 +M2 + aMRp2 +O(a2)

D2 = γµ∂̊µ +M − iaR
2 γ5∆̂ p2 +M2 + κa2 +O(a4)

D3 = γµ∂̊µ +M eiαγ5 − aR
2 ∆̂ p2 +M2 + aMRp2 cos(α) +O(a2)

D4 = γµ∂̊µ +M eiαγ5 − aR
2 eiϕγ5∆̂ p2 +M2 + aMRp2 cos(α− ϕ) + κa2 +O(a3)

Here we see explicitly that setting α− ϕ = 90◦ leads to an O(a) improvement in the
fermionic sector – at least for free fermions.

Table 4.1 summarizes the values for |λp|2 and their small-a expansions for various
lattice Dirac operators considered in the present work. Starting from the Wilson Dirac
operatorD1 with O(a) discretization errors, we can remove the leading discretization effects
by choosing a 90◦-twist like in D2 (corresponding to fully twisted lattice QCD [83]) or by
modifying the Wilson term like in D3. In general, for free fermions O(a) improvement
can be achieved when the mass term and Wilson term are orthogonal to each other,
i.e. α− ϕ = 90◦ (mod 180◦) in D4.

At this point, it is important to recall the relation between the twists of the mass
term and the Wilson term. Starting from the general double-twisted action with Dirac
operator (3.48), we add an additional twist to the spinors, λ 7→ eiωγ5/2λ, λ̄ 7→ λ̄eiωγ5/2. This
leads to the double-twisted fermion action

Sdtw= a4

2
∑
n∈Λ

λ̄n

(4R
a

ei(ϕ+ω)γ5 +M ei(α+ω)γ5

)
λn−

a3

4
∑
n∈Λ

±4∑
µ=±1

λ̄n
(
1R ei(ϕ+ω)γ5−γµ

)
Vµ(n)λn+µ̂.

By choosing ω = −ϕ we recover the mass-twisted Wilson Dirac operator with angle α− ϕ
and the choice ω = −α leads to an operator with a non-vanishing angle ϕ− α in the
Wilson term only. Hence one twist angle should be sufficient, but the relative angle between
the mass term and the Wilson term matters and cannot be changed by a chiral rotation of
the spinors. In the end, one angle can be transformed to zero and we prefer a remaining
mass twist over a Wilson term twist to avoid problems with reflection positivity, which
may arise for a complex Wilson term with r5 6= 0.

Unfortunately, the mass difference of the superpartners a-f0 and a-η′ is minimal
for α = ϕ = 45◦ and not for α − ϕ = 90◦, see figure 5.10 and calculation in section 4.1.
Since in the present work our main focus is on the restoration of supersymmetry and
chirality we choose (α, ϕ) = (45◦, 0◦) for most of our simulations. Then O(a) discretization
errors are not removed completely, but reduced by a factor of cos(45◦) = 1/

√
2 ≈ 0.7071 .
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CHAPTER 5

Technical investigations

For our simulations, we used two different modifications of Wilson fermions introduced in
section 3.2.2, namely clover fermions and twisted fermions. In section 5.1, the former are
applied and a parameter scan in the (m, cSW)-plane is performed to explore if an optimal
parameter combination can be found. For the mass-twisted fermions, we start in section 5.2
with a parameter scan in the (m,m5)-plane. As in the analytical calculation of section 4.1,
the twist angle α = 45◦ stands out. More technical sections follow and deal with the sign
of the Pfaffian (5.3), the scale setting (5.4), and the finite size effects (5.5). Afterwards,
the possibilities of the double-twist are inspected in section 5.6. The remainder of this
chapter highlights two improvements, the fermion smearing (5.7.1) and the DDαAMG
algorithm (5.7.2). For an overview of the ensembles and parameters, see appendix G.

5.1 Clover fermions

In our early investigations of N = 1 SYM theory, we extended the Wilson Dirac operator
with a clover term, see section 3.2. Therefore we restructured the implementation of the
Dirac operator in a modular way, such that terms can be added to the operator easily and
a preconditioner can be chosen independently.

For theO(a) improvement of clover fermions, the Sheikholeslami-Wohlert coefficient cSW
has to be determined properly. Since for our combination of the Lüscher-Weisz gauge
action with fermions in the adjoint representation no perturbative value is published in
the literature, we use the possibility to determine the clover coefficient directly in the
simulation via the tadpole factor u0. To check if a better value of cSW can be found, we
perform a parameter scan in the (m, cSW)-plane.

In the heuristic parameter scan we try to minimize the adjoint pion mass for various
clover coefficients cSW ∈ [0, 3.7] by varying the bare gluino mass m. For this investigation,
we fix the lattice size to 83 × 16 and the lattice coupling to β = 4.2. Figure 5.1 depicts the
dominant mass contribution of the adjoint pion in the (m, cSW) parameter space. In the
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Figure 5.1: Parameter scan of the dominant mass contribution d of the adjoint pion. Left:
The dependence on both parameters m, cSW is depicted with color-coded da-π. The colored
lines are discussed in the text. Center/Right: Same data as selected cuts with fixed cSW
resp. m. Markers are connected to guide the eye. Most error bars are smaller than the
marker size.

left panel the value of da-π is encoded in the color scale, while the middle and right panel
show selected slices of constant cSW resp. m. The different curves for fixed cSW show that
the critical point is shifted towards smaller mass parameters m for raising cSW values. On
the other hand, the right panel with curves of constant m, indicates that for all choices
the lightest contribution to the adjoint pion has comparable magnitude. The red curve
seems to lie higher, but an additional data point at m ∈ [2.8, 3.1] should lead also to a
lighter value with da-π ≈ 0.25.

In summary, at least three outstanding combinations of the analyzed (m, cSW) parameter
space exist. In all of them only one parameter has to been tuned, otherwise any approach
would not be practicable. Firstly, the choice cSW = 0 without a clover term, corresponding
to traditional Wilson fermions (horizontal dashed line). In this case no O(a) improvement
can be achieved and the parameterm is tuned to find the critical point. Secondly, the clover
coefficient cSW may be tuned at fixed chiral tree-level mass parameter m = 0, see vertical
dashed line. Finally, we could use the tadpole value cSW ≈ 2.1 and fine-tune m to the
critical point there, which is highlighted in figure 5.1 with the green line. This variant lies
between the two aforementioned extreme choices. If we exchanged the Symanzik-improved
Lüscher-Weisz gauge action SLW

g with the Wilson plaquette gauge action SW
g , then the

perturbative clover coefficient cSW = 1.7829 of eq. (3.45) would be the most common
choice, see cyan line. For comparison, we indicate with the magenta line the clover value
cSW = 1.4697, which is an estimate for the Lüscher-Weisz gauge action SLW

g by using
eq. (3.45) of the plaquette action with rescaled coupling g2 = 2Nc

β′
and with β′ = 5

3β.
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Figure 5.2: Parameter scan of the dominant mass contribution d of the a-a. Left: The
dependence on both parameters m, cSW is depicted with color-coded da-a. The colored
lines are discussed in the text. Center/Right: Same data as selected cuts with fixed cSW
resp. m. Markers are connected to guide the eye.
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discussed in the text. Center/Right: Same data as selected cuts with fixed cSW resp. m.
Markers are connected to guide the eye and error bars are neglected for better visibility.

To get a deeper insight into the different scenarios, we present further observables.
Analogous results like for the a-π are shown in figure 5.2 for the a-a meson. In the central
and right panel with the cuts of constant cSW resp. m the error bars are larger compared
to figure 5.1. Apart from that the data in the left panel looks very similar.

To visualize the differences, the subtracted ratio da-π/da-a − 1 is analyzed in figure 5.3.
Two regions of this diagonally lying band attract attention. The outermost points to
the top left have negative (blue) values indicating that the a-a is heavier than the a-π.
Furthermore there is a large region in green, which corresponds to equal mass contributions.
Only in the center of the band, some points are colored in red and signal that the adjoint
pion is heavier than the adjoint a meson. This is unexpected, because the pion should
be the lightest state as argued in appendix E. In section 5.2 we encounter again such an
unexpected mass hierarchy. A careful analysis of the finite size effects is performed in
section 5.5 to explore their origin.

Here, we restrict ourselves to the connected mesons, because the ensemble size in the
parameter scan is not large enough for a meaningful signal of the physical mesons with their
disconnected contributions. Furthermore, the subtracted chiral condensate (see eq. (3.57))
is evaluated in figure 5.4. Identically to the discussed mesonic states, the subtracted chiral
condensate is extremal along the critical line. It is shrinking for constant m as well as
constant cSW departing from the critical line and its steepest descent is perpendicular to
the critical line.
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Figure 5.5: Parameter scan of the bosonic action SB. The observable was measured only on
some of the ensembles. Therefore the left plot contains fewer data points than the previous
figures. Left: The dependence on both parameters m, cSW is depicted with color-coded SB.
Center/Right: Same data as selected cuts with fixed cSW resp. m. Markers are connected
to guide the eye. Most error bars are smaller than the marker size.

Additionally, we investigated the bosonic action, which is part of the bosonic Ward
identity (3.54). Its value for the adjoint representation of the gauge group SU(3) is
predicted to be SB = 12 and a deviation indicates broken supersymmetry. Along the
critical line of the adjoint pion, its value stays approximately constant, see figure 5.5. In
contrast to the other observables the bosonic action is not extremal there. It shrinks for
constant mass m and increasing clover coefficient cSW as well as for decreasing m and
fixed cSW. Thus the clover term reduces the deviation of the bosonic action to its predicted
value and improves the bosonic Ward identity.

In conclusion, the discussed observables do not answer the question, which (heuristic)
value is an optimal clover coefficient. Subsequent investigations with different lattice
spacings and further observables are necessary to this end. A promising candidate would
be the PCAC relation, which is well-suited, because of its sensitivity to discretization
errors. So far this relation is not implemented in our code. Instead we focused on a
different N = 1 SYM specific fermion formulation inspired by observations, see the next
section with the parameter scan of the mass-twisted Wilson Dirac operator.

We close this section with some remarks on the calculation of the clover coefficient
with the tree-level tadpole formula presented in table 3.3. In our simulations, the clover
coefficient is not a dynamical parameter. Instead, it is calculated for each ensemble at the
beginning of the simulation on some configurations. When it plateaus, we freeze its value
and start the Monte-Carlo history. As usual the first configurations of the thermalization
are neglected for the measurements of the observables.
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Figure 5.6: Clover coefficient cSW versus the configuration number for two ensembles
with mass parameter and lattice coupling given in the legend. The clover coefficient is
calculated with the tree-level tadpole formula given in table 3.3. In the left/right panel,
cSW is updated once per trajectory (consisting of 12 integration steps) resp. once per
integration step. This test was performed on a 84 lattice with two fundamental Dirac
fermions, i.e. 2-flavor QCD, and without freezing cSW.

For this initial clover setup, we tested different update frequencies. Figure 5.6 compares
the value of cSW along the Markov chain with updates either once per trajectory or once
per integration step (i.e. as soon as the gauge field changes). In the left panel, it can
be seen that the clover coefficient does not reach a thermalized constant value. On the
contrary, more frequent updates help to plateau. Approximate 100 configurations are
sufficient for thermalization with the chosen parameters in the right panel of the plot.
Except for this test, we always used the frequent cSW update once per integration step.

For stable simulations and roughly constant acceptance rates, we have to freeze the
clover coefficient after its setup. To illustrate the effect of the freezing, figure 5.7 shows one
ensemble with a thermalization length of 20 configurations and a neighboring ensemble with
doubled thermalization length. The left panel shows a clear kink in the clover coefficient
when the freezing starts and it may be estimated that the natural saturation without this
artificial freeze would be some percent higher. Based on experience, this small deviation
of the clover coefficient has no significant impact on the observables. In the right panel,
the corresponding values of the plaquette are shown and it can be seen that the plaquette
needs approximately 20 configurations to thermalize. There is no noticeable difference
between those two data sets with 20 resp. 40 configurations before cSW is frozen. Only in
the interval between 20 and 40, the ensemble depicted in green fluctuates stronger, but in
both cases the plaquette in this interval matches approximately the thermalized average
at later times.
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Figure 5.8: Left/Right: Clover coefficient cSW resp. bosonic action SB in dependence of
the bare mass m. The data were measured on a 163 × 32 lattice with lattice couplings
β ∈ {4.20, 4.59, 4.98}.

Finally we present in the left panel of figure 5.8 the dependence of the clover coefficient
on the mass parameter m and the lattice coupling β. For comparison, the right panel shows
the bosonic action SB. Both observables shrink when the mass m is lowered, although the
slope of cSW is smaller.
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To sum up, the parameter scan in the (m, cSW)-plane with the chosen observables gives
no conclusive results. Especially, figure 5.3 with the subtracted ratio da-π/da-a − 1 does not
reveal a region, where the mass contributions of the two chiral partners are identical. Thus,
we conclude that the clover term does not lead to an improvement of the mass-degeneracy
within the VY-supermultiplet. In the next section, we succeed with the twisted Wilson
Dirac operator. The starting point is the same heuristic approach.

5.2 Twisted-mass parameter scan

To analyze the effect of a twisted mass term, we calculate the dominant mass contributions
of the a-π and a-a in the (m,m5) parameter space. Let us recall at this point that the
connected mesonic states are not part of the physical spectrum of the N = 1 SYM theory.
But these auxiliary states are very useful, mainly because the signal-to-noise ratio of
their correlators is much better compared to that of the physical mesonic states with
disconnected contributions. Therefore we use the connected mesons for ensembles with low
statistics, like in the parameter scan of this section. In addition, the connected diagrams
contribute to the correlators of the physical states, see eq. (3.60) and (3.61). Hence, the
connected mesonic states partly determine the behavior of the full physical states.

For the parameter scan we fix the lattice coupling to β = 5.4 and vary the
mass parameters m ∈ [−1.4,−0.6] and m5 ∈ [−0.4, 0.4] around the critical point,
(m,m5) = (−0.967, 0.0). Due to the (m5 ↔ −m5)-symmetry, fine parameter steps are
necessary only in the upper half-plane of the parameter space. Every gauge ensemble
consists of approximately 200 thermalized configurations which is sufficient for a
good signal-to-noise ratio of the connected correlators. To determine their dominant
mass contribution d, all correlators are fitted to the ansatz (3.18). On the rather
small 83 × 16 lattice, the quantity d is only a rough estimate for the ground state mass and
the results for the latter are more qualitative than quantitative. However, the simulation
results on a larger 163 × 32 lattice support our findings.

Note that we treat the twist as a deformation of the lattice action and do not rotate
observables back, as is done in twisted-mass QCD. In the chiral limit (m→ mcrit,m5 → 0)
the twisted Wilson Dirac operator Dmtw

W (3.46) is equivalent to the untwisted Wilson Dirac
operator DW (3.41) such that both operators correspond to the same continuum theory.
But the breaking of chiral symmetry and supersymmetry may be suppressed along certain
paths ending at the critical parameters.

The left and center panels of figure 5.9 show the dominant mass contributions da-π
and da-a. In the right panel the subtracted ratio da-π/da-a − 1 near the critical point is
shown. Three interesting choices for the twist angle α are highlighted with colored lines:
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Figure 5.9: Parameter scan in m and m5 on a 83 × 16 lattice. In the left and middle
plot the dominant mass contribution d of the a-π (connected part of the a-η′) resp. a-a
(connected part of the a-f0) are shown. The right plot combines those results in the
subtracted ratio da-π/da-a − 1. Note the different axis ranges. The colored lines (gray,
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figure 5.9 with lines in gray, magenta and yellow. The same data of the 83 × 16 lattice
is used and three clearly different mass hierarchies of the dominant contribution d are
revealed. Some error bars are smaller than the symbol size. The gray curve

√
mR highlights

the relation mR ∝ m2
a-π.

• The data points for the untwisted case with α = 0◦ and m5 = 0 along the gray line
indicate that da-π is greater than da-a.

• For α = 45◦ along the diagonal magenta line, the dominant mass contributions of
the chiral partners a-π and a-a seem to match.

• At maximal twist, i.e., α = 90◦, where the bare gluino mass is kept fixed at its critical
value, m = mcrit = −0.967, and only the twisted mass parameter m5 is varied, da-a
is greater than da-π, see the vertical yellow line.
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The results clearly suggest that for α = 45◦ the chiral properties are improved
considerably at finite lattice spacing. This interpretation is supported by the results
shown in figure 5.10, where the dominant mass contributions da-π and da-a are shown
versus the renormalized gluino mass mR ∝ m2

a-π. At α = 45◦ the two chiral partners have
equal mass contributions within errors. In contrast, for α = 0◦ and α = 90◦ we clearly see
a split of the two mass contributions.[20]

To substantiate this observation on the small 83 × 16 lattice, we double the lattice
in each direction and repeat our calculation for the gauge couplings β ∈ {4.5, 5.0, 5.4}
along the three aforementioned twist angles α. We see in figure 5.11 that without twist
the dominant a-a contribution is greater than the a-π contribution, at α = 45◦ both
contributions are equal, and at maximal twist α = 90◦ the a-a contribution is smaller
than that of a-π. Compared to the results on the smaller volume in figure 5.10, the mass
hierarchies for α = 0◦ and α = 90◦ are inverted, which was a finite size effect of the small
lattice, but our findings for α = 45◦ remain and are barely affected by the lattice size.

In the subsequent sections, we will therefore focus on the twist angle α = 45◦ with
improved chiral and supersymmetry properties at finite lattice spacing. Furthermore from
section 4.3 we know this special twist reduces the discretization errors of order O(a) at
tree-level which may reduce lattice spacing artifacts also at the non-perturbative level.
Performing continuum extrapolations along the α = 45◦ direction might thus be beneficial.

What remains is a cross-check of our findings with other observables. The chiral
condensate Σ and the parity condensate Σp are good candidates built from the gluino
field, see eqs. (3.55) and (3.56). Note that the chiral condensate needs an additive
renormalization and therefore the subtracted chiral condensate (3.57) is used. A parameter
scan of those condensates along the three “directions”, i.e., α ∈ {0◦, 45◦, 90◦}, is depicted
in figure 5.12. In the left panel we notice that the subtracted chiral condensate is maximal
at the critical point and falls off radially symmetrically. Particularly, this contains a mirror
symmetry in m5 ↔ −m5 like for the dominant mass contribution da-π of the adjoint pion.
The parity condensate is shown in the right panel of figure 5.12. Along the gray data
points with m5 = 0 it vanishes, but if m5 is increased the condensate decreases linearly
and vice versa. The largest slope (yellow data points) is in direction of the m5-axis.

From figure 5.12 we learn that the mass twist α = 45◦ is not a distinguished angle for
the condensates. Only on-axis directions, that is 0◦ and 90◦, are special. However, we
will see in section 5.6 that for the double-twisted Wilson Dirac operator, α = ϕ = 45◦ is
particular, because the absolute values of the condensates are equal there (see figure 5.26).

[20]See appendix E for a discussion of the expected mass hierarchy at α = 0◦ and also compare with
figure 5.11.

64



5.3. Sign of the Pfaffian

0.00

1.00

2.00

3.00

4.00

−0.2 −0.1 0.0 0.1 0.2
−0.8

−0.4

0.0

0.4

0.8

−0.2 −0.1 0.0 0.1 0.2

Σ
su

b

∆crit

0◦
45◦
90◦

Σ
p

∆crit

0◦
45◦
90◦

Figure 5.12: Left/Right: The subtracted chiral condensate Σsub resp. parity condensate Σp

versus the distance ∆crit = (m−mcrit) cos(α) +m5 sin(α) to the critical point. Note the
different vertical axes. The different colors correspond to α = 0◦, 45◦ and 90◦. The error
bars of the parity condensate are smaller than the symbol size.

5.3 Sign of the Pfaffian

In order to have a positive Boltzmann weight in the path integral, the Pfaffian must
be positive. Otherwise our lattice calculations may suffer from a sign problem. In the
continuum, the Pfaffian of N = 1 SYM theory is real, but our twisted Wilson Dirac
operator may have a complex Pfaffian. To check the severeness of that problem additional
lattice calculations of the Pfaffian have been performed. Since the computational costs
scale as O(N3) and the memory requirement as O(N2) with the size N of the Dirac matrix,
the explicit calculation of the Pfaffian with the optimized serial algorithm [208] was only
performed for lattice sizes from 23 × 4 to 73 × 14, see table 5.1. The computation time for
one single Pfaffian on the 73 × 14 lattice is roughly 125 hours.

Table 5.1: Lattices N3
S ×NT and corresponding numbers of configurations on which the

Pfaffian was calculated.

NS 2 3 4 5 6 7
NT 4 6 8 10 12 14
# 1000 1000 1000 400 100 20

The left panel of figure 5.13 shows the phase ω of Pf(CDmtw
W ) = |CDmtw

W | · eiω for
different lattice sizes and fixed simulation parameters β = 5.4 and (m,m5) = (−0.85, 0.1)
with ma-π ≈ 0.60. Extrapolated to the typical lattice size of our calculations, 163 × 32, we
find that the phase remains small: 1− cos(ω) < 0.035. That is, we expect no significant
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sign problem for our simulations. In a further series of measurements with four different
lattice couplings the Pfaffian is measured on a 43 × 8 lattice, each ensemble with 350
thermalized configurations. The corresponding results are summarized in the right plot
of figure 5.13 and it can be deduced that the Pfaffian phase (and thus the risk of a sign
problem) is smaller for larger lattice couplings β, i.e. closer to the continuum. Additionally,
it is evident that the Pfaffian phase shrinks towards the critical point at m5 = 0.
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Figure 5.13: Left: Phase of the Pfaffian for different lattice sizes ranging from 23 × 4 to
73 × 14. The green line is an exponential fit to extrapolate the results to the lattice size
163 × 32. Right: Phase of the Pfaffian for different lattice couplings β ∈ {4.8, 5.4, 6.0, 6.6}
over m5 on a 43 × 8 lattice. When approaching the critical point at m5 = 0, the phase of
the Pfaffian decreases. Error bars are mostly smaller than the symbol size.

5.4 Scale setting

In order to set the scale, the Sommer parameter and QCD units are used, i.e.,
r0 = 0.5 fm [209]. In the given context this is somewhat arbitrary but it allows for a
direct comparison with results in the literature.

For our estimate of a/r0, we calculate fundamental rectangular Wilson loops of different
size and extract the static potential V (R) for a range of spatial separations R [210].
In temporal direction all loops are sufficiently large such that V (R) remains stable.
Furthermore, different levels of stout smearing are applied to the gauge fields (with staple
weight ρ = 0.1 [171]) and the Wilson mass is varied to allow for a safe extrapolation to
the critical point, m→ mcrit. For the different bare masses and levels of smearing, the
results for V (R) are separately fitted to

V (R) = V0 + σR− α

R
. (5.1)
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From the fit parameters and setting

r0

a
≡
√

1.65− α
σa2 (5.2)

we obtain the lattice spacing and can extrapolate to the critical point. As an example,
the lattice spacing for parameter set (II) is shown in figure 5.14 for different amounts of
stout smearing and extrapolated to the critical point. We find that for a large number of
stout smearing steps, the static potential changes its shape, but for a moderate number
the values of the lattice spacing are all comparable. Combining the data in a linear fit
leads to the lattice spacing a = (0.040± 0.002) fm for this parameter set, which translates
to a spatial length L = aNS = (0.64± 0.03) fm of the 163 × 32 lattice. In comparison to
other lattice studies, e.g. [211], a box length L < 1 fm appears small and finite size effects
need to be analyzed carefully. This is provided in the following section.

5.5 Finite size effects

To analyze the finite size effects, we continue with parameter set (V) and show the
correlators of a-π and a-a for (m,m5) = (−0.8950, 0.0000) in figure 5.15. Looking at the
two panels, one clearly sees both correlators would not fit a simple cosh-shape. Up to t = 5
(and T − t = 5), contributions from higher states are visible, and the interval where a single
exponential behavior dominates is rather short. For the fit, we choose a 2-cosh-ansatz (3.18)
and vary the fit range with t ∈ [t1, T/2− t2] and t ∈ [T/2 + t2, T − t1].

As an example, the 2-cosh fits for t1 = 2 and t2 = 4 are included in figure 5.15. Colored
symbols refer to points inside the fit range, while gray symbols refer to points outside.
Although cutting the inner time slices is not necessary, it turns out to be useful nonetheless:
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bution d of a-π and a-a from 2-cosh-fits
with different cuts tcut = (t1, t2) at β = 5.4
and (m,m5) = (−0.8950, 0.0). The gray
vertical lines separate regions with different
values of t2.
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Figure 5.17: Dominant mass con-
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5.5. Finite size effects

Near the critical point, the correlators of the connected part of the mesonic states are flat
while those of the disconnected part are dominated by statistical noise. Thus, a properly
chosen fit window can reduce the influence of excited states at small t and lattice artifacts
in the center of the correlator.

Results for da-π and da-a, with different combinations of t1 and t2, are presented in
figure 5.16. There, the upper t2-axis divides the plot (vertical lines) into four domains and
each domain shows d versus t1 at constant t2. We see that a variation of t2 has a minor
effect on the value of d, whereas there is a clear linear dependence on t1. In particular
for a-a this dependence is significant.

To estimate the finite size effects, the same 2-cosh-ansatz is used to analyze d as
a function of the spatial lattice extent NS. We performed simulations for β = 5.0
and (m,m5) = (−1.0506, 0.0) on lattices with spatial extent NS = 4, . . . , 24 and the results
for the connected adjoint states are shown in figure 5.17. For the adjoint pion, d forms
a plateau at approximately d = 0.2 for NS ≥ 16, while for the a-a the situation is not as
clear. Finite size effects result in a too light adjoint pion mass which was also observed
in [212, 213].
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Figure 5.18: Top/Bottom: Effective masses/Correlators of the adjoint pion and the adjoint
a meson at fixed bare gluino mass m = −1.0506 and lattice coupling β = 5.0, without
any twist. From left to right the three columns show results from a 83 × 16, 163 × 32 and
243 × 48 lattice. Most error bars are smaller than the symbol size.

Volume effects are also apparent in the effective mass plots of a-π and a-a. Such
plots, and the corresponding correlators, are shown in figure 5.18, again for β = 5.0,
(m,m5) = (−1.0506, 0.0) and NS = 8, 16, 24. Looking at the upper panels we notice an
intersection of the effective mass values at a certain t. The effective mass of a-a falls off
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Figure 5.19: Effective masses at fixed bare gluino mass m = −1.0506 and lattice coupling
β = 5.0, without any twist. The left/right panel compares a-π resp. a-a for different lattice
sizes. To enhance visibility, the data points are connected by lines and symbols and error
bars are omitted.

faster with t than that of a-π and approaches a lower value. Furthermore, the deviations
seem to increase with increasing volume. This is in contrast to common expectations,
because the a-π should be the lightest state, see appendix E for a further discussion. We
suppose the relatively small volume (L < 1 fm) causes a-a to appear lighter than a-π.

Further indications are provided by figure 5.19 showing separately for a-π and a-a
the same data sets as figure 5.18 but plotted against the rescaled variable t/T such that
finite size effects are better visible. We see that the effective mass curves of a-π settle
on approximately the same value on all lattices and the length of the plateau increases
with the lattice size. But for the a-a state the effective mass seems not to approach an
unambiguous plateau, if at all. Rather meff and the plateau get smaller when increasing
the lattice size which is unexpected. This indicates an enhanced correlation length and
is in line with the correlator plots in the lower panels of figure 5.18. There, the a-a
correlator on the largest lattice (243 × 48) decays visibly faster than the a-π correlator
for 0 < t . 15 and reaches a very flat region at t & 20. On the smaller lattices this effect
is less pronounced. Again we see that finite size effects are small for a-π, while they are
more distinct for a-a such that an unambiguous mass extraction is difficult despite the
good signal-to-noise ratio.

For a comprehensive insight why the a-a correlator is so flat, a further test case follows.
Still without any twist, the chosen parameters m = −0.9856 and β = 5.0 correspond to
an adjoint pion mass ma-π ≈ 0.5. The correlators in the top row of figure 5.20 show the
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Figure 5.20: Left/Right: Correlators of a-π resp. a-a. Most error bars are smaller than the
marker size. Top: Comparison of 1 and 10 point sources on the 83 × 32 lattice. Center:
Comparison of the amount of Jacobi smearing on the 83 × 32 lattice. Bottom: Comparison
of lattice sizes 43 × 32, 83 × 32 and 163 × 32 with one unsmeared point source.

expected shape for the a-π and a pronounced flat region for the a-a. Additional point
sources lead to a lower minimum and reduce the flat range slightly. In the second row,
different numbers of Jacobi smearing steps are compared. More smearing leads to flatter
correlators and a marginal worsening of the flat region. Finally, the third row of figure 5.20
reveals the origin of the problem. Keeping the temporal extent NT = 32 fixed, the number
of spatial lattice points is varied, NS = 4, 8, 16. Obviously, a large enough lattice removes
the flat region of the a-a correlator completely. Furthermore, we see in the range t ∈ [4, 8]
a comparable slope of the correlators on the 83 × 32 and 163 × 32 lattices. Therefore, we
have evidence that a suitable fit window helps to reduce the impact of finite size effects.

In conclusion, especially the adjoint a meson is affected by finite size effects on small
volumes, where a very flat region appears in its correlator. As a consequence the extracted
dominant mass contribution of a-a is underestimated. In appendix F, the correlators and
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effective masses for twist angles α ∈ {0◦, 45◦, 90◦} are discussed with regard to finite size
effects. The mass-twisted Wilson Dirac operator improves the situation, because it leads
to a mixing of the mesonic a-π and a-a. At optimal twist angle α = 45◦, the correlators
of a-π and a-a have identical shapes and finite size effects are reduced.

Finally, we watch for signs of topological freezing which may occur at small lattice
spacings a . 0.05 fm [211]. In the top panel of figure 5.21, the Monte Carlo history of the
chiral condensate Σ shows no evidence for a loss of ergodicity. Also the simple lattice
definition of the topological charge Q = 1

32π2
∑
n εµνρσF

a
µν(n)F a

ρσ(n), rounded to integers
and depicted in the bottom panel, fluctuates a lot and indicates an efficient sampling [214].
Only the parity condensate Σp in the central panel does not fluctuate so uniformly as the
other two observables.
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Figure 5.21: Chiral condensate (top), parity condensate (center) and topological charge
(bottom) versus the Monte Carlo history. Note the different scales. The gray horizontal
lines highlight the average values.

5.6 Double twist

For a deeper understanding of the twists, we study the double-twisted Wilson Dirac operator
of eq. (3.48). Each parameter set can be specified either with absolute values (m,m5)
and (r, r5), or with the angles (α, ϕ) with respect to the critical point. First, some

72



5.6. Double twist

parameter studies are discussed. Afterwards, the freedom of the parameter choice is used
to investigate the potential chiral anomaly and the relevance of the Wilson term.

In general, a modification of the Wilson parameters (r, r5) requires a new fine-tuning,
because the critical point is shifted. To exemplify, the Wilson parameters (r, r5) =

(
1√
2 ,

1√
2

)
,

i.e. ϕ = 45◦, are chosen and (m,m5) are varied to find the mass parameters with minimal
adjoint pion mass. The critical point is found at (m,m5) = (−0.7570,−0.7570), see
figure 5.22. These values correspond to a rotation by ϕ = 45◦ of the untwisted critical
point at (mcrit,m5) = (−1.0706, 0.0000).
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Figure 5.22: Parameter scan of the
adjoint pion in the (m,m5)-plane to
find the critical point for the twisted
Wilson parameter (r, r5) =

(
1√
2 ,

1√
2

)
on the 83 × 16 lattice. The dotted
black lines highlight the values of m
and m5, where the adjoint pion has
its smallest mass.

We learn two lessons. Firstly, the critical point is rotated in the (m,m5)-plane as soon
as the Wilson term is twisted. Secondly, the critical points lie on a circle and their values
can be calculated, (m,m5) = (mcrit cos(ϕ),mcrit sin(ϕ)). Remember that the mass twist is
always defined relatively to the (ϕ-dependent) critical point:

α = arctan
(
m5 −mcrit sin(ϕ)
m−mcrit cos(ϕ)

)
. (5.3)

In total 11 combinations (α, ϕ) of twist angles have been tested in more detail, listed in
table 5.2. To visualize the chosen parameter sets, the critical point for each twist angle ϕ
is marked in the left panel of figure 5.23 with a filled black circle and the colored rectangles
depict the investigated regions of the (m,m5)-plane. In the right panel of figure 5.23, the
extracted masses of the adjoint pion are shown. Clearly, the lightest adjoint pion lies for
each combination of (α, ϕ) on the dashed circle. In accordance to section 5.2, we find
different mass hierarchies of a-π and a-a in dependence on the angle α. Independent of ϕ,
we encounter a mass-degeneracy at α = ±45◦, see magenta rectangles in the left panel of
figure 5.23.
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Table 5.2: Investigated parameter combinations of the twist angles α, ϕ of the mass term
and Wilson term.

α −45◦ 0◦ 0◦ 0◦ 45◦ 45◦ 45◦ 45◦ 90◦ 90◦ 90◦
ϕ 45◦ 0◦ 45◦ 90◦ −45◦ 0◦ 45◦ 135◦ 0◦ 45◦ 90◦

m
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Figure 5.23: Left: Critical points (black filled circles) for different angles ϕ of the
Wilson term in the (m,m5)-plane. All critical points lie on the dashed circle with
radius 1.0706. Rectangles mark the regions of (m,m5), where simulations were performed.
The colors indicate the different mass hierarchies of a-π and a-a at the angles α = 0◦
(gray), α ∈ {−45◦, 45◦} (magenta) and α = 90◦ (yellow), cf. figure 5.11. Right: The colored
symbols show the adjoint pion mass for the different combinations of (α, ϕ) sketched on
the left. All results are extracted from simulations on a 83 × 16 lattice with β = 5.0.

To quantify a possible anomaly and study the quality of the 45◦-twist, we now
consider the condensates and analyze the impact of the twist angles (α, ϕ) on them.
Additionally to the twist combinations listed in table 5.2, we performed simulations
at (m,m5) = −1.0506 · (cos(ϕ), sin(ϕ)), ϕ = 10◦, 20◦, . . . , 350◦. All those points are
displaced from the critical point by ∆m = 0.02 in direction of the origin. This special
choice means α = ϕ. The condensates are shown in figure 5.24 for the different twist
combinations on the 83 × 16 lattice. Clearly, the chiral condensate Σ in the left panel has
a (m5 ↔ −m5)-symmetry and its sign flips for m↔ −m. For the parity condensate Σp in
the right panel it is the other way around. Hence, the condensates have a ϕ-dependence,
which can be explained as follows.

In the untwisted scenario, the chiral condensate is significantly larger than the parity
condensate, because it is triggered by the Wilson term. Generalized to arbitrary angles ϕ,
the (rotated) Wilson term always distinguishes one direction and consequently the
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Figure 5.24: Left/Right: The chiral condensate Σ resp. parity condensate Σp for all
different combinations of (α, ϕ) summarized in table 5.2. Additional ensembles with
(m,m5) = −1.0506 · (cos(ϕ), sin(ϕ)), ϕ = 10◦, 20◦, . . . , 350◦ are depicted with asterisks.
All results are extracted from simulations on a 83 × 16 lattice with β = 5.0.

chiral condensate, the parity condensate or a mixture of them is favored. A chiral
transformation (4.1) rotates the doublet of bilinears, cf. eq. (4.2), and analogously the
condensates (3.55) and (3.56) are rotated by α = ϕ:

Σ(ϕ) = cos(ϕ)〈λ̄nλn〉+ i sin(ϕ)〈λ̄nγ5λn〉 = cos(ϕ)Σ + sin(ϕ)Σp ,

Σp(ϕ) = i cos(ϕ)〈λ̄nγ5λn〉 − sin(ϕ)〈λ̄nλn〉 = cos(ϕ)Σp − sin(ϕ)Σ .
(5.4)

To check if our measured condensates obey eq. (5.4), the data of figure 5.24
is plotted in figure 5.25 versus the angle ϕ of the Wilson term. Without
any twist, the chiral condensate has the magnitude Σ(0◦) = 4.952± 0.001 and the
parity condensate Σp(0◦) = (1.02± 0.05)× 10−6 is significantly smaller. The chiral
condensate Σ(ϕ) in the left panel is proportional to cos(ϕ), in accordance to eq. (5.4).
Also the parity condensate Σp(ϕ) ∼ − sin(ϕ) in the right panel agrees with the prediction.
Consequently the sum |Σ(ϕ)|2 + |Σp(ϕ)|2 = |Σ|2 + |Σp|2 can be used as a ϕ-independent
condensate. Furthermore the difference

|Σ(ϕ)|2 − |Σp(ϕ)|2 = |Σ|2
(

cos2(ϕ)− sin2(ϕ)
)
− |Σp|2

(
cos2(ϕ)− sin2(ϕ)

)
(5.5)

should vanish at ϕ = ±45◦. When this difference is measured for the double-twist
α = ϕ = 45◦ then a deviation from zero is only due to a potential non-invariance of
the measure under the chiral rotation. The right panel of figure 5.26 is compatible with
the chiral invariance of the measure. On the 83 × 16 lattice the deviation of |Σ|2 − |Σp|2
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Figure 5.25: Left/Right: Chiral condensate Σ resp. parity condensate Σp versus twist
angle ϕ with the same data used in figure 5.24. The different colors correspond to different
twist angles α. Error bars are omitted and different marker sizes are chosen for clarity. The
ensembles with (m,m5) = −1.0506 · (cos(ϕ), sin(ϕ)), ϕ = 10◦, 20◦, . . . , 350◦ are depicted
with brown asterisks. Note that the horizontal axis starts at ϕ = −90◦ and covers more
than one period.

from zero is smaller than 10−4 and on the 163 × 32 lattice even below 10−5. In the left
panel of figure 5.26, a comparison of the fixed angle ϕ = 45◦ with other mass twists α is
shown. The deviation from zero for α 6= 45◦ demonstrates the influence of the mass twist
on the condensates. All those choices approach |Σ|2 = |Σp|2 in the chiral limit.

The similarity of the condensates for the double-twist α = ϕ = 45◦ can be used to our
advantage when we analyze the physical mesonic states. Their vacuum contributions depend
on the chiral condensate resp. parity condensate. In section 4.1 we argued analytically
that a-η′ and a-f0 are identical when the spinors are rotated by 45◦. Without twisting
the Wilson term, that is for ϕ = 0◦, the numerical data presented in section 5.2 showed
that the connected part of a-η′ and a-f0 agree. At the same time, the chiral condensate Σ
is much bigger than the parity condensate Σp � 1, see figure 5.25 at ϕ = 0◦. It follows
that in the a-f0 correlator large numbers of the order 〈tr(ΓGnn)〉U〈tr(ΓGn′n′)〉U ∼ |Λ3| · Σ2

must be subtracted unlike for a-η′, cf. figure 6.4. This explains the unequal noise in those
two correlators at α = 45◦ – even though we would expect them to be equal according
to the analytical calculation in section 4.1. For ϕ = 90◦ the roles of the condensates are
interchanged as can be seen in figure 5.27. The magnitude of |Σ|2 − |Σp|2 for ϕ = 90◦ in
the right panel is reversed to the left panel with ϕ = 0◦. Compare also the condensates in
figure 5.25 at ϕ = 0◦ and ϕ = 90◦. Accordingly, the a-η′ is noisier than the a-f0 at ϕ = 90◦.
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To summarize, the disconnected contributions of the two mesonic states are in the same
order of magnitude when the mass term and the Wilson term are rotated by α = ϕ = 45◦.
This implies an even better degeneracy of the a-η′ and a-f0. Additionally, the numerical
data indicate smaller error bars in accordance with our analytical result in the free theory
(section 4.3). Consequently, fewer discretization errors may be present and we can expect
a faster continuum limit.

An alternative would be the choice α = 45◦ = −ϕ, where the difference of the
condensates is also significantly lower than in the scenario with ϕ = 0◦, compare the
left panel of figure 5.26 to the left panel of figure 5.27. The difference |Σ|2 − |Σp|2 shrinks
linearly towards the critical point (see purple symbols in figure 5.26) and for α− ϕ = 90◦

discretization improvements of O(a) may be possible as discussed in section 4.3.
Altogether, there are several interesting setups (α, ϕ) for future investigations compared

to the untwisted Wilson Dirac operator:

1. (45◦, 0◦): equal connected contributions to a-η′ and a-f0, O(a) errors may be reduced.

2. (45◦, 45◦): equal connected and vacuum contributions to a-η′ and a-f0.

3. (45◦,−45◦): equal connected contributions to a-η′ and a-f0, vacuum contributions
become equal as the critical point is approached, possibility of O(a) improvement.

Although twisting the mass term with angle α and the Wilson term with angle ϕ are
two different deformations, the choice α = ϕ corresponds in a redefinition of the spinors
λ 7→ eiα2 γ5λ. In this scenario, we can shift the twist of the action completely into a twist of
the observable (as long as no anomaly enters).[21] As the analytical calculation showed,
in this case a-π and a-a as well as a-η′ and a-f0 are identical. For each of them only
one observable remains, i.e. a connected meson being a mixture 1√

2(a-π + a-a) and the
physical meson containing disconnected contributions is 1√

2(a-η′ + a-f0). While this may
seem like a loss of one observable, it should be viewed conversely. The combination of
those two superpartners is sufficient since they are mass-degenerated in the continuum
theory anyway; compare to [107], where they are described by one common complex field.

5.7 Improvements

In this last section, we present two technical studies. First, the different types of fermion
smearing introduced in section 3.1.4 are compared. Afterwards, the benchmark test of the
DDαAMG algorithm is presented.
[21]One of the two twists can always be transformed away, but the relative angle between the mass term

and the Wilson term stays unaltered.
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Figure 5.28: Left/Center/Right: a-f0 correlator with 0/4/16 stout smearing steps. Each
panel contains 4 data sets with {0, 4, 16, 64} Jacobi smearing steps. No error bars are
shown for clarity. The depicted correlators are extracted from 300 configurations on a
83 × 32 lattice.

5.7.1 Fermion smearing comparison

For this comparison, we use a 83 × 32 lattice with β = 5.0 and (m,m5) = (−1.0352, 0.0354),
which has an adjoint pion mass ma-π ≈ 0.3. To demonstrate the impact of the smearing,
we choose the a-f0 which has the noisiest correlator.

In figure 5.28, its correlator with different combinations of Jacobi and stout smearing
is depicted. The left panel evidences that Jacobi smearing without gauge link smearing is
not sufficient for a clear signal. In the central panel with 4 stout smearing steps and the
right panel with 16 stout smearing steps, it can be seen how the signal improves with the
number of Jacobi smearing steps. Both choices of gauge smearing have the best correlator
shape with 16 Jacobi smearing steps. When too many steps are applied, the signal worsens.
This effect of over-smearing is more obvious in the central panel.

The comparison of the different types of fermion smearing are shown in figure 5.29.
With the eye, almost no difference can be seen between Wuppertal (see eq. (3.32)) and
Jacobi (see eq. (3.33)) fermion smearing. Most data points differ only within a few percent.
In contrast, the results with JacobiExp (defined in eq. (3.34)) contain larger fluctuations
when 4 resp. 16 steps of fermion smearing are applied. We choose the normal Jacobi
smearing as our default.

The a-f0 benefits the most from fermion smearing, because its unsmeared signal is
noisier than a-η′. In contrast to the mesonic states, we observed only mild profits for the
gluino-glue. On the other hand, applying gauge field smearing helps smoothing the latter.
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5.7.2 Multigrid acceleration

We are the first, who applied the DDαAMG library [158, 159] (see section 3.1.2) to a
Wilson Dirac operator with fermions in the adjoint representation. Therefore we replaced
all numerical values of the original library related to the fundamental representation of the
gauge group SU(3) by a variable dimc. That way, the DDαAMG algorithm with general
gauge group SU(Nc) and arbitrary representation became possible.
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Figure 5.30: Left/Right: Measured time in seconds to invert the Wilson Dirac operator
for different numbers of right-hand sides in the fundamental/adjoint representation of
SU(3). The different colors correspond to the lattice sizes 83 × 16 resp. 163 × 32. Solid
(dotted) lines are for the DDαAMG (CG) inverter. The linear functions are averages over
approximately 25 configurations. Note the double-logarithmic scale.
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5.7. Improvements

To illustrate the performance boost by the DDαAMG inverter, we perform a benchmark
test with the following setup: Inversion precision 10−12, two multigrid levels, block size 24,
mixed precision and the solver combination FGMRES with red-black SAP. Figure 5.30
shows the timings for the fundamental resp. adjoint test scenario with gauge group SU(3).
For the former case, we simulate 2-flavors at β = 5.0 and m = −0.5614 with mπ+ ≈ 0.8.
The timings for the adjoint representation are for the parameters β = 5.0 and m = −1.0606
with ma-π ≈ 0.2. In both cases up to 100 stochastic estimators and 5 point sources are
considered. For comparison, the timings of the CG algorithm and two different lattice
sizes 83 × 16 and 163 × 32 are shown. On the 163 × 32 lattice, the DDαAMG solver is
always faster than the CG algorithm. For the fundamental representation the DDαAMG
setup of the coarsening has a bigger impact on the total time and for a single right-hand
side on the 83 × 16 lattice the CG solver is slightly faster.[22] With more right-hand sides
the impact of the setup time decreases.

In conclusion, the DDαAMG algorithm is especially beneficial on large lattices and
in the adjoint representation, where this benchmark revealed a speed-up factor of 20.
Additionally, it can reduce the critical slowing down. For the results presented in section 6.2,
we used 150 stochastic estimators and 3 point sources.

[22]Note that the parameters chosen for the benchmark in the adjoint/fundamental representation
correspond to different (adjoint) pion masses. The fundamental pion is heavier and that is why
the inversion in this scenario required less iterations.
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CHAPTER 6

Numerical results

We start this chapter with an overview of our investigations of the two-dimensional
N = (2, 2) SYM theory in section 6.1 covering the mass spectrum and bosonic Ward identity.
After this small detour, we return in section 6.2 to the four-dimensional N = 1 SYM
theory. Employing the Wilson Dirac operator with 45◦-twisted mass the mesonic states
(6.2.1), the gluino-glue (6.2.2) and the glueballs (6.2.3) are examined. In section 6.2.4 all
results are collected and extrapolated to the chiral limit. An overview of the ensembles
and parameters can be found in appendix G.

6.1 Two-dimensional N = (2, 2) Super-Yang-Mills

theory

Our study of two-dimensional N = (2, 2) Super-Yang-Mills theory with gauge group SU(2)
is also focused on the mass spectrum. As we have argued in section 2.4, the supermultiplet
spectrum is expected to be analogous to the four-dimensional mother theory. A careful
measurement of the fermion determinant revealed that no sign-problem is present [55, 114].
The only relevant operator of the lattice action is the scalar mass and we took its known
critical value [215]. However, with an additional fine-tuning of the fermion mass, it was
possible to damp the supersymmetry breaking terms and stabilize the positivity of the
Boltzmann weight [55].

Figure 6.1 summarizes the spectroscopic results of the VY-supermultiplet for three
different ensembles. The ground state masses of the mesonic states in the left panel tend to
zero when extrapolated to the critical point at mf = mcrit

f . In the central panel, the excited
states are depicted and they decrease slightly towards the critical point approaching values
in the range [0.2, 0.4]. The gluino-glue states shown in the right panel fall in the same
mass range, at which the symmetric signal is a little heavier than the antisymmetric one.
Both gluino-glue states depend only marginally on the bare fermion mass mf.
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6.1. Two-dimensional N = (2, 2) Super-Yang-Mills theory
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6. Numerical results

Besides the gluino-glueball, all states of the FGS-supermultiplet are built from glueballs,
scalarballs and glue-scalarballs. We observed that the corresponding correlators are so flat
that no correlation can be detected. Consequently those massless states decouple from the
theory. For the glueball in non-supersymmetric two-dimensional YM theory, analytical
calculations support this finding [216, 217].

To summarize our spectroscopic study of 2d N = (2, 2) SYM, we found that the FGS-
supermultiplet decouples and in the chiral limit the VY-supermultiplet becomes massless.
The excited mesonic states have a mass compatible with the gluino-glueball.

An additional effort is the analysis of lattice Ward identities to confirm the restoration
of supersymmetry. In figure 6.2, this is demonstrated with the bosonic Ward identity, see
eq. (3.54). Further details and other Ward identities can be found in [55].

6.2 Four-dimensional N = 1 Super-Yang-Mills theory

with twisted fermions

All the following numerical investigations are focused on the four-dimensional N = 1 SYM
theory with gauge group SU(3). QCD as well as its supersymmetric extension have three
fundamental color degrees of freedom and with this in mind we chose Nc = 3 as well.

In this section we present, compare and discuss our lattice results with 45◦-twisted
mass term. Early simulations with a mass twist were performed at lattice coupling β = 5.4
on a 83 × 16 lattice [87, 88]. Those first results confirmed our claim of section 4.1
that a mass twist of α = 45◦ leads to degenerated masses of the mesonic states, but
the lattice spacing a ≈ 0.026 fm [218] was very small. Subsequent simulations on
the 163 × 32 lattice aimed for a larger physical volume by additionally reducing the
lattice coupling to β = 5.0 [88, 89]. In section 5.4 it turned out that the mentioned
lattice parameters lead to a coarser lattice spacing a = (0.040± 0.002) fm, but the lattice
extent L = (0.64± 0.03) fm is still rather small. Thus the different results presented in
the following sections may suffer from finite size effects (investigated in section 5.5), while
lattice spacing artifacts are more or less absent. Nevertheless, all qualitative statements are
expected to be transferable to smaller lattice couplings β. In appendix F, we analyze the
correlators of the connected mesonic states for twist angles α ∈ {0◦, 45◦, 90◦} and observe
that with optimal twist angle α = 45◦ the finite size effects are less severe. Upcoming
simulations should be performed with larger physical volumes to verify the spectroscopic
results and state the quantitative numbers more precisely. Table G.4 in appendix G.2
lists the chosen lattice couplings, lattice sizes, mass parameters, Wilson parameters and
ensemble sizes.
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6.2. Four-dimensional N = 1 Super-Yang-Mills theory with twisted fermions
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Figure 6.3: Left/Right: Correlator of the adjoint pion/a on the 163 × 32 lattice at
mR = 0.24. Both correlators are normalized to C(4) = 1 for an easier comparison. Most
error bars are smaller than the symbol size.

6.2.1 Mesonic states

For a better understanding of the mesonic states, we analyze the different contributions
to the correlators. First, we present the connected contributions of the pseudoscalar
and scalar mesons, which correspond to a-π and a-a. The shapes of the two correlators
at α = 45◦ twist are very similar, see figure 6.3. Accordingly, the extracted dominant mass
contributions are coincident. Only the excited contributions differ marginally, which may
be a consequence of a slightly misplaced critical point.

Now, we analyze the physical states a-η′ and a-f0 of the VY-supermultiplet including
their disconnected contributions, see eqs. (3.60) and (3.61). Compared to the connected
contribution, the numerical effort for the disconnected part is rather large. We utilized
three point sources and 150 stochastic estimators with an inversion precision of 10−12.
Figure 6.4 depicts all contributions entering the correlators of a-η′ and a-f0. The connected
contribution in the top row is identical to the adjoint pion resp. a of figure 6.3. There are
two contributions, Cd(t) = 〈tr(ΓGnn)tr(ΓGn′n′)〉U and Cv(t) = 〈tr(ΓGnn)〉U〈tr(ΓGn′n′)〉U ,
which bring large statistical uncertainties. Comparing the disconnected contribution Cd(t)
of those particles in the second row, a clear difference in their order of magnitude can be
seen – the numbers of a-f0 are roughly a factor 1000 larger. The vacuum contribution Cv(t)
in the third row looks very similar and the same observation holds.

After comparing the two different particles, let us examine the individual contributions
to one particle and how they sum up. The disconnected contribution and the vacuum
contribution seem to be identical in the logarithmic plot, even in the linear inset. But
the difference between the disconnected and vacuum contribution is non-zero and enters
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6. Numerical results

10−4

10−2

10+0

10+2

10+4

10+6

10−4

10−2

10+0

10+2

10+4

10+6

10−4

10−2

10+0

10+2

10+4

10+6

10−4

10−2

10+0

10+2

10+4

10+6

0 5 10 15 20 25 30 0 5 10 15 20 25 30

71.5

71.7

99680

99730

71.5

71.7

99680

99730

C
c(
t)

a-η′

10−4

10−2

10+0

10+2

10+4

10+6

a-f0

C
d
(t
)

10−4

10−2

10+0

10+2

10+4

10+6

C
v(
t)

10−4

10−2

10+0

10+2

10+4

10+6

C
(t
)

t

10−4

10−2

10+0

10+2

10+4

10+6

0 5 10 15 20 25 30

t

0 5 10 15 20 25 30

71.5

71.7

99680

99730

71.5

71.7

99680

99730

Figure 6.4: Left/Right: Correlator of the adjoint η′ resp. f0 on the 163 × 32 lattice at
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6.2. Four-dimensional N = 1 Super-Yang-Mills theory with twisted fermions
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in the total correlator shown in the bottom row. This small difference is important and
distinguishes the physical particles from the unphysical a-π and a-a.

Comparing the total correlators of a-η′ and a-f0, the latter contains considerably
more noise, which is connected to the larger values in Cd(t) and Cv(t). Note that
avg

(
Ca-η′
v (t)

)
= |Σp|2 ·N3

S and avg
(
Ca-f0
v (t)

)
= |Σ|2 ·N3

S are linked to the condensates and
hence depend very sensitively on external conditions, see section 5.6 for an analysis. In
principle the vacuum contribution is translation-invariant, but numerically we treat n
and n′ differently in the disconnected correlator and so we do in the vacuum contribution.
More precisely n is summed over all lattice points and is calculated with stochastic
estimators whereas n′ is the sum over the randomly chosen positions of the point sources.

High statistics are a prerequisite for a reasonable mass estimate of the disconnected
contributions. For the twist angle α = 45◦, we have medium ensemble sizes for a fixed
lattice coupling β = 5.0 and the lattice size 163 × 32. Thereby the mass and twisted mass
parameters were varied to extrapolate them towards their critical values (see table G.5b).

Results for the dominant mass contribution (i.e., for the approximate ground state
mass) for a-η′ and a-f0 are shown in figure 6.5 versus the renormalized gluino mass. They
are obtained from fits of the lattice two-point correlators to the same 2-cosh-ansatz as used
above. For a-f0, additional results from a 1-cosh-fit (see eq. (3.17)) are shown. For a-η′

there are also results for the next higher state, d∗, included in figure 6.5.
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While for da-f0 the uncertainties are large, both for the 2-cosh-fit and 1-cosh-fit, the
results for a-η′ are more precise such that a trend can be seen. For a-η′, d and d∗ clearly
decrease with mR and approach finite values at mR = 0. The ground state mass of a-η′

near the critical point is approximately 0.2 in lattice units, while the mass of the next
higher state tends towards a value above 1. For da-f0 , the lowest mass contribution is
below 0.4 within errors, but strongly affected with noise and influenced by the higher
contributions (see lower panels of figure 6.6). In section 6.2.4, we will revisit these chiral
extrapolations and include other states beside the two mesonic states considered here.

On the generated ensembles with the chosen parameters, the correlators of the physical
mesonic states are dominated by the connected contributions. We noticed that this
dominance affects especially the ensembles next to the critical point. This may explain at
the same time another observation, which indicates a reduction of statistical fluctuations
when the critical point is approached.

To estimate the impact of the gauge fluctuations on the mesonic observables, figure 6.6
compares the correlators with different ensembles sizes. For the a-η′ correlator in the upper
panels, already 1000 configurations are sufficient for a clear signal of the first excited state
at small t. The lowest state cannot be extracted in the center of the lattice due to missing
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6.2. Four-dimensional N = 1 Super-Yang-Mills theory with twisted fermions
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(negative) data points in the correlator, but with 3000 configurations the signal of the
ground state improves slowly.

In the bottom row, the correlators of the a-f0 reveal a stronger dependence on the
ensemble size. The correlator with 1000 configurations is completely dominated by noise
and 3000 configurations may allow a rough estimate of the first excited state. As already
mentioned, our ensemble size is too small to extract the lowest state of a-f0 reliably.

For a prediction of the first excited state of the a-f0 without knowing the mass
of the ground state, we cannot naively fit an exponential to the correlator at small
times. The reason is that the correlator is a sum of exponentials C(t) ≈ a0 e−d0t + a1 e−d1t.
Approximately, we try to determine the first excited state by assuming d0

a-f0 = d0
a-η′

and check if d1
a-f0

?≈ d1
a-η′ holds. By fitting C(t)− a0 e−d0t ≈ a1 e−d1t in the central panel

of figure 6.7 we find for the ensemble with renormalized gluino mass mR = 0.40 the
mass contribution d1

a-f0 ≈ 1.02. Repeating the same analysis with d0
a-f0 = 0.9 · d0

a-η′

and d0
a-f0 = 1.1 · d0

a-η′ to estimate the error leads to d1
a-f0 ≈ 1.01 . . . 1.04, see left and right

panel of figure 6.7. Thus the sensitivity to the ground state mass is rather low. The first
excited contribution d1

a-f0 is in agreement with the value of the a-η′ near the critical point,
see figure 6.5. Nevertheless this is significantly lower than d1

a-η′ ≈ 1.73 at mR = 0.40 but
still in the range of allowed values, given all the other uncertainties and systematic errors
(in particular due to the finite box size).

6.2.2 Gluino-glue

We continue with the third particle of the VY-supermultiplet, the gluino-glue g̃g. Figure 6.8
shows its dominant mass contribution for different numbers of stout smearing steps,
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specifically for ns = 4, 8, 16 and 32 with staple weight ρ = 0.1. Gauge-link smearing
smoothes the correlators and suppresses contributions from excited states, if a sufficient
(but not too) large number of smearing steps is applied to the gauge links. Figure 6.8
suggests that 8-16 smearing steps are optimal for our simulation parameters. For both cases
the lowest mass contribution of the gluino-glue near the critical point is between 0.2 and 0.4
in lattice units, and between 0.7 and 0.9 for the next higher state. In comparison, fits to
correlators for only ns = 4 smearing steps lead to higher uncertainties, while for ns = 32
some fits even fail.

In figure 6.9, we compare (the absolute value of) the symmetric and antisymmetric
correlators of the gluino-glue. Clearly, most data points lie on top of each other, but
the noise of the antisymmetric correlator is increased at the inner time slices, where the
sinh-shaped correlator crosses zero. Hence, no additional insight from the antisymmetric
gluino-glue is expected and focusing on the symmetric gluino-glue should be sufficient.

In figure 6.10, the influence of the ensemble size on the correlator is analyzed. As
can be seen in the left panel, already 1000 configurations with 8 levels of stout smearing
are sufficient for a clear signal of the first excited state. With 3000 configurations an
improvement in the center of the lattice is visible and therefore an extraction of the ground
state mass becomes feasible.

6.2.3 Glueballs

Before continuing with a chiral extrapolation of the VY-supermultiplet states in the next
section, let us present some results for the FGS-supermultiplet. This multiplet contains
two glueballs and a further gluino-glueball, see table 2.2. Gauge link fluctuations in the
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Figure 6.11: Top/Bottom: Scalar/Pseudoscalar glueball on the 163 × 32 lattice with twist
angle α = 45◦ as a function of the gluino mass mR. Data points are slightly displaced for
better visibility. In the different panels, ns ∈ {4, 8, 16} steps of stout smearing are applied
to smooth the data. Both 1-cosh-fit and 2-cosh-fit results are shown for comparison. Two
resp. four time slices are ignored in the correlator fit at the lattice boundary resp. in the
center, i.e., tcut = (2, 4). For clarity some (over-estimated) error bars are not shown.

glueball interpolator fields require large ensemble sizes and thus a lattice determination is
numerically demanding. A reasonable mass extraction would exceed our computational
time budget. Hence all results presented here are exploratory and preliminary.

Figure 6.11 shows the dominant mass contributions for the glueballs with quantum
numbers 0++ and 0−+. Within errors, d does not depend on the renormalized gluino
mass mR. A similar observation holds for the next higher state d∗ of the scalar glueball.
Extrapolated to the critical point, the scalar glueball is lighter than the pseudoscalar
glueball, cf. top and bottom rows of figure 6.11. Its dominant mass contribution d near
the critical point lies between 0.2 and 0.3 in lattice units. The mass of the next higher
state of the scalar glueball extrapolates to a value somewhere between 0.6 and 1.3.

Comparing the three columns of figure 6.11, we can estimate the effects of the different
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Figure 6.12: Top/Bottom: Correlators for 0++ resp. 0−+ glueball on the 163 × 32 lattice
at mR = 0.40 (m = −1.0105, m5 = 0.0601) with 8 steps of stout smearing. Left/Right:
Ensemble size 1000/3000. Missing data points have negative sign.

number of stout smearing steps. Extrapolations to the critical mass are consistent with
a horizontal line in all panels, that is a mR dependency is not resolvable, but its value
depends on the number of smearing steps. For the chiral extrapolations of all multiplet
states in the next section we will choose the results with ns = 8 stout smearing steps.
Only for the lowest mass contribution of the 0++ glueball, the results with ns = 4 are
chosen, because there the mass hierarchy is better seen (compare panels in the top row of
figure 6.11).

Fitting the dominant mass contribution of the 0−+ glueball is difficult, even with a
2-cosh-fit ansatz (see bottom row of figure 6.11). Maybe, the small lattice volume does
not allow for a reasonable determination of the ground state mass. Therefore, only one
(excited) contribution has been determined with a value between 0.7 and 1.5 in lattice
units, depending on the number of stout smearing steps. In [33, 41] was reported that the
lowest state of the pseudoscalar glueball is comparable with the first excited states of the
mesonic states and gluino-glue. This is in accordance with our observations. Probably, a
bigger operator basis with extended shapes may improve the signal-to-noise ratio and the
overlap with a lower state.
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6. Numerical results

Like for the other particles, we estimate the gauge fluctuation contained in the glueball
correlators with ns = 8 stout smearing steps. In the top row of figure 6.12, the 0++ glueball
is analyzed. With 1000 configurations, the excited state at small t has already a good
signal even though in the center of the lattice many data points with negative sign are
missing. This gap in the lattice center is closed with an ensemble size of 3000, but the
large relative uncertainties affect the fit of the ground state. Similarly, the pseudoscalar
glueball in the bottom row of figure 6.12 has a clear signal at small t. Its correlator in the
center of the lattice remains contaminated with negative numbers, which is qualitatively
the same as data points with error bars crossing zero. Thus, an extraction of the ground
state mass is demanding with the available statistics.

6.2.4 Chiral limit

To connect lattice results with the supersymmetric continuum theory, first an extrapolation
to the critical point and then the thermodynamic and continuum limits are necessary. In
what follows, all previously discussed results (see sections 6.2.1, 6.2.2 and 6.2.3) will be
extrapolated to the critical point where the renormalized gluino mass vanishes. In the
previous sections this extrapolation has been discussed for the individual states already.
The focus here is to summarize and compare the extrapolated values of all supersymmetric
partners in a multiplet, in particular to check if they coincide within uncertainties. The
leading order of chiral perturbation theory suggests that the residual gluino mass mR is
given by the squared mass of the would-be Goldstone bosons, i.e. mR ∝ m2

a-π. In [219–222]
it has been argued that the leading correction to non-zero meson and baryon masses in
the chiral limit is also proportional to m2

a-π such that we assume a linear mR dependency
in our extrapolation to the critical point.

For the VY-supermultiplet, the linear extrapolations are depicted in the upper panel of
figure 6.13 and the corresponding values are listed in table 6.1. We see that the lowest mass
contributions of a-η′, a-f0 and g̃gS8 (this index indicates the usage of 8 stout smearing
steps) are degenerated within errors. For the first excited state of the VY-supermultiplet,
the situation is less clear. Nonetheless, a tendency for a mass-degeneracy is seen which may
be manifest in the continuum limit. Possibly the relatively small lattice size causes the
second excited state to superpose with the first, resulting in larger contributions to d∗a-η′
which we cannot resolve. Conversely, smearing the gluino-glue operator may have overly
dampened the first excited state d∗g̃g such that its mass is underestimated.

The lower panel of figure 6.13 illustrates the extrapolation of the FGS-supermultiplet
states. Looking at the lowest state, the scalar glueball 0++ has a clear mass-degeneracy
with the gluino-glue. It is as heavy as the a-f0 of the VY-supermultiplet, but slightly
heavier than the a-η′ state. A prediction which of the two multiplets is the lightest in the
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6.2. Four-dimensional N = 1 Super-Yang-Mills theory with twisted fermions

Table 6.1: Results of the linear fits. The lowest mass contribution d, the next higher mass
contribution d∗, the corresponding slopes s resp. s∗ and their fit errors are rounded to 2
digits.

state d s d∗ s∗

a-η′ 0.14± 0.01 1.60± 0.04 1.09± 0.02 1.48± 0.23
a-f0 0.19± 0.12 1.23± 1.49 – –
g̃gS8 0.21± 0.12 1.09± 0.40 0.89± 0.09 0.55± 0.43
0++
S8 0.20± 0.05 0.73± 0.32 0.83± 0.05 0.14± 0.02

0−+
S8 – – 1.14± 0.06 −0.19± 0.25
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Figure 6.13: Top/Bottom: Chiral extrapolation of the VY/FGS-supermultiplet. Each
particle is depicted with a different color. Solid/Dashed lines are linear fits to the
lowest/next higher mass contribution. The amount of smearing steps is indicated in
the indices, e.g. g̃gS8 stands for 8 levels of stout smearing. For the gluino-glue only the
symmetric operator is considered as discussed in section 6.2.2. Two resp. four time slices
are ignored in all correlator fits at the lattice boundary resp. in the center, i.e., tcut = (2, 4).
All fits are 2-cosh except 0++

S8 and 0−+
S8 , which are fitted to a single cosh.
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6. Numerical results

continuum limit is not possible with the present data. In the excited spectrum, 0++
S8 , g̃gS8

and 0−+
S8 lie in the interval [0.8, 1.2]. If those states all belong to the first excitation, or

if this excitation in fact is a superposition of multiple higher states, cannot be resolved.
Simulations in larger volumes are required to address this in a reasonable manner. Finally,
in addition to the chiral limit, the thermodynamic limit V →∞ and the continuum
limit a→ 0 have to be performed.

In a study of SU(2) N = 1 SYM theory [32], it was reported that the interpolation
operators of a-η′ and 0−+ weakly mix and hence project onto two different states with
different masses. It was seen that the 0−+ operator generates a strong signal for the first
excited state, while the overlap with the ground state is small. Furthermore, it was found
that the lowest state of the 0−+ glueball has the same mass as the first excited state of
the 0++ glueball. This is in agreement with our results, in which we identified the lowest
contribution of the pseudoscalar glueball as its first excited state d∗0−+ .

In further studies [33, 41], the same collaboration analyzed their lattice simulations
using the variational method. They found that the a-η′ and 0−+ operators do not mix in
the variational basis and when analyzed individually the extracted mass of the excited a-η′

agrees with the lowest mass of the pseudoscalar glueball. In the 0++ channel mixing
between a-f0 and the glueball is found and thus they are measured together in a variational
basis. The authors report that the ground state is more glueball-like, while the excited
state is more meson-like. In the pseudoscalar channel, the lowest state was dominated by
the a-η′ operator while the signal for the 0−+ operator was comparably small.

To conclude, our spectroscopic results of the VY- and FGS-supermultiplet with the
twisted Wilson Dirac operator demonstrate that a mass-degeneracy of the ground states
can be observed. Soft supersymmetry breaking through the gluino mass leads to positive
mass shifts of the ground states in accordance to [108]. In future studies, the first excited
states should be refined and with a continuum extrapolation the question, which of the
supermultiplets is the lightest, should be addressed.
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CHAPTER 7

Conclusion and outlook

In the context of this thesis we introduced, analyzed and applied a new type of Wilson
Dirac operator for lattice calculations of N = 1 Super-Yang-Mills (SYM) theory. Inspired
by twisted-mass lattice Quantum Chromodynamics (QCD) and simulations of lower-
dimensional supersymmetric theories, we added a twisted mass term to the fermionic
lattice action and interpreted it as a deformation whose parameter requires tuning. We
reasoned that this new lattice action still describes the same continuum theory. An
analytical calculation revealed a special choice of the twist angle, α = 45◦, which leads
to an improvement of the mass-degeneracy of the mesonic chiral partners. Furthermore,
we checked analytically that a chiral transformation of the spinors does not spoil the
supermultiplet structure.

Lattice simulations brought numerical evidence that the anticipated improvements hold
at finite lattice spacing, although chiral symmetry as well as supersymmetry are broken.
Fixing the twist angle, only one parameter has to be fine-tuned – like in the untwisted
scenario. At α = 45◦, chiral symmetry as well as supersymmetry are improved, reducing
the distance to the supersymmetric continuum limit. Along this direction we investigated
the mesonic states, the gluino-glue and the glueballs of the Veneziano-Yankielowicz and
Farrar-Gabadadze-Schwetz supermultiplets. Accordant ground state mass contributions
were found and with some uncertainties also the excited masses are consistent.

In the analysis of the free Wilson Dirac operator we demonstrated that the discretization
effects in the leading order O(a) are proportional to cos(α). Therefore, this twisted
approach has (like maximal-twisted lattice QCD) the potential to reduce discretization
errors and improve the continuum extrapolation. Considering the phase of the Pfaffian,
we assured in a test series that no problematic sign problem arises in twisted simulations.

During the end of our studies, we introduced the double-twisted Wilson Dirac operator
with another angle ϕ for the Wilson term besides the twist angle α for the mass term. On
the one hand, it was helpful for our analytical calculation, where we shifted the chiral
rotation from the lattice action to the observable. While exploring the possibilities of
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independently choosing both twist angles, we observed that a double-twist can reduce the
numerical difference between the chiral partners a-η′ and a-f0. Optimally chosen twist
angles reduce lattice artifacts such that the double-twisted scenario provides a promising
improvement of N = 1 SYM on the lattice.

On the other hand, a twist of the Wilson term into the complex (r, r5)-plane can be
dangerous. This may violate reflection positivity and thus the reconstruction theorem does
not guarantee the correct continuum theory. Therefore, we preferred the more conventional
Wilson Dirac operator with only a twist in the mass term.

Alternatively to the twisted fermions, we tried clover improvement. For the combination
of the Lüscher-Weisz gauge action and the adjoint representation of SU(3), no results
exist in the literature. In a parameter scan, we searched heuristically for a distinct clover
coefficient. Our most promising value is determined non-perturbatively via the tree-level
tadpole factor.

In a side project, we touched two-dimensional N = (2, 2) SYM theory. In the analytical
part we covered the Kaluza-Klein reduction and the expected supermultiplet structure.
Regarding the presentation of numerical observations, we selected the mass spectroscopy
and the bosonic action. Further topics can be found in [55, 114].

Apart from modifications in the lattice action, we enhanced our code. With the
implementation of the domain decomposition adaptive algebraic multigrid (DDαAMG)
algorithm, the numerous inversions of the Wilson Dirac operator during the measurements
of the observables could be accelerated significantly. In a benchmark test, speed-ups for
N = 1 SYM theory with gauge group SU(3) up to a factor of 20 were achieved. This
way, we could reduce our computational cost considerably and at the same time increase
the number of stochastic estimators and point sources. Compared to QCD, where the
gauge group is in the fundamental representation, the percentage of the DDαAMG-setup
is smaller in relation to the total time spent for the inversions.

In our exploratory simulations the lattice parameters were not optimally chosen. As a
consequence, the presented lattice results are afflicted with non-negligible volume artifacts
and a whole section is dedicated to discuss the origin and consequences. Nonetheless, on a
qualitative level our findings presumably will not change and we leave it to forthcoming
lattice studies to verify them on larger volumes. Concretely, those studies should start
at larger gauge couplings (smaller lattice couplings) to increase the physical box size.
Furthermore, a combination of ensembles with different couplings allows to extrapolate to
the continuum limit and to determine the physical masses of the Veneziano-Yankielowicz
and Farrar-Gabadadze-Schwetz supermultiplets. Additionally, with supersymmetric Ward
identities the quality of the supersymmetry improvement at finite lattice spacing could be
verified.
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7. Conclusion and outlook

Besides the investigated mass spectrum of the supermultiplets, N = 1 SYM theory
exhibits a variety of non-perturbative effects. Further studies could include more composite
states like baryons or vector mesons in the spectroscopy. Also a closer look at the breaking
of chiral symmetry and the emergence of the chiral condensate could bring new insights.
Addressing the theory at finite temperature, aspects like the occurrence of the confinement-
deconfinement transition as well as the restoration of chiral symmetry can be studied.

Ultimately, dynamical supersymmetric quarks (squarks) should be added toN = 1 SYM
theory resulting in Supersymmetric Quantum Chromodynamics (Super-QCD). Lattice
studies of this central building block of the Minimal Supersymmetric Standard
Model (MSSM) are within one’s grasp. First steps in that direction were presented
in [223–228]. One-flavor SU(3) Super-QCD with Wilson fermions has nine relevant
operators, but as proposed in [225], the one-loop potential of the squark field may simplify
the fine-tuning of the parameters. In a study of two-flavor SU(2) Super-QCD with Wilson
fermions, it was found that the marginal gauge couplings are well approximated by their
tree-level values near the conformal window and the leading dependence is on the adjoint
PCAC mass [228]. A plethora of states exists in Super-QCD and mixing brings a rich
mass spectrum. Numerical predictions have the potential to guide experimental searches
for supersymmetry, like nowadays in lattice QCD.

An experimental confirmation of supersymmetry is still missing despite an
intensive search, for example, at the large hadron collider (LHC) by the ATLAS
collaboration [229–231] and the CMS collaboration [232–234]. Supersymmetry may be
broken softly, such that the superpartners are heavier than their counterparts of the
standard model (SM). This could explain why they have not been observed at the accessible
energy of approximately 13 TeV, but further questions arise. What is the supersymmetry
breaking mechanism of nature? Which superpartner masses are natural?

Supersymmetry was, is and will be an interesting field for experimental, perturbative
and lattice research.
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APPENDIX A

Definitions and conventions

The Clifford algebra in Minkowski spacetime is {γµ, γν} = 2ηµν with the metric
tensor ηµν = diag(1,−1,−1,−1). Greek indices µ, ν, . . . ∈ {0, 1, 2, 3} take values
of the four-dimensional spacetime and roman letters indicate spatial components
i, j, . . . ∈ {1, 2, 3}. If not stated otherwise, Einstein’s sum convention is assumed. The Dirac
matrix with temporal index is Hermitean γ†0 = γ0 and Dirac matrices with spatial indices
are anti-Hermitean γ†i = −γi, such that γ0γµγ0 = γ†µ. The matrix γ†5 = γ5 = −iγ0γ1γ2γ3 is
also Hermitean and anti-commutes with all other Dirac matrices, {γ5, γµ} = 0. Taking the
square of the Dirac matrices gives γ2

0 = 1, γ2
i = −1 and γ2

5 = 1. Additionally we define
Σµν ≡ [γµ, γν ].

In the Euclidean spacetime, the metric is simply δµν and the Euclidean spacetime
indices run over 1, . . . , 4. For the correlators we consider the last index as the temporal
direction. In our numerical simulations, we employ the chiral basis for the gamma matrices

γ1 =


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

 , γ2 =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 , γ3 =


0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0

 ,

γ4 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , γ5 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .

The deduced charge conjugation matrix

C− = γ4γ2 =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 (A.1)
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has the properties C− = −C−1
− = −CT

− , C2
− = −1 , C−γT

µ C−1
− = −γµ , C−γT

5 C−1
− = γ5. In

four spacetime dimensions a second charge conjugation matrix can be defined with

C+ = γ1γ3 =


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

 (A.2)

and the properties C+ = −C−1
+ = −CT

+ , C2
+ = −1 , C+γ

T
µ C−1

+ = +γµ , C+γ
T
5 C−1

+ = γ5. While
C− is used in our numerical calculations, C+ is used in the proof in section 4.3. Acting with
a charge conjugation on a spinor we get ψC ≡ Cψ̄T = CγT

0 ψ
∗ and the charge conjugation

of an anti-spinor ψ̄ ≡ ψ†γ0 is ψ̄C = −ψTC−1. Spinors are anti-commuting Grassmann
variables and Majorana spinors fulfill λC = λ. Choosing C− in four spacetime dimensions,
the following bilinears of Majorana spinors

λ̄1λ2 = λ̄2λ1 , λ̄1γ5λ2 = λ̄2γ5λ1 , λ̄1γ5γµλ2 = λ̄2γ5γµλ1 (A.3)

are symmetric and the antisymmetric bilinears are

λ̄1γµλ2 = −λ̄2γµλ1 , λ̄1γµνλ2 = λ̄2γµνλ1 . (A.4)

Additionally we can distinguish between Hermitean bilinears

λ̄1λ2 , λ̄1γµνλ2 , λ̄1γ5γ
µλ2 (A.5)

and anti-Hermitean bilinears
λ̄1γ

µλ2 , λ̄1γ5λ2 . (A.6)

Finally we list the generators of the Lie group SU(3):

T 1 = 1√
2


0 1 0
1 0 0
0 0 0

, T 2 = 1√
2


0 −i 0
i 0 0
0 0 0

, T 3 = 1√
2


0 0 1
0 0 0
1 0 0

, T 4 = 1√
2


0 0 −i
0 0 0
i 0 0

,

T 5 = 1√
2


0 0 0
0 0 1
0 1 0

, T 6 = 1√
2


0 0 0
0 0 −i
0 i 0

, T 7 = 1√
2


1 0 0
0 −1 0
0 0 0

, T 8 = 1√
6


1 0 0
0 1 0
0 0 −2

 .
Except the prefactor of 1√

2 they are given by the Hermitean and trace-less Gell-Mann
matrices and their normalization is tr(T aT b) = δab. The generators are related by the real
and totally antisymmetric structure constants, [T a, T b] = ifabcT c. The group-valued fields
can be expressed as

λ(x) = λa(x)T a , Aµ(x) = Aaµ(x)T a , Fµν(x) = F a
µν(x)T a . (A.7)
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APPENDIX B

Properties of the Wilson Dirac
operators

In section 3.2.3, several properties of the Wilson Dirac operators were discussed. This
chapter provides the according calculations.

B.1 Untwisted Dirac operator

First the untwisted Dirac operator is addressed. With

(γ5DW)† =
(
γ5
(4
a

+m
)
δn,n′ −

1
2aγ5

4∑
µ=1

{
(1− γµ)Vµ(n) δn+µ,n′ + (1 + γµ)Vµ(n− µ)† δn−µ,n′

})†

= γ5
(4
a

+m
)
δn,n′ −

1
2a

4∑
µ=1

{
(1− γµ)Vµ(n)† δn,n′+µ + (1 + γµ)Vµ(n− µ) δn,n′−µ

}
γ5

∗= γ5

((4
a

+m
)
δn,n′ −

1
2a

4∑
µ=1

{
(1 + γµ)Vµ(n− µ)† δn−µ,n′ + (1− γµ)Vµ(n) δn+µ,n′

})

= γ5DW (B.1)

we can show γ5-Hermiticity. In the step marked with the asterisk, we shifted the lattice
index n, which is summed over in the fermion action. A direct consequence of eq. (B.1)
is γ5-Hermiticity of the inverse: (D−1

W )† = γ5D
−1
W γ5. Next, we use that the gauge links

V ∈ SO(N2
c -1) are in the real adjoint representation to calculate

C−DWC−1
− = C−

(4
a

+m
)
C−1
− δn,n′−

1
2aC−

4∑
µ=1

{
(1−γµ)Vµ(n)δn+µ,n′+(1+γµ)Vµ(n− µ)Tδn−µ,n′

}
C−1
−

=
(4
a

+m
)
δn,n′ −

1
2a

4∑
µ=1

{(
1 + γT

µ

)
Vµ(n) δn+µ,n′ +

(
1− γT

µ

)
Vµ(n− µ)T δn−µ,n′

}
∗=
(4
a

+m
)
δn,n′ −

1
2a

4∑
µ=1

{(
1− γT

µ

)
Vµ(n)T δn,n′+µ +

(
1 + γT

µ

)
Vµ(n− µ) δn,n′−µ

}
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B.2. Twisted Dirac operator

=
((4

a
+m

)
δn,n′ −

1
2a

4∑
µ=1

{
(1− γµ)Vµ(n) δn+µ,n′ + (1 + γµ)Vµ(n− µ)T δn−µ,n′

})T

= DT
W

and deduce C-antisymmetry, (C−DW)T = −C−DW. Again, we shifted the summation
index n in the step marked with the asterisk. Note that the lattice actions of
QCD and SYM are both invariant under charge conjugation, SC = S. In the former
case, Uµ(n)C = Uµ(n)∗ = (Uµ(n)†)T, Aµ(n)→ −Aµ(n)T implies that the antiparticle has
opposite charge [129]. For N = 1 SYM theory Vµ(n)C = Vµ(n) holds and the antiparticle
has the same charge.

The eigenvalues of the untwisted Wilson Dirac operator can be analyzed in their entirety.
Due to γ5-Hermiticity the eigenvalues are either real or come in a complex pairs [129].
Furthermore, each eigenvalue is double-degenerated and hence the determinant is non-
negative [31, 203, 235]. Consequently the Pfaffian Pf(C−DW) = sign(Pf(C−DW))

√
det(DW)

is also real, but can be negative. For most simulation parameters, the fraction of
configurations with negative Pfaffian is negligible [31].

B.2 Twisted Dirac operator

Performing the same calculations as in the previous section, we will encounter some
differences for the mass-twisted Wilson Dirac operator Dmtw

W . First of all, the parity-
breaking mass term destroys γ5-Hermiticity:

(γ5D
mtw
W )†=

(
γ5

(4
a

+m+ im5γ5

)
δn,n′ − 1

2aγ5

4∑
µ=1

{
(1− γµ)Vµ(n) δn+µ,n′ + (1 + γµ)Vµ(n− µ)† δn−µ,n′

})†

= γ5

(4
a

+m− im5γ5

)
δn,n′ − 1

2a

4∑
µ=1

{
(1− γµ)Vµ(n)† δn,n′+µ + (1 + γµ)Vµ(n− µ) δn,n′−µ

}
γ5

= γ5

((4
a

+m+im5γ5

)
δn,n′− 1

2a

4∑
µ=1

{
(1+γµ)Vµ(n− µ)† δn−µ,n′ +(1−γµ)Vµ(n) δn+µ,n′

})
−2im5δn,n′

= γ5D
mtw
W − 2im51 . (B.2)

Only the modified form (Dmtw
W )† = γ5D

mtw
W γ5 − 2im5γ5 with the correction term holds.

Alternative formulations are (Dmtw
W (m5))† = γ5D

mtw
W (−m5)γ5 or[23]

(
Dmtw

W (α)
)†

= γ5D
mtw
W (−α)γ5 . (B.3)

[23]This is generalized for the double-twist as
(
Ddtw

W (α,ϕ)
)† = γ5D

dtw
W (−α,−ϕ)γ5.
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B. Properties of the Wilson Dirac operators

The complex conjugate of the inverse reads(
(Dmtw

W )−1
)†

=
(
Dmtw

W + 2im5γ5
)
·
(
γ5D

mtw
W γ5D

mtw
W + 4m2

51
)−1

=
(
Dmtw

W γ5D
mtw
W γ5 + 4m2

51
)−1
·
(
Dmtw

W + 2im5γ5
)
.

Analogous to the untwisted scenario, the twisted Wilson Dirac operator is C-antisymmetric,
(CDmtw

W )T = −CDmtw
W . In consequence of the lost γ5-Hermiticity the complex eigenvalues

are no longer arranged, thus in general det(Dmtw
W ) ∈ C and Pf(Dmtw

W ) ∈ C. In section 5.3
we checked numerically that the phase of the Pfaffian is negligible and no sign-problem
arises.
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APPENDIX C

Supersymmetry transformation of the
gluino-glue

In section 4.2, we transformed the scalar and pseudoscalar mesonic state with the
supersymmetry into the gluino-glue (plus a term linear in the auxiliary field G):

δεOa-f0 = δε
(
λ̄λ
)

= −2iε̄ trc
( 1

4iFµνΣ
µνλ− Gγ5λ

)
, (C.1)

δεOa-η′ = δε
(
λ̄iγ5λ

)
= 2ε̄γ5 trc

( 1
4iFµνΣ

µνλ− Gγ5λ
)
. (C.2)

For clarity, the spacetime argument x is suppressed. Here, we show that the supersymmetry
transformation of the gluino-glue contains a linear combination of the scalar a-f0 and the
pseudoscalar a-η′. Hence the chiral Wess-Zumino supermultiplet is closed. The eqs. (C.1)
and (C.2) suggest that for the gluino-glue we should start off-shell with

δεtrc
( 1

4iFµνΣ
µνλ−Gγ5λ

)
= 1

4trc
(
ε̄γνDµλ−ε̄γµDνλ

)
Σµνλ+ 1

4trcFµνΣµν
( 1

4iFαβΣαβ +Gγ5

)
ε

− trc
(
ε̄γ5 /Dλ

)
γ5λ− trcγ5G

(1
4FµνΣ

µνε+ Gγ5ε
)
.

The terms linear in G cancel and we get

δεtrc
( 1

4iFµνΣ
µνλ−Gγ5λ

)
=− 1

2(∂µλ̄aγνε)Σµνλa −
1
2f

abcAcµ(λ̄aγνε)Σµνλb (C.3)

− trc
(
ε̄γ5 /Dλ

)
γ5λ (C.4)

+ 1
16itrcFµνΣ

µνFαβΣαβε− i trcG2ε . (C.5)

With the help of the general Fierz identity [236, 237]

4ψbψ̄a = −(ψ̄aψb)− γρ(ψ̄aγρψb) + 1
2γρσ(ψ̄aγρσψb) +γ5γσ(ψ̄aγ5γ

σψb)− γ5(ψ̄aγ5ψ
b) , (C.6)
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C. Supersymmetry transformation of the gluino-glue

expression (C.4) can be rewritten as

−trc
(
ε̄γ5 /Dλ

)
γ5λ = (ε̄γµ∂µγ5λa)γ5λa − i trc

(
ε̄γµ[Aµ, γ5λ]γ5λ

)
= (∂µλ̄aγµγ5ε)γ5λa + fabcAcµ(λ̄aγµγ5ε)γ5λb

= 1
4(∂µλ̄aλa)γµε−

1
4(∂µλ̄aγρλa)γργµε−

1
8(∂µλ̄aγρσλa)γρσγµε

+ 1
4(∂µλ̄aγ5γ

ρλa)γ5γργ
µε+ 1

4(∂µλ̄aγ5λa)γ5γ
µε

− 1
4f

abcAcµ(λ̄aγρλb)γργµε−
1
8f

abcAcµ(λ̄aγρσλb)γρσγµε . (C.7)

Applying the Fierz identity (C.6) on the first term of (C.3) gives

−1
2(∂µλ̄aγνε)Σµνλa = 1

8(∂µλ̄aλa)Σµνγνε+ 1
8(∂µλ̄aγρλa)Σµνγργνε

− 1
16(∂µλ̄aγρσλa)Σµνγρσγνε−

1
8(∂µλ̄aγ5γ

ρλa)Σµνγ5γργνε

+ 1
8(∂µλ̄aγ5λa)Σµνγ5γνε .

With the help of

Σµνγν = 6γµ , Σµνγργν = −Σµρ − 6ηµρ , Σµνγρσγν = −Σρσγµ (C.8)

and using ∂µ(λ̄aΓλa) = 2(∂µλ̄a)Γλa for Γ ∈ {1, γ5, γ5γ
µ} we obtain

−1
2(∂µλ̄aγνε)Σµνλa = 3

8∂µ(λ̄aλa)γµε−
1
8(∂µλ̄aγρλa)Σµρε− 3

4(∂µλ̄aγµλa)ε

+ 1
16(∂µλ̄aγρσλa)Σρσγµε

+ 1
16∂µ(λ̄aγ5γρλa)Σµργ5ε+ 3

8∂µ(λ̄aγ5γ
µλa)γ5ε

+ 3
8∂µ(λ̄aγ5λa)γ5γ

µε . (C.9)

The second term of eq. (C.3) with the Fierz identity (C.6) leads to

−1
2f

abcAcµ(λ̄aγνε)Σµνλb = 1
8f

abcAcµ(λ̄aγρλb)Σµνγργνε−
1
16f

abcAcµ(λ̄aγρσλb)Σµνγρσγνε

= − 1
8f

abcAcµ(λ̄aγρλb)Σµρε− 3
4f

abcAcµ(λ̄aγµλb)ε

+ 1
16f

abcAcµ(λ̄aγρσλb)Σρσγµε . (C.10)
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Finally we use γµν = 1
2Σµν and add up the terms

δεtrc
( 1

4iFµνΣ
µνλ− Gγ5λ

)
= (C.9) + (C.10) + (C.7) + (C.5)

=
(3

8∂µ(λ̄aλa)γµε−
1
8(∂µλ̄aγρλa)Σµρε− 3

4(∂µλ̄aγµλa)ε

+ 1
32(∂µλ̄aΣρσλa)Σρσγµε+ 1

16∂µ(λ̄aγ5γρλa)Σµργ5ε

+ 3
8∂µ(λ̄aγ5γ

µλa)γ5ε+ 3
8∂µ(λ̄aγ5λa)γ5γ

µε
)

+
(
− 1

8f
abcAcµ(λ̄aγρλb)Σµρε− 3

4f
abcAcµ(λ̄aγµλb)ε

+ 1
32f

abcAcµ(λ̄aΣρσλb)Σρσγµε
)

+
(1

8∂µ(λ̄aλa)γµε−
1
4(∂µλ̄aγρλa)γργµε−

1
32(∂µλ̄aΣρσλa)Σρσγ

µε

+ 1
8∂µ(λ̄aγ5γ

ρλa)γ5γργ
µε+ 1

8∂µ(λ̄aγ5λa)γ5γ
µε

− 1
4f

abcAcµ(λ̄aγρλb)γργµε−
1
32f

abcAcµ(λ̄aΣρσλb)Σρσγ
µε
)

+
( 1

16i trcFµνFαβΣµνΣαβε− i trc G2ε
)
.

We collect terms of the same type

δεtrc
( 1

4iFµνΣ
µνλ− Gγ5λ

)
= 1

2∂µ(λ̄aλa)γµε+ 1
2∂µ(λ̄aγ5λa)γ5γ

µε

+ 1
4(∂µλ̄aγρλa)

(
− γργµ − 1

2Σµρ − 3ηµρ
)
ε

+ 1
32(∂µλ̄aΣρσλa)Σρσγµε− 1

32(∂µλ̄aΣρσλa)Σρσγµε

+ 1
8∂µ(λ̄aγ5γρλa)

(1
2Σµργ5 + 3γ5η

µρ + γ5γ
ργµ

)
ε

− 1
8f

abcAcµ(λ̄aγρλb)Σµρε− 3
4f

abcAcµ(λ̄aγµλb)ε

+ 1
32f

abcAcµ(λ̄aΣρσλb)Σρσγµε

− 1
4f

abcAcµ(λ̄aγρλb)γργµε−
1
32f

abcAcµ(λ̄aΣρσλb)Σρσγµε

+ 1
16i trcFµνFαβΣµνΣαβε− i trc G2ε

and simplify to

δεtrc
( 1

4iFµνΣ
µνλ− Gγ5λ

)
= 1

2
/∂(λ̄aλa)ε+ 1

2γ5/∂(λ̄aγ5λa)ε

+
(
λ̄a( /Dλ)a

)
ε+

(
λ̄aγ5( /Dλ)a

)
γ5ε

+ 1
16i trcFµνFαβΣµνΣαβε− i trc G2ε . (C.11)
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APPENDIX D

Supersymmetry transformation of the
action

The gluino mass term breaks supersymmetry softly in the Euclidean continuum
action (2.38). To prove that the N = 1 SYM action without gluino mass is invariant under
supersymmetry transformations, we use the on-shell formulation of the Lagrangian

LE(x) = 1
4F

a
µν(x)F aµν(x) + 1

2 λ̄
a(x) /Dλa(x) (D.1)

and the corresponding supersymmetry transformations given in eq. (4.21). In the following
we do not distinguish between contravariant and covariant indices since they can be lowered
and raised trivially with the Euclidean metric. We still assume Einstein’s sum convention
over doubled indices – also if both indices are contravariant resp. covariant. First, we
calculate the infinitesimal transformation of the gauge term

δε

(1
4F

a
µν(x)F a

µν(x)
)

= 1
2F

a
µν(x) δεF a

µν(x) (4.19)= i
2F

a
µν(x) ε̄ (γνDµ − γµDν)λa(x)

= iF a
µν(x) ε̄γνDµλ

a(x) . (D.2)

With the help of

δε (Dµλ(x)) = ∂µδελ(x)− ig[δεAµ(x), λ(x)]− ig[Aµ(x), δελ(x)]
= Dµδελ(x)− ig[δεAµ(x), λ(x)]

= 1
4iDµ (ΣαβFαβ(x)ε) + g[ε̄γµλ(x), λ(x)] (D.3)
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the transformation of the fermionic term proceeds:

δε

(1
2 λ̄

a(x)γµDµλ
a(x)

)
= −1

8i ε̄ΣαβF
a
αβ(x)γµDµλ

a(x) + 1
8i λ̄

a(x)γµDµΣαβF
a
αβ(x)ε

+ 1
2 λ̄

a(x)γµgfabcε̄γµλb(x)λc(x)

=
 i

8 ε̄ΣαβγµF
a
αβ(x)Dµλ

a(x)− i
8 ε̄Σαβγµ

(
DµF

a
αβ(x)

)
λa(x)


+
g

2 λ̄
a(x)γµfabcε̄γµλb(x)λc(x)

 . (D.4)

To further simplify this expression we rewrite the second term in {. . .} as

ε̄Σαβγµ
(
DµF

a
αβ(x)

)
λa(x) = ε̄Σαβγµ

((
∂µF

a
αβ(x)

)
λa(x) + gfabcA

b
µ(x)F c

αβ(x)λa(x)
)

= ε̄Σαβγµ

(
∂µ
(
F a
αβ(x)λa(x)

)
− F a

αβ(x)Dµλ
a(x)

+ F a
αβ(x)gfabcAbµ(x)λc(x) + gfabcA

b
µ(x)F c

αβ(x)λa(x)
)
.

(D.5)

The first term of eq. (D.5) is a divergence and the two last terms cancel each other. Then
eq. (D.4) becomes

δε

(1
2 λ̄

a(x)γµDµλ
a(x)

)
=
 i

4 ε̄ΣαβF
a
αβ(x) /Dλa(x)

+
g

2 λ̄
a(x)γµfabcε̄γµλb(x)λc(x)


+ divergence . (D.6)

Using the relation
1
2Σµνγρ = δνργµ − δµργν + εµνρσγσγ5, ε0123 = 1 (D.7)

of the Euclidean Dirac matrices, the term in {. . .} of eq. (D.6) can be rearranged:
i
4 ε̄ΣαβF

a
αβ(x) /Dλa(x) = i

2 ε̄F
a
αβ(x) (δβργα − δαργβ + εαβρσγσγ5)Dρλ

a(x)

= i
2 ε̄
(
F a
αρ(x)γα − F a

ρβ(x)γβ + F a
αβ(x)εαβρσγσγ5

)
Dρλ

a(x)

= iε̄
(
F a
αρ(x)γαDρλ

a(x) + 1
2F

a
αβ(x)εαβρσγσγ5Dρλ

a(x)
)
. (D.8)

The second term of the last equation gives
i
2 ε̄F

a
αβ(x)εαβρσγσγ5Dρλ

a(x)= i
2 ε̄
(
F a
αβ(x)εαβρσγσγ5

(
∂ρλ

a(x) + gfabcA
b
ρ(x)λc(x)

))
= i

2εαβρσ ε̄
(
∂ρ
(
F a
αβ(x)γσγ5λ

a(x)
)
−
(
DρF

a
αβ(x)

)
γσγ5λ

a(x)

+F a
αβ(x)γσγ5gfabcA

b
ρ(x)λc(x)+gfabcAbρ(x)F c

αβ(x)γσγ5λ
a(x)

)
.
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D. Supersymmetry transformation of the action

In the previous equation, the first term is a divergence, the second term vanishes due to
the Bianchi identity [238] and the third and fourth terms cancel each other. Finally, the
term in [. . .] of eq. (D.6) can be rewritten with the general Fierz identity[24] (C.6), the
properties of the bilinears (4.22) and (4.23), and the sums

γµγ
µ = 414 , γµγ5γ

µ = −4γ5 , γµγργ
µ = −2γρ , γµγρσγ

µ = 0 , γµγ5γργ
µ = −2γργ5 .

A short calculation

g

2fabcε̄γµλ
b(x)λ̄a(x)γµλc(x) = g

4
(
ε̄γµλ

c(x)
)(
λ̄a(x)γµλb(x)

)
fabc

= g

4
(
ε̄γµλ

b(x)
)(
λ̄a(x)γµλc(x)

)
facb

= −g4
(
ε̄γµλ

b(x)
)(
λ̄a(x)γµλc(x)

)
fabc (D.9)

shows that lhs = −1
2 · lhs and hence this term has to vanish. Collecting all terms, the

transformation of the Euclidean Lagrangian density is

δεLE = (D.2) + (D.6)
= iF a

µν(x)ε̄γνDµλ
a(x) + iε̄F a

αρ(x)γαDρλ
a(x) + divergence

= divergence (D.10)

only a divergence and consequently the Euclidean action is invariant. For the proof of the
invariance of the lattice action, see for example [205].

[24]We checked explicitly that the Fierz identity holds with our Euclidean Dirac matrices given in
appendix A.
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APPENDIX E

Why the pion is the lightest mesonic
state

The subsequent formulation of the proof can be found in the textbooks [239, 240], both
citing the original publication of Don Weingarten [241]. To prove that the pion is
in the untwisted scenario the lightest mesonic state on the lattice, we consider two-
point correlators. If two different correlators obey |C1(0, x)| > |C2(0, x)| for large enough
separations x� 1 (where excited states do not contribute), then the exponential decay
of C2 is faster and thus the ground state mass of the corresponding particle is heavier.
Starting from a generic mesonic interpolators with mass-degenerated fermions ψ1 and ψ2,
the mesonic correlator is

C(0, x) =
〈
ψ̄1(0)Γψ2(0) ψ̄2(x)Γ̃ψ1(x)

〉
=
〈
tr
(
G(0, x)ΓG(x, 0)Γ̃

)〉
U

=
〈
tr
(
G(0, x)Γγ5G

†sc(0, x)γ5Γ̃
)〉
U
. (E.1)

In the last step we used γ5-Hermiticity and we explicitly transposed the spatial part of
the propagator – thus the Hermitean conjugate has still to be applied in spinor and color
space as indicated by the indices sc. For the four-dimensional complex spinor space we
can choose the basis γA ∈ {14, γ

µ, γµν , γ5γ
µ, γ5} and expand the propagator

G(0, x) =
16∑
A=1

cA(x)γA . (E.2)

In case of the a-π, Γ = Γ̃ = γ5, the trace simplifies to

tr
 16∑
A,B=1

cA(x)γA c†B(x)γ†B

 =
16∑

A,B=1
trc
(
cA(x)c†B(x)

)
tr
(
γAγ

†
B

)
= 4

16∑
A=1

trc
(
|cA(x)|2

)
.

Consequently all coefficients cA(x) lead to a positive contribution. To calculate the sum
for the a-a with Γ = Γ̃ = 14, we rename the coefficients in the expansion

G(0, x) = a(x)14 +
4∑

µ=1
bµ(x)γµ +

4∑
µ,ν=1
µ<ν

cµν(x)γµν +
4∑

µ=1
dµ(x)γ5γ

µ + e(x)γ5 (E.3)
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and notice that

γ5G(0, x)γ5 = a(x)14 −
4∑

µ=1
bµ(x)γµ +

4∑
µ,ν=1
µ<ν

cµν(x)γµν −
4∑

µ=1
dµ(x)γ5γ

µ + e(x)γ5 . (E.4)

In comparison to the a-π, the trace of the expanded a-a correlator

tr
(
G(0, x)γ5G

†sc(0, x)γ5

)
=

4trc
(
|a(x)|2

)
−

4∑
µ=1

trc
(
|bµ(x)|2

)
+

4∑
µ,ν=1
µ<ν

trc
(
|cµν(x)|2

)
−

4∑
µ=1

trc
(
|dµ(x)|2

)
+ trc

(
|e(x)|2

)

has negative summands and thus is always smaller. In conclusion, the a-a (and analogously
all other mesonic states) are heavier than the a-π. Note that this proof is only valid in the
untwisted scenario, where γ5-Hermiticity is intact. Furthermore this proof is only exact for
zero temperature and in an infinite volume, when all connected correlators approach zero.
In a finite volume the correlators are cosh-shaped and |Ca-a(0, x)| < |Ca-π(0, x)| would not
imply ma-a > ma-π. Note also that this proof requires a positive measure and its validity
ends when a sign problem occurs.

To check if the results in section 6.2 are in line with this proof, we have a closer look at the
correlators of a-π and a-a. This way we can check whether the unexpected mass-hierarchy
originates from problems with fitting the correlators. Figure E.1 depicts the correlators
of both connected mesonic states without normalization. We see that the correlator of
the a-π is always above the corresponding a-a correlator and in the range t ∈ [2, 12] the a-a
correlator falls off faster than the a-π correlator. Thus ma-a > ma-π is expected. With
an appropriate fit range, the influence of excited contributions at small t and the lattice
artifacts around t = T/2 can be reduced. See section 5.5 for a further discussion of the
mass extraction and finite size effects. Similar observations hold for the other lattice
couplings β ∈ {4.5, 5.4}.
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Figure E.1: Unnormalized correlators
from untwisted simulations on the
163 × 32 lattice for our four mass
parameters at β = 5.0, see top four
rows of table G.5b. Solid/dotted
lines with filled/open markers connect
the data points of a-π resp. a-a to
guide the eye. The labels indicate
the distance m−mcrit to the critical
point. Errors are mostly smaller than
the marker size.
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APPENDIX F

Influence of the twist on the
connected correlators

To investigate the effect of the mass twist α and the dependence on the distance m−mcrit

to the critical point, the effective masses and the corresponding raw correlators of a-π
and a-a are plotted in figure F.1.

Without any twist, the effective mass of a-a seems to be lighter than the a-π. This is
most probably a signal of finite size effects as discussed in section 5.5. With an appropriate
choice of the fit range of the correlator, the influence of the finite size may be reduced.
Furthermore, excited states lead to kinks in the effective masses. Approaching the critical
point, the contribution of the excited states decreases and the length of the mass plateau
increases.

At 90◦-twist, the roles of a-π and a-a interchange and the adjoint pion is harder to
determine. Comparing the effective mass results of figure F.1 in a diagonal manner (i.e. a-π
at α = 0◦ with a-a at α = 90◦ and vice versa a-a at α = 0◦ with a-π at α = 90◦) reveals a
small discrepancy. In the m5-“direction” at α = 90◦ the effective mass of a-π grows faster
with the distance from the critical point than in the untwisted m-“direction”, see black
arrows. Consequently, the kinks in the brown data of the a-π at 90◦ are a little bit more
pronounced than in the corresponding a-a data at 0◦.

For the optimal twist α = 45◦, all effective masses of a-π and a-a look identical. At
this special choice long effective mass plateaus can be seen; without any kinks arising
from excited contributions. This may originate from reduced discretization errors, see the
discussion in section 4.3.

In summary, the mass-twisted Wilson Dirac operator improves the situation, because
it leads to a mixing of the mesonic a-π and a-a. At optimal twist angle α = 45◦, the
correlators of a-π and a-a have identical shapes and finite size effects are reduced.
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Figure F.1: From top to bottom: Effective mass of a-π / Effective mass of a-a / Correlator
of a-π / Correlator of a-a on the 163 × 32 lattice for different mass parameters at lattice
coupling β = 5.0. Left/Center/Right: Twist angle α = 0◦, 45◦, 90◦. The different colors
indicate the distance m−mcrit to the critical point, see legend. Most error bars are smaller
than the marker size. All correlators are normalized at t = 4 to magnitude one. The black
arrows are discussed in the text.
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APPENDIX G

Overview of numerical data

G.1 Clover fermions

Table G.1 summarizes the parameter ranges of the broad scan in the (m, cSW)-
plane. For a deeper analysis, several mass parameters for three different lattice
couplings β ∈ {4.20, 4.59, 4.98} on a 163 × 32 lattice were chosen, see table G.3.
Additionally we performed a little study with 2-flavor QCD to compare with the literature.
See table G.2 for the parameters and figure 5.6 for the clover values.

Table G.1: Parameter ranges for β = 4.2 on the
83 × 16 lattice. In total more than 80 combinations,
on average 250 configurations per ensembles.

m cSW #

[−1.65, 0.00] [0.0, 3.7] [80, 2000]

Table G.2: Parameters on the
84 lattice for 2-flavor QCD.

β m #

5.20 −0.322 40 1000
5.29 −0.332 16 400

Table G.3: Ensemble parameters on the 163 × 32 lattice. The clover values are calculated
with the tree-level tadpole formula given in table 3.3.

(a) β = 4.20

m cSW #

−0.550 2.2058326 360
−0.600 2.1916195 275
−0.625 2.1815920 50
−0.650 2.1732948 180
−0.675 2.1640857 50

(b) β = 4.59

m cSW #

−0.525 2.0005457 50
−0.550 1.9968514 50
−0.575 1.9923141 50
−0.600 1.9852185 50
−0.625 1.9833238 50
−0.675 1.9743650 50

(c) β = 4.98

m cSW #

−0.500 1.8607814 50
−0.525 1.8582152 50
−0.550 1.8497537 50
−0.575 1.8525834 50
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G.2. Twisted-mass fermions

Table G.4: Overview of the parameter sets. Three different lattice couplings β, two
different lattice volumes V = L3 × T and two different combinations of (r, r5) are listed.
For each setting, the mass parameter mcrit of the critical point as well as the ranges of m
and m5 are given.

ID β L3 × T mcrit m m5 r r5

(I) 4.5 163 × 32 -1.22428 [-1.1443, -1.22428] [0.0000, 0.0800] 1.0000 0.0000
(II) 5.0 163 × 32 -1.0706 [-0.9856, -1.0706] [0.0000, 0.0850] 1.0000 0.0000
(III) 5.0 163 × 32 -0.7570 [-0.6156, -0.8277] [-0.6156, -0.8277] 0.7071 0.7071
(IV) 5.4 83 × 16 -0.967 [-1.4000, -0.6000] [-0.4000, 0.4000] 1.0000 0.0000
(V) 5.4 163 × 32 -0.9750 [-0.8450, -0.9750] [0.0000, 0.1300] 1.0000 0.0000

Table G.5: Ensemble sizes of the sets (I), (II) & (V) on the 163 × 32 lattice.

(a) β = 4.5

m m5 #

-1.2143 0.0000 100
-1.2043 0.0000 100
-1.1743 0.0000 100
-1.1443 0.0000 100

-1.2172 0.0071 100
-1.2101 0.0141 100
-1.1889 0.0354 100
-1.1677 0.0566 100

-1.22428 0.0100 50
-1.22428 0.0200 50
-1.22428 0.0500 50
-1.22428 0.0800 50

(b) β = 5.0

m m5 #

-1.0606 0.0000 200
-1.0506 0.0000 200
-1.0206 0.0000 200
-0.9856 0.0000 200

-1.0635 0.0071 2110
-1.0565 0.0141 2370
-1.0352 0.0354 2705
-1.0105 0.0601 3100

-1.0706 0.0100 50
-1.0706 0.0200 100
-1.0706 0.0500 50
-1.0706 0.0850 50

(c) β = 5.4

m m5 #

-0.9650 0.0000 100
-0.9500 0.0000 100
-0.8950 0.0000 100
-0.8450 0.0000 100

-0.9679 0.0071 100
-0.9573 0.0177 100
-0.9184 0.0566 100
-0.8831 0.0919 100

-0.9750 0.0100 100
-0.9750 0.0250 100
-0.9750 0.0800 100
-0.9750 0.1300 100

G.2 Twisted-mass fermions

In table G.4, we summarize the parameters of the simulations with twisted Wilson Dirac
operator. Mainly, three different lattice couplings β ∈ {4.5, 5.0, 5.4} are used. Parameter
set (IV) consists of approximately 500 combinations of m and m5 with each ensemble
containing around 200 configurations. Table G.5 contains the values of the bare massm, the
twisted mass m5 as well as the number of configurations for the various lattice couplings β
on the 163 × 32 lattice. There, we focused on the three “directions” α ∈ {0◦, 45◦, 90◦}. For
high statistics we have chosen 45◦ mass twist at lattice coupling β = 5.0, see table G.5b.
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APPENDIX H

Data analysis

Binning is used to estimate the autocorrelation and to reduce its influence [129]. Therefore
the Nconf configurations Cn[U ] are divided into Nb blocks of a chosen bin size sb. Then for
each block, the averages of all observables are calculated and considered as new random
variables. If the block size is large enough, then the blocked variables can be considered
as uncorrelated. On the blocked data a jackknife analysis is performed to estimate the
statistical error [242, 243]. This method can be applied directly to observables like the
plaquette as well as results obtained by a fit, for example the masses extracted from a
correlator.

In the jackknife analysis, we first calculate the jackknife samples, where each sample
consists of the observable evaluated on Nb − 1 bins; i.e. one bin is left out:

Ōi(x) = 1
Nb − 1

1
sb

Nconf∑
n=1

n/∈bin(i)

O[Cn] , i = 1, . . . , Nb . (H.1)

Afterwards the parameter θ̄i is fitted on each sample Ōi(x) resulting in its mean

θ̂ = 1
Nb

Nb∑
i=1

θ̄i (H.2)

and the corresponding jackknife uncertainty

σ2
θ̂

= Nb − 1
Nb

Nb∑
i=1

(θ̄i − θ̂)2 . (H.3)

The fit [244] on the individual jackknife samples is performed as an uncorrelated fit by
minimizing χ2

i = ∑
x

(f(θ̄i,x)−Ōi(x))2

σ2(x) with σ2(x) = 1
Nb

∑
i(Ô(x)− Ōi(x))2. A correlated fit

with χ2
i = ∑

x,x′

(
f(θ̄i, x)− Ōi(x)

)(
f(θ̄i, x′)− Ōi(x′)

)
C−1(x, x′) and the correlation matrix

C(x, x′) = Nb−1
Nb

∑
i

(
Ô(x)− Ōi(x)

)(
Ô(x′)− Ōi(x′)

)
can consider correlations between

O(x) and O(x + 1). If the correlation matrix C has good condition number and can
be inverted, a correlated fit should be preferred.
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APPENDIX I

Benchmark tests

After the start of SuperMUC-NG, we performed some
benchmark runs on the new system. In a simulation of
N = 1 SYM theory on a 123 × 24 lattice with 648
cores, a speed-up of approximately 35 % could be
achieved compared to SuperMUC Phase 2. In the
left panel of figure I.2, a strong scaling analysis with
this lattice size is shown including the fraction spent in
MPI communication. Figure I.1 shows the same data
as speedup with respect to a single node. The included
fit is inspired by Amdahl’s law [245] and can be
interpreted that 3% of the code is intrinsically on one
node, i.e. serial or master-only. This portion remains
even with infinitely many nodes. In the right panel of
figure I.2 a weak scaling analysis is depicted, where we
fixed the problem size to 256 lattice sites per core.
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Figure I.1: Speedup in relation to
one node with 48 cores.
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