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1. Introduction

Quantum field theory (QFT) is a mathematical framework to describe the fun-

damental constituents and interactions of nature based on the physical principles

of quantum mechanics and special relativity. It emerged in the investigations of

electromagnetic interactions and was able to provide an impressingly accurate de-

scription of the physical observations [1, 2]. The applicability of the framework is

yet not restricted to electrodynamics, but it was soon realized that the quantization

of non-Abelian gauge theories [3] provides an appropriate mathematical description

of strong [4] as well as weak interactions, while the latter one can be unified with

electrodynamics to the electroweak interaction [5, 6, 7]. These two theories, the

one of electroweak and the one of strong interactions (QCD), are the main building

blocks of the Standard Model of particle physics, which describes the physical prop-

erties of all know fundamental particles.

A peculiar characteristic of nontrivial quantum field theories is the inevitable ap-

pearance of divergences. It was an important achievement in the development of

QFT to formulate a renormalization procedure [8] which enables to remove these

divergences. While this procedure is successful in many models (most prominently

the Standard Model [9]), in some it is not, indicating that the corresponding de-

scription of the system can only be an effective one.

Most of the explicit computations of particle interactions and scattering amplitudes

are performed by means of perturbation theory. While this approach is very suc-

cessful in the analysis and prediction of high-energy collider experiments, it is not

applicable to systems in which the couplings are large. Such systems, however,

display some of the most interesting but yet not fully understood aspects of par-

ticle physics. The most prominent one is probably the confinement of quarks in

color-neutral bound states [10, 11]. Despite many years of research there is still no

sufficient theoretical analysis of the low-energy range of the QCD phase diagram.

The deeper investigation of such phenomena requires a good command of efficient

non-perturbative methods.

A further motiviation to develop non-perturbative tools is related to the long-lasting

endeavor to find a quantum theory of gravitation. The theory of general relativity
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1. Introduction

can only be regarded as effective theory of gravity, because it is non-renormalizable

from the point of view of perturbation theory. The existence of a nontrivial fixed

point in parameter space, however, would establish the possibility that the theory

is asymptotically safe, which means non-perturbatively renormalizable [12, 13].

The aim of this thesis is to investigate and further develop two non-perturbative

methods, which have already been proven to be valuable tools for the investigations

of field theories and which are applicable to a wide range of different phenomena:

Lattice field theory [14] and the Functional Renormalization Group (FRG) [15].

The first approach relies on the discretization of field theories on (finite) spacetime

lattices and enables to simulate the system by means of numerical computations

that are usually performed by update algorithms like e.g. the Hybrid Monte Carlo

algorithm [16]. The second approach implements the RG idea of gradual integration

of momentum shells and provides a functional differential equation to describe the

renormalization of an action functional which interpolates between the bare and the

full effective action.

The FRG has been established as the primary tool1 for the investigation of the

asymptotic safety scenario [18]. The development of sophisticated computational

techniques allows for studying increasingly large truncations of the effective action

and convincing indications for the existence of a nontrivial fixed point could be found

[19, 20, 21]. Nevertheless, further studies about the application of covariant FRG

techniques to theories with nontrivial target space are required. A particular inter-

esting question is if the results of the FRG concerning renormalization flows and the

existence of nontrivial fixed points can be confirmed by another non-perturbative

method like lattice field theory. These issues shall be discussed in Chap. 3 of thesis

on the basis of a toy model.

The usual derivation of the FRG starts from the path integral representation of

QFT which is formulated in terms of field configurations. An alternative to this La-

grangian formulation is given by the Hamiltonian description of quantum theories in

terms of phase space variables, which is for example used in the canonical quantiza-

tion of field theories. Arguments were brought forward recently that a Hamiltonian

formulation of the FRG sheds light on nontrivial effects of the path integral measure

[22]. Furthermore, it allows for alternative expansions of the truncation of the effec-

tive action [23], which could provide better access to some properties of nonlinear

theories. Both suggestions shall be investigated in Chap. 4.

An interesting non-perturbative aspect of QCD besides the confinement is the still

unsolved strong CP -problem [24]. It refers to fact that no violation of the CP sym-

1Another interesting approach in this direction are Causal Dynamical Triangulations [17].
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metry has been observed in quantum chromodynamics so far, although the Standard

Model would naturally allow for a term which breaks this symmetry. A mechanism

is required which explains the suppression of such term. It is a topological operator

which is invariant under small variations of the fields and one would hence expect

that it is not affected by quantum fluctuations. Explicit calculations [25, 26, 27],

however, showed that a more subtle analysis of the renormalization properties is

necessary. In order to study this manifestly non-perturbative issue, the FRG should

be an adequate tool and first computations in this framework have been performed

for a generalization of the topological operator [28] with the interesting result that

the topological parameter of Yang-Mills theories receives finite contributions from

the extreme ultraviolet (UV) and extreme infrared (IR). A similar effect could be

found in the IR of Cherns-Simons theory [29] and one may wonder if further models

with topological term exhibit such renormalization properties. This shall be studied

in Chap. 5 of this thesis.

Even if one could resolve the problems mentioned so far within the standard frame-

work of quantum field theory, the Standard Model would still face some further

challenges. The most prominent are the hierarchy problem of fine tuning in the

Higgs sector [30], the missing explanation of dark matter [31], and the hope that

electroweak and strong interactions may be unified at some high energy scale [32].

Various theories for physics “beyond the Standard Model” have been proposed [33],

with supersymmetry [34] being one of the most influential ones among these. In or-

der to investigate non-perturbative aspects of supersymmetric models, it would be

desirable to have appropriate implementations on the lattice. However, supersym-

metry is a nontrivial extension of the Poincaré symmetry [35] and hence broken by

any spacetime discretization. To perform numerical simulations of supersymmetric

theories is therefore an important, but nontrivial endeavor. It will be addressed in

Chap. 6.

While all topics mentioned so far are related to the Standard Model or the theory

of gravity, it is often advisable to study questions and computational methods first

in their application to simpler toy models, as they can provide a more transparent

view on conceptual aspects of the applied technique or the physical property. In this

thesis the investigations will focus on nonlinear sigma models, which are the ideal

testing ground to address the questions depicted above. Having a simpler structure

than QCD or gravity, they yet share important features with these theories. Similar

to gravity, nonlinear sigma models describe non-polynomial interactions and they

have the same structure concerning power counting. With regard to QCD, sigma

models can serve as toy model for most of the interesting properties of the theory like
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1. Introduction

asymptotic freedom, confinement, instantons or dynamical mass generation [36, 37].

An introduction to nonlinear sigma models will be given in Chap. 2, accompanied

by a more detailed description of the applied non-perturbative approaches.

Note, that the computations in this thesis will be performed in Euclidean spacetime,

if not stated otherwise. Furthermore, natural units are used, i.e. ~, c and kB are set

to one.

The compilation of this thesis is solely due to the author. However, parts of the work

have been done in collaboration with colleagues from the research groups on quantum

field theory in Jena, Bologna and Mainz. These collaborations are indicated at the

beginning of the chapters.
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2. The Models and the Methods

2.1. Nonlinear Sigma Models

Nonlinear sigma models (NLSM) are the theories of scalar fields ϕ which are maps

from a d-dimensional spacetime Σ to a Riemann target manifold. The manifold is

equipped with a metric hab(ϕ) and the fields can be regarded as coordinates on the

target space. The microscopic action is defined as

S[ϕ] =
1

2
ζ

∫
ddx hab(ϕ) ∂µϕ

a ∂µϕb , (2.1)

where ζ is a coupling constant. Note that usually the inverse parameter g2 = ζ−1

is studied, while ζ is used in this thesis for the sake of convenience. It is natural

to regard the fields ϕa as dimensionless, with the result that ζ has mass dimension

[ζ] = d − 2. The metric hab(ϕ) is a nontrivial function of the fields and encodes

the (generically non-polynomial) interactions of these. It transforms as a symmetric

2-tensor, such that the action (2.1) is invariant under arbitrary reparametrizations

ϕ → ϕ′(ϕ) of the fields. Further symmetry properties of the NLSM are related to

the isometries of the target manifold and hence depend on the specific model.

Since they were first introduced in particle physics [38], NLSM have become a ver-

satile tool that is applied to a plethora of physical problems. It is impossible to

cover all these applications and the related aspects of NLSM in this introduction in

a comprehensive way. This means that some extensive and very interesting subjects

have to be omitted, like for instance the rôle of NLSM in string theories, cf. [39] for

an overview, or their use in effective theories of low-energy mesons and chiral pertur-

bation theory [40]. This thesis will instead focus on two important classes of sigma

models, the nonlinear O(N) models and the CPn models. These are interesting in

two dimensions as toy models for four-dimensional QCD [36] (sharing features like

asymptotic freedom [41], dynamical mass generation and chiral symmetry breaking

[37]), and in three dimensions in the description of statistical systems [42] as well as

with regard to the concept of asymptotic safety [43]. Both classes of NLSM will be

presented as bosonic theories in this chapter, while the supersymmetric extension of

the nonlinear O(N) models will be discussed in Chap. 6.
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2. The Models and the Methods

2.2. Nonlinear O(N) Models

The target space of nonlinear O(N) models is the unit sphere in RN , i.e. the fields

are maps ϕ : Σ→ SN−1. The field space of these maps will be denoted byM. The

target manifold is a homogeneous space SN−1 = O(N)/O(N − 1) whose isometry

group is O(N). These isometries are generated by vector fields Ka
i (ϕ) which satisfy

a generalized angular momentum algebra,

[Ki, Kj] = −fijℓKℓ , (2.2)

where fijℓ are the structure constants of the Lie algebra of the rotation group. The

infinitesimal symmetries generated by the Ki are nonlinear

ϕa → ϕa + ϵiKa
i (ϕ). (2.3)

From the invariant metric hab on the sphere one obtains the unique Levi-Civita

connection Γabc and the corresponding

Riemann tensor Rabcd = hachbd − hadhbc , (2.4)

Ricci tensor Rab = (N − 2)hab , and (2.5)

scalar curvature R = (N − 1)(N − 2) . (2.6)

The Levi-Civita connection on the sphere can be used to construct O(N)-covariant

spacetime derivatives of the pullbacks of tensors on the sphere. For example, given

a pullback of a vector on the sphere, its covariant derivative is

∇µv
a ≡ ∂µv

a + Γa
bc∂µϕ

b vc . (2.7)

The pullback covariant derivative ∇µ will be used extensively in Chap. 3 and 5. The

commutator of these covariant derivatives will be denoted by Hµν
ab and its action on

a vector of the sphere yields

Hµν
ab v

b = [∇µ,∇ν ]ab v
b = Rabcd ∂

µϕc∂νϕd vb . (2.8)

In this thesis two specific parametrizations will be used for some purposes: First,

stereographic coordinates for which the metric reads

hab =
1

(1 + ϕ2)2
δab, (2.9)
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2.2. Nonlinear O(N) Models

where the fields ϕa are unconstrained (N − 1)-tuple and ϕ2 =
∑N−1

a=1 ϕ
aϕa. Second,

the representation in terms of N -tuples ni which are explicitly constrained to the

unit-sphere:

S[n] =
1

2
ζ

∫
ddx ∂µn∂

µn , with n2 = 1. (2.10)

Both formulations are related by the stereographic projection and its inverse:

n0 =
1− ϕ2

1 + ϕ2
, ni =

2ϕi

1 + ϕ2

ϕi =
ni

1 + n0
for i = 1, ..., N − 1. (2.11)

In two dimensions the model is renormalizable and can be regarded as a fundamental

theory. It is in fact integrable and the S-matrix could be derived in [44]. Based on

this solution, the mass gap of the model could be computed [45] by comparing

computations of the free energy that were obtained by the thermodynamic Bethe

ansatz and by perturbation theory.

In constrast, nonlinear O(N) models in d > 2 are generally considered to be only

effective theories, as the coupling constant has negative mass dimension1 and the

model is not perturbatively renormalizable. Nevertheless, small ϵ-expansions and

RG-calculations show a phase transition and a related nontrivial fixed point of the

renormalization flow in d > 2 [41, 46, 47, 43], which could render the theory non-

perturbatively renormalizable, i.e. asymptotically safe. In the large-N limit this

non-perturbative renormalizability could be proven rigorously [48]. For general N

this question will be adressed in Chap. 3.

The critical properties of the phase transition in d > 2 are of great interest and have

been intensively studied, since they describe the physical properties of a large range

of systems: The effective theory in case of N = 1 corresponds to the Ising model,

the case N = 2 to the XY -universality class and N = 3 to the Heisenberg model.

But also models of larger N have interesting applications, like e.g. N = 5 being

relevant in high-Tc superconductors [49]. And even the limit N → 0 can be used

in order to describe polymers dynamics by self-avoiding walks [50]. An extensive

review about the applications of O(N) models in statistical physics is given in [42].

In this thesis it is understood that the O(N) universality class contains linear as well

as nonlinear O(N) models, because it is generally assumed that both have the same

critical properties. This assumpation is based on the hypothesis that two short-range

theories in the same spacetime dimension and with the same symmetries belong to

the same universality class. This statement is strongly supported in case of O(N)

1The relevant coupling in perturbation theory is g2 = ζ−1.
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2. The Models and the Methods

models by many studies, cf. [51, 52, 53, 42, 54]. The extensive literature on the

critical exponents of this universality class will provide useful benchmarks for the

investigation of the methods applied in the following chapters. Finally, it should be

stressed that all computations mentioned above indicate that the nontrivial fixed

point of the theory only has one IR-relevant direction.

2.3. CPn Models

The CPn models are the theories of complex projective spaces. These are coset

spaces CPn = U(n+1)/(U(n)×U(1)) whose isometry group is PU(n+1). They are

Kähler manifolds and the corresponding potential can be written in terms of complex

bosonic fields ui with n components as log(1 + ūu), with ūu =
∑
ūiui = |u|2. The

resulting Fubini-Study metric and the action of the model are given as

hab̄ =
δab

1 + |u|2
− ūaub

(1 + |u|2)2
(2.12)

S[u] =
1

2
ζ

∫
ddx hab̄(u) ∂µu

a∂µūb . (2.13)

Similar as in the O(N) models, it can often be useful to employ a formulation in

terms of constrained fields zi , i = 0, ..., n, with z̄z = 1. The transformation between

these two parametrizations reads

uk =
zk

z0
,

(
z0

zk

)
=

eiα

(1 + |u|2)1/2

(
1

uk

)
, k = 1, ..., n . (2.14)

The phase α accounts for the gauge freedom that arises from the additional field

component which has two degrees of freedom of which only one is fixed by the

constraint. The action (2.13) can be written in therms of the constrained fields by

means of a covariant derivative as2

S[z] =
1

2
ζ

∫
ddx DµzD

µz, with Dµz
i = (∂µ − z̄∂µz)zi. (2.15)

The term −iz̄∂µz can be interpreted as a gauge field Aµ, such that Dµ = ∂µ − iAµ,

which transforms under the U(1) gauge transformation z → eiα(x)z as Aµ → Aµ +

∂µα.

When CPn models were first constructed [55, 56], it was immediately noted that

their nontrivial topology allows for instantonic solutions in two dimensions. The

2up to an irrelevant numerical factor
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2.3. CPn Models

different topologic sectors of the theory can be classified by the topological charge

or “winding number”

Q =
i

2π

∫
d2x ϵµν DµzDνz , (2.16)

which assumes integer values for smooth field configurations. It provides a Bogo-

molnyi bound for the action:

0 ≤
∫
ddx (Dµz ± iϵµρDρz)(Dµz ± iϵµσDσz) = 4ζ−1S ± 2i

∫
ddx ϵµν DµzDνz

⇒ S ≥ πζ|Q|. (2.17)

The existence of instantons is a feature that CPn models share with QCD, providing

a toy model in this respect, see e.g. [57]. A further similarity to QCD is, besides

asymptotic freedom and a dynamically generated mass, the confinement of particles

[58, 59]. More information about the use of CPn models as toy models for strong

interactions are given in [36, 60]. In addition, the models attracted interest in

the field of supersymmetric field theories, since they naturally exhibit an extended

supersymmetry due to their Kähler geometry [61]. This feature is, for instance,

relevant in the study of supersymmetry on the lattice as it will be discussed in

Chap. 6.

At the end of this introductory section about NLSM, the particularly interesting

case O(3) ∼= CP1 should be highlighted. The equivalence of nonlinear O(3) and CP1

model can most easily be seen in terms of the constrained variables, in which the

two alternative but yet equivalent formulations of the theory are related by the Hopf

map

ni = z†σiz, i = 1, 2, 3, (2.18)

where σi denotes the Pauli matrices. Belonging to both classes of sigma models,

the theory exhibits an especially rich structure. This thesis will deal with its su-

persymmetric properties and its lattice discretization (Chap. 6) as well as with the

renormalization of the topological operator Q (Chap. 5).
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2. The Models and the Methods

2.4. Functional Renormalization Group

The effective action Γ is an efficient and comprehensive description of a physical

theory, which serves as generator of all one-particle-irreducible (1PI) correlation

functions. Based on the partition sum Z[J ] in the presence of an external source J

and the corresponding generating functional of connected n-point functions,W [J ] =

logZ[J ], the effective action can be defined as the Legendre transform

Γ[ϕ] = sup
J

(
J · ϕ−W [J ]

)
. (2.19)

The product J ·ϕ denotes the inner product of the Hilbert space, i.e.
∫
ddx J(x)ϕ(x).

Note that the discussion in this section solely deals with scalar fields, since this is

sufficient for the purpose of this thesis. From (2.19) it follows immediately that

ϕ =
δW [J ]

δJ
and

δΓ[ϕ]

δϕ
= J . (2.20)

The first equation states that ϕ is the expectation value of the quantum field (in the

presence of the external source J), while the second relation represents a quantum

version of the equations of motion. The definition (2.19) is equivalent to

e−Γ[ϕ] =

∫
Dφ µ[φ] e−S[φ]− δΓ[ϕ]

δϕ
·(ϕ−φ) . (2.21)

While these basic concepts of quantum field theories are presented and discussed in

more detail in standard text books like e.g. [62], the investigations in this thesis will

focus on the renormalization properties of field theories. A powerful tool to study

these is provided by the Renormalization Group (RG). The basic idea of the RG

approach is to obtain an effective description of a physical system by reducing the

number of degrees of freedom, either by averaging over subsets of these or (what

is the same) by integrating out momentum shells, while the information from the

substructure is incorporated in a redefinition {gi} → {g′i} of the physical parameters

[63, 64, 65]. Note that, in principle, such an analysis has to consider all operators

and corresponding couplings which can be generated, which are in general infinitely

many.

Iterative infinitesimal RG transformations lead to a flow in the parameter space

which describes the renormalization properties of the theory given by the beta func-

tions of the couplings βgi({gj}). Of particular importance for the overall structure

of such flows are the fixed points {g∗i } for which βgi({g∗j}) = 0. In the vicinity of

12



2.4. Functional Renormalization Group

these fixed points the beta functions can be linearized as

βgi =
∑
j

M j
i (gj − g∗j ) +O

(
(gj − g∗j )2

)
with M j

i =
∂βgi
∂gi

∣∣∣∣
g=g∗

, (2.22)

and the stability matrix M j
i can be diagonalized as

M j
i v

I
j = −ΘIvIi , (2.23)

yielding the critical exponents ΘI . The renormalization flow in the vicinity of a

fixed point can then be written by means of these critical exponents as

gi(k) = g∗i +
∑
I

gI(k0) v
I
i

(
k0
k

)ΘI

, (2.24)

where the couplings at some scale k are determined by the couplings at some scale k0

which are given in their decomposition gI(k0) according to the basis of eigenvectors

{vI}. The directions in parameter space for which Θi > 0 are amplified if one

decreases the momentum scale k and are hence IR relevant, that means they are

relevant in the macroscopic description of the system. A negative exponent Θi < 0,

in contrast, corresponds to an IR irrelevant direction, which is suppressed along the

renormalization flow towards the IR. In case of Θi = 0 the relevance of a direction

cannot be decided from a linear approximation, but requires the investigation of

higher orders of the expansion. A theory is renormalizable, i.e. a finite number of

counter terms is sufficient to remove the divergences, if it contains a fixed point in

the UV which has only a finite number of IR relevant directions. The search for

such fixed points is the central issue in the asymptotic safety scenario [12].

A nontrivial fixed point with IR relevant direction indicates a second order phase

transition in the model and the corresponding critical exponents of the physical

observables are related to the exponents Θ of the renormalization flow. In this

thesis the critical exponent ν of the correlation length in O(N) models will play

an important rôle in the tests of FRG methods. If one considers the change of

the correlation length along the relevant direction, it scales with k
k0

under an RG

transformation from scale k0 to scale k. Comparing this behavior with the scaling of

the relevant direction according to (2.24), it is straight forward to derive the relation

between ν and the eigenvalue ΘR corresponding to this direction:

ν =
1

ΘR
. (2.25)
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2. The Models and the Methods

A useful framework for the RG analysis of field theories is given by the Functional

Renormalization group (FRG) [15]. It describes the renormalization flow of the

Effective Average Action (EAA) Γk which depends on the momentum scale k and

interpolates between the bare action at the UV-cutoff Λ and the full effective action

in the IR:

lim
k→Λ

Γk = S , lim
k→0

Γk = Γ . (2.26)

Note that the UV cutoff will henceforth be implicitly taken to infinity, i.e. it is

assumed that this is possible and a related fundamental theory exists. The gradual

integration of momentum shells as central idea of RG computations is implemented

by the inclusion of a regulating term, usually called cutoff action,

∆Sk[φ] =
1

2

∫
ddq

(2π)d
φ(−q)Rk(q

2)φ(q) (2.27)

in the definition of the partition sum or directly in the integral expression of the

effective action:

eWk = Zk[J ] =

∫
Dφ µ[φ] e−S[φ]+Jk·φ− 1

2
φ·Rkφ , (2.28)

e−Γk[ϕ] =

∫
Dφ µ[φ] e−S[φ]−

δΓk[ϕ]

δϕ
·(ϕ−φ)− 1

2
(ϕ−φ)·Rk(ϕ−φ) . (2.29)

The kernel Rk of the cutoff action is usually called regulator and is supposed to

suppress the low-energy modes φ(p) with |p| < k, such that the path integral in

effect integrates out only the high-energy modes, leading to an effective action for

the low-energy system. In order to provide the correct interpolation of the EAA the

regulator has to fulfill the following properties:

1. lim
q2/k2→0

Rk(q
2) > 0, 2. lim

k2/q2→0
Rk(q

2) = 0, 3. lim
k2→∞

Rk(q
2)→∞ . (2.30)

The third requirement ensures limk→Λ Γk = S, as the cutoff action in (2.29) becomes

a dominant Gaußian integral which leads to δ(ϕ−φ). Note that the general structure
of the regulator is Rk(z) = z r(z/k2), as suggested by a dimensional analysis. Note

also that it is often more reasonable, from a physical or computational point of view,

to coarse-grain w.r.t. a covariant Laplacian or another kinetic operator instead of

the flat derivative −∂2.
The definition of the EEA given by the path integral in (2.29) coincides with a

14



2.4. Functional Renormalization Group

modified Legendre transform

Γk[ϕ] = sup
J

(
J · ϕ−Wk[J ]

)
−∆Sk[ϕ] (2.31)

⇒ ϕ(x) =
δWk[J ]

δJ(x)
, J(x) =

δΓk[ϕ]

δϕ(x)
+ (Rkϕ)(x) . (2.32)

The FRG scheme is a particular powerful tool to investigate the renormalization

of theories, because it provides an exact and concise formula for the evolution of

the effective (average) action [15]. This flow equation can be derived from (2.29) or

(2.31) by taking the derivative k ∂k and using the relations (2.32). The derivation

can be found in references like e.g. [66] and it will not be repeated here. Instead,

the derivation of a similar flow equation will be presented in Chap. 4.2 and should

illustrate the general reasoning. The flow equation for the EAA reads:

k∂k Γk[ϕ] =
1

2
Tr

{
k∂kRk

(
Rk + Γ

(2)
k [ϕ]

)−1}
. (2.33)

Some remarkable features of this equation shall be highlighted: In contrast to the

standard formulation of QFT in terms of functional integrals, the FRG scheme is

based on a functional differential equation, which improves the accessibility for com-

putations. Furthermore, (2.33) has a simple one-loop structure, written in terms of

the propagator Gk = (Rk + Γ
(2)
k )−1. The flow equation is yet an exact equation

which takes non-perturbative effects into account. In fact, one could regard (2.33)

in combination with initial conditions in the UV as the defining prescription of

quantum field theories, which already contains an appropriate regularization. By

construction, Rk ensures the regularization of the IR modes, but it even provides a

UV regularization if it is chosen such that the derivative k∂kRk(q
2) in the numerator

of (2.33) falls off sufficiently fast for q2 → ∞. The exact flow of the EAA through

coupling space obviously depends on the specific choice of Rk, as computations in

QFT generally depend on the regularization scheme. But the resulting full effective

action and hence the physical observables are independent of Rk.

However, leaving this conceptual point of view and turning towards explicit calcula-

tions, one encounters the problem that the renormalization flow will in general gen-

erate all possible operators that are compatible with the symmetries of the system,

which are usually infinitely many. Since it is impossible to handle such expressions in

analytical or numerical calculations, one has to employ approximations which consist

of truncating the effective action at a certain order of a systematic expansion. The

two most common expansion schemes are the vertex expansion in powers of interact-

ing fields and the derivative expansion in powers of momenta. This thesis will only
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2. The Models and the Methods

address the second scheme. Because of the increasing mass dimension of the higher-

order operators, the canonical mass dimension of the related couplings decreases

and one expects that they become less and less relevant. This argument, however,

holds only true if the anomalous dimension is small. Furthermore, one should always

keep in mind that the applied truncations are an approximation scheme that is not

fully under control and in which the impact of higher-order operators can hardly be

predicted.

Another disadvantage of the necessary truncations is that the results become regulator-

dependent. For reasonable regulators the deviations should be rather small and not

affect the qualitative results. Where a specification of the regulator is necessary in

this thesis, adapted variants of the optimized regulator will be used, whose basic

structure reads [67, 68, 69]

Rk ∝ (k2 − p2)Θ(k2 − p2) , (2.34)

with Θ(x) being the Heaviside step function. The aim of this chapter was to present

the basic concepts and features of the FRG approach to QFT. More detailed in-

formation and discussions can be found in [70, 71, 72, 73, 66, 74]. Since its first

derivation twenty years ago [15] the FRG formalism has been successfully applied to

many problems in very different subjects, ranging from gauge theories [75, 66] over

condensed matter systems [76] and statistical physics [70] to gravity [18, 20]. This

thesis will employ the FRG in order to investigate the renormalization of topologi-

cal charges (Chap. 5), to develop and investigate alternative functional RG schemes

based on a Hamiltonian formulation of QFT (Chap. 4), and to obtain a covariant

analysis of the three-dimensional nonlinear O(N) models (Chap. 3).

Concerning the notation, the scale derivative k∂k was already introduced. In terms

of the logarithm t ≡ log(k/Λ) it can be written as ∂t and further abbreviated as

∂tOk = Ȯk in its application to any k-dependent object O. Note that the beta

function βg of a coupling g is directly given by ġ. The different representations of

the derivatives and beta functions will be used interchangeably in this thesis.
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2.5. Lattice Field Theory

2.5. Lattice Field Theory

An alternative and very popular approach to investigate quantum field theories and

their non-perturbative aspects is provided by numerical simulations of corresponding

lattice field theories. The starting point is the discretization of the quantum theory

on a finite spacetime lattice G:

G =
{
x = (x1, ..., xd) = a(n1, ..., nd) | ni = 0, ..., Ni − 1; i = 1, ..., d

}
, (2.35)

where Ni denote the lattice extent, i.e. the number of lattice sites along the space-

time direction i, and a is the lattice spacing3. This discretization naturally provides

a regularization of the theory by introducing cutoffs Λ and λ in the UV and the IR

respectively. No fluctuations below the fundamental lattice spacing can be resolved

such that the momenta in the computation are bounded from above by the size

of the Brillouin zone. In the IR the modes are bounded from below by the total

physical extent Li = aNi of the lattice4:

Λ =
π

a
, λ =

π

L
=

π

Na
. (2.36)

By means of this lattice regularization the path integral becomes a well-defined

expression which consists of a finite number of integrations:

Z =

∫
Dϕ µ(ϕ) e−S[ϕ] =⇒

∫ ∏
x∈G

dϕx µ(ϕx) e
−Sdisc [ϕx] . (2.37)

The discretization of the action functional is not unique, but different discretiza-

tions can correspond to the same continuum limit. Especially the discretization of

the derivative operators allows for several different prescriptions, which have spe-

cific advantages and disadvantages and should be adjusted to the physical problem

studied.

Each of these regularizations is affected by lattice artefacts which depend on the

finite spacing a. In order to obtain the universal properties of a system, one has to

consider the continuum limit a → 0. In case of a fixed lattice extent Ni, however,

this limit leads to a continuous but vanishing physical space, which does not provide

reasonable information. It is therefore important to keep the physical volumne fixed

by increasing Ni while decreasing a.

A crucial aspect of the discretization of field theories is the treatment of symmetries.

3Note that lattice computations usually do not have an intrinsic length scale, but the physical size
has to be measured against reference masses that can be determined from correlation functions.

4In this thesis only lattices with equal extent in all dimensions will be considered.
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2. The Models and the Methods

The Poincaré group of continuous spacetime symmetries is obviously broken down

to a discrete subgroup. But while this symmetry is, by construction, fully restored

in the continuum limit, the discretization induced breaking of other symmetries can

persist in the continuum limit, if it generates operators which are relevant with re-

gard to renormalization. One prominent example of such symmetry breaking on the

lattice is supersymmetry, which will be discussed in more detail in Chap. 6.

Even though the path integral is strongly simplified by the lattice discretization

(2.37), it still constitutes the weighted sum of infinitely many configurations. How-

ever, since most of these configurations are exponentially suppressed, importance

sampling can be used in order to improve the computations and distribute the sam-

pling points efficiently according to the weighting factor e−S. A particular powerful

realization of importance sampling is the Hybrid Monte Carlo (HMC) algorithm

[16], which is a combination of molecular dynamics [77] and Metropolis algorithm

[78]. These algorithms are described in many standard text books like [14] and will

not be presented here. This thesis will not deal with the details or implementations

of numerical simulations, but rather concentrates on a discussion of the discretiza-

tion of supersymmetric models (Chap. 6) and on the possibility to determine the

renormalization flow of nonlinear theories from lattice computations (Chap. 3.5).
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3. Fourth-Order Derivative

Expansion of Nonlinear O(N)

Models

The calculations presented in Sec. 3.2 - 3.4 were performed in collaboration with

Omar Zanusso and Andreas Wipf and have already been published in [79]; Sec. 3.5

depicts the results of a collaboration with Daniel Körner and Björn Wellegehausen.

The Functional Renormalization Group and the lattice approach are two comple-

mentary and very distinct non-perturbative methods of quantum field theory. Al-

though they are both applicable to a wide range of phenomena, there is only limited

information about a direct comparison of these two approaches. The intention of

this chapter is to provide an investigation of the flow diagram of three-dimensional

nonlinear O(N) models in a fourth-order derivative expansion by means of the FRG

as well as the Monte Carlo Renormalization Group. Nonlinear O(N) models in

three dimensions are an interesting field for this endeavor considering the possi-

bility of non-perturbative renormalizibality owing to the existence of a nontrivial

fixed point. Furthermore, these models have attracted a lot of attention within

statistical field theory, so that their critical properties are well-studied, see e.g.

[42, 52, 53, 80, 81, 82], and can serve as benchmarks for the analysis of the methods.

Finally, it is reasonable to start the investigation of flow diagrams by means of the

Monte Carlo Renormalization Group in theories like purely bosonic O(N) models

which can be simulated by HMC algorithms with a feasible computational effort.

3.1. The Nonlinear Model as a Limit of the Linear

Model

Starting with the investigation by means of the FRG, one may first study the detailed

results about the linear O(N) models which were obtained within this framework

[70]. On the level of the classical action, the nonlinear model can be deduced as a
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3. Fourth-Order Derivative Expansion of Nonlinear O(N) Models

particular limit of the linear one in which the bare potential V (ϕ) becomes infinitely

steep and confines the field configurations to ϕ2 = κ, i.e. to a sphere with some

radius κ1/2. If one adopts this perspective on the nonlinear model and consider

renormalization, one could assume that the limit corresponding to this model is just

a specific, unstable point in parameter space which flows to an effective linear model.

While it is generally excepted that both theories belong to the same universality class

as explained in Chap. 2, this question has not been clearified so far. In fact, it is

still questionable, whether the limit of the linear model is on the level of a quantum

theory really equivalent to the nonlinear one, although there have been positive

indications in this respect [54].

In this section it shall be assumed that the nonlinear model can indeed be regarded

as such limit in order to see what one can learn about the renormalization properties.

A simple truncation of the linear model which has been studied by FRG methods

[70] reads

Γk[ϕ] =
1

2

∫
ddxZk ∂µϕ∂

µϕ+ λk(ρ− κk)2 , (3.1)

where ρ = 1
2
ϕaϕa , and ϕ ∈ RN . The transition to a simple truncation of the

nonlinear model according to (2.10) is given by a rescaling of the fields such that

ζk = 2Zkρ̄k and by taking the limit λk → ∞. The running of the dimensionless

coupling ζ̃ is derived in [70] and in case of an optimized regulator (2.34) its limit for

λ→∞ is given as

∂t ζ̃ = (2− d) ζ̃ + 2(N − 2) cd , (3.2)

where cd =
(
(4π)d/2Γ[d/2 + 1]

)−1
. This result exactly coincides with a covariant

computation for the nonlinear model, as it was already pointed out in [43], and it

furthermore agrees (up to a numerical factor) with one-loop calculations [51]. While

the beta function in d > 2 has a nontrivial fixed point at ζ̃∗ = 2(N−2)cd
d−2 in favor of

non-perturbative renormalizibility, the utilized approximation is not sensitive to the

critical properties of the related phase transition, which depend on N , i.e. on the

dimensionality of the target manifold. For instance, a computation of the critical

exponent ν based on (3.2) leads to ν = 1/(d − 2) for all N , which is the expected

exponent only for N →∞.

The FRG analysis in [70] also states the beta function of the dimensionless coupling

λ̃k, from which one can deduce the running of its inverse by using an optimized

regulator:

∂tλ̃
−1 = −∂tλ̃

λ̃2
= −

(
d− 4− 2

∂tZ

Z

)
λ̃−1 +

cd
2

(
9

(1 + λ̃ζ̃)3
+ (N − 1)

)
(3.3)
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3.2. Covariant Nonlinear Analysis

which has no fixed point at λ−1 = 0, but is cd
2
(N−1), which means that the infinitely

steep potential at the UV smoothen out towards the IR. This seems to support the

idea that the bare nonlinear theory really flows towards an effective linear theory.

However, this finding should not be overemphasized and one would need to include

further operators in order to get a decisive answer to this question.

The natural next order in an expansion of the truncation would be the introduction

of a nontrivial wave function renormalization Zk(ϕ). Such a truncation was consid-

ered in [83], supported by a more detailed analysis of ∂tZk(ϕ) in the appendix of

[84]. Studying the results one notices that the enhancement of the wave function

renormalization neither changes the arguments concerning ∂tλ̃
−1 nor improves the

critical properties, since all relevant N -dependent terms are still suppressed in the

limit λ→∞. In fact, it is not suprising that the N -dependence is extinguished by

this limit in any FRG computation that is based on a truncation of second order in

the derivatives, if one considers the results of [43] which were obtained for a covari-

ant ansatz for a generic class of nonlinear sigma models. In a simple second-order

derivative expansion, the resulting beta function has the same structure for all dif-

ferent models. The distinct characteristic properties will become relevant only in

the next order of the derivative expansion, as it depends on the symmetries of the

specific model which terms have to be included at this order.

Fourth-order calculations in the linear model become quite involved due to the large

variety of possible operators. Such a computation has been executed [85], but leads

to very complicated expressions such that it becomes unfeasible to perform the ap-

propriate limit and gain information about the nonlinear model1. It is therefore

more reasonable to work directly in a manifestly nonlinear formulation.

3.2. Covariant Nonlinear Analysis

The nonlinear geometry of the theory was already described in Chap. 2 and the moti-

vation of this chapter is to investigate the renormalization and the critical properties

of the model by a manifestly covariant method within the FRG framework, which

does not rely on an embedding of the theory in a linear space or on an explicit

breaking of symmetries , but respects the geometrical properties at each step of the

calculation. Appropriate techniques which rely on a combination of a covariant back-

ground field expansion and the heat kernel method have already been developed and

applied to NLSM [43, 86, 87, 88, 89], with a focus on chiral SU(N) models. These

1More detailed information about the calculations was kindly provided by D. Litim, but they still
remained impracticable.
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3. Fourth-Order Derivative Expansion of Nonlinear O(N) Models

techniques shall be investigated further in this section in a fourth-order derivative

expansion of nonlinear O(N) models. Note that the formalism will first be derived

for a general spacetime dimension, before the results will be discussed in more detail

in d = 3.

The most general ansatz for an effective average action up to fourth order in the

derivatives which respects the isometries of the model is given as2

Γs
k[ϕ] =

1

2

∫
ddx ζk hab ∂µϕ

a∂µϕb + αk hab 2ϕ
a2ϕb + Tabcd ∂µϕ

a∂µϕb ∂νϕ
c∂νϕd . (3.4)

The square of the covariant derivative (2.7) is denoted by 2 ≡ δµν∇µ∇ν (acting on

ϕa it yields 2ϕa = ∇µ∂
µϕa) and ∆ = −2. The tensor Tabcd fulfills the symmetry

relation Tabcd = T((ab)(cd)) and can be parametrized without loss of generality as

Tabcd = L1,kha(chd)b + L2,khabhcd , (3.5)

since hab is (up to normalization) the unique invariant 2-tensor in the simple case of

nonlinear O(N) models, and all invariant tensors of higher rank can be constructed

from hab. Using this parametrization, the ansatz (3.4) for the EAA contains four

couplings: {ζk, αk, L1,k, L2,k}. They parametrize the set of included operators and

encode the explicit k-dependence of Γk.

In order to develop a covariant analysis of the FRG flow equation for this ansatz,

an appropriate background field expansion of the action functional (3.4) should be

constructed, which maintains the nonlinear symmetries of the theory. Note that the

metric hab(ϕ) can be understood as metric hab(ϕ) on field space M where trivial

spacetime indices have been suppressed for brevity. In a similar manner, the Levi-

Civita connection, the curvature tensors and the Laplacian can be promoted toM as

well [90]. It is a crucial point of the expansion procedure that the expansion variable

ought to possess well-defined transformation properties both in the background field

φa and in the full field ϕa. It would be, for instance, a particularly hard task to

construct O(N) covariant functionals in terms of the difference ϕa−φa of two points

in field space as it transforms neither like a scalar, nor like a vector under isometries.

For ϕ being in a sufficiently small neighbor of φ, there exists a unique geodesic in

M connecting φ and ϕ, which enables to construct the exponential map

ϕa = Expφξ
a = ϕa(φ, ξ) . (3.6)

2The meaning of the superscript s will become clear in the context of the background field
expansion and the consequent distinction between “single-field” and “bi-field” action.
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3.2. Covariant Nonlinear Analysis

Here, ξ is an implicitly defined vector that belongs to the tangent space ofM at φ.

Moreover, ξ is a bi-tensor, in the sense that it has definite transformation properties

under φa as well as ϕa transformations. For this reason it can be understood as

ξa = ξa(φ, ϕ). It transforms as a vector under the O(N) transformations of φa

and as a scalar under those of ϕa. By construction, the norm of ξ equals the

distance between φ and ϕ inM [39]. The definite transformation properties make

ξ a candidate to parametrize any expansion of functionals of the kind F [ϕ] around

a background φ.

The expansion of the action (3.4) can now be performed in a fully covariant way

by introducing the affine parameter λ ∈ [0, 1] that parametrizes the unique geodesic

connecting φ and ϕ [91, 39]. Let φλ be this geodesic with φ0 = φ and φ1 = ϕ, and

let ξλ = dφλ/dλ be the tangent vector to the geodesic at the generic point φλ. One

can introduce the derivative along the geodesic ∇λ ≡ ξaλ∇a, for which ∇λξ
a
λ = 0 and

∇λhab = 0. Its relation to the pullback derivative is

∇λ∂µφ
a
λ = ∇µ ξ

a
λ . (3.7)

The commutator of the the covariant derivatives ∇λ and ∇µ can be computed on

the pullback of a generic tangent vector va,

[∇λ,∇µ]v
a = Rcd

a
b(φλ) ξ

c ∂µφ
d
λ v

b . (3.8)

The expansion of a functional F [ϕ] can now be performed on the basis of ∇λ, if one

regards F [ϕ] as the limit λ → 1 of F [φλ], and expands the latter in powers of λ

around λ = 0. Using the fact that F [ϕ] is scalar function of ϕ, this expansion reads

F [ϕ] =
∑
n≥0

1

n!

dn

dλn
F [φλ]

∣∣∣∣
λ=0

=
∑
n≥0

1

n!
∇n

λF [φλ]

∣∣∣∣
λ=0

, (3.9)

and yields a power series in ξa:

F [ϕ] =
∑
n≥0

F n
(a1,...,an)

[φ] ξa1 . . . ξan . (3.10)
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3. Fourth-Order Derivative Expansion of Nonlinear O(N) Models

If one applies this procedure to (3.4), the second order of Γs
k[ϕ] = Γs

k[φ, ξ] in ξ, which

will be relevant in the subsequent computations, reads:

Γs
k[φ, ξ]|ξ2 =

1
2

∫
ddx ζkhab∇µξ

a∇µξb − ζkRacbd∂µϕ
c∂µϕdξaξb + 2αkRacbd∂µϕ

c∂µϕdξa2ξb

+ αkhab2ξ
a2ξb + αkRabcdR

a
efg∂µϕ

b∂µϕd∂νϕ
e∂νϕgξcξf + αkRabcd2ϕ

a2ϕdξbξc

+ αkRabcd2ϕ
a∂µϕ

dξb∇µξc + αkRabcd2ϕ
a∂µϕ

bξc∇µξd + 3αkRabcd2ϕ
a∂µϕ

dξc∇µξb

+ 2Tabcd∇µξ
a∇µξb∂νϕ

c∂νϕd + 4Tacbd∇µξ
a∇νξ

b∂µϕc∂νϕd

− 2RabcdT
a
efg∂µϕ

c∂µϕe∂νϕ
f∂νϕgξbξd . (3.11)

Note that the covariant derivative ∇µ (2.7) and the tensors hab, Rabcd and Tabcd are

here and in the following evaluated at the base point φ.

The defining functional integral of the effective average action was already explained

in (2.29). In the background field formalism it reads:

e−Γk[φ,ξ] =

∫
Dξ′ µ[φ] e−S[φ,ξ

′]− δΓk
δξa

[φ,ξ]·(ξa−ξ′a)−∆Sk[φ,ξ−ξ′] , (3.12)

where ξ′ denotes the quantum degrees of freedom which are the variables of the bare

action, while the fields ξ and ϕ are average fields and the variables of the EAA. The

cutoff action has to be a covariant functional which regularizes the fluctuation fields

ξ′ and ξ. The appropriate form is

∆Sk[φ, ξ] =
1

2

∫
ddx ξaRk

ab(φ)ξ
b , (3.13)

where Rab(φ) is some symmetric 2-tensor which depends on the base point φa. The

functional (3.13) is invariant under transformations of the background field φa as

well as of the field ϕa.

The running of the EAA can be derived from (3.12) in the usual way as

k∂kΓk[φ, ξ] =
1

2
Tr

(
k∂kRk(φ)

Γ
(0,2)
k [φ, ξ] +Rk(φ)

)
. (3.14)

Functionals of the kind F [ϕ] are never genuine functions of two fields, but rather a

function of the single combination ϕa(φ, ξ) and may therefore be called single-field

functionals. For general Rab(φ), there is however no evident way to recast (3.13) as

a functional of the single field ϕa. Functionals like (3.13) are genuine functions of

φ and ξ independently and may be called bi-field functionals. The consequence of
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3.2. Covariant Nonlinear Analysis

such cutoff action is that the effective average action Γk[φ, ξ] also becomes a bi-field

functional [92, 93, 94, 95]:

Γ̂k[φ, ϕ] = Γk[φ, ξ(φ, ϕ)] . (3.15)

This observation is important in order to understand that the only way to obtain

a single field effective action from this is to set φ = ϕ or equivalently ξ = 0 and

consider

Γ̄k[ϕ] = Γ̂k[ϕ, ϕ] = Γk[ϕ, 0] . (3.16)

The limit k → 0 of Γ̄k[ϕ] coincides with the well known effective action introduced

by deWitt [96].

In order to account for the bi-field structure of Γk[φ, ξ], the single-field ansatz (3.4)

has to be extended by a bi-field functional Γb
k[φ, ξ],

Γk[φ, ξ] = Γs
k[ϕ(φ, ξ)] + Γb

k[φ, ξ] , (3.17)

for which Γb
k[φ, 0] = 0. It should be chosen such that the 2-point function of the

field ξa is dressed appropriatly, because it is the second derivative w.r.t. ξ which

determines the flow (3.14). The choice studied here is

Γb
k[φ, ξ] = Γs

k[ϕ(φ,Z
1/2
k ξ)]− Γs

k[ϕ(φ, ξ)] + Zk
m2

k

2

∫
ddx habξ

aξb . (3.18)

It introduces a mass term for the fluctuation fields as well as a nontrivial wave

function renormalization of these fields ξa → Z
1/2
k ξa, which takes into account the

possibility that the fields φa and ξa may have different scaling behaviors. In a

first step beyond the covariant gradient expansion it is assumed that Zk is field

independent. It will become obvious later that the wave function renormalization

enters the flow solely via the anomalous dimension ηk = −Żk/Zk of the fluctuation

field. Contrary to Zk the square mass m2
k enters the flow equation directly. It is the

most direct manifestation of the fact that Γk[φ, ξ] is a function of the two variables

separately. One could add many other covariant operators to Γb
k, but since they

would further increase the complexity of the calculations, the following analysis will

be restricted to the effects of this simple truncation.
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3. Fourth-Order Derivative Expansion of Nonlinear O(N) Models

3.3. Beta Functions of the Fourth-Order Derivative

Expansion

Having constructed an ansatz for the effective average action one can study the

renormalization of the theory by plugging (3.17) into the flow equation (3.14). Pro-

jecting the r.h.s. of the flow equation on the operators that appear in the ansatz

for Γk, it is possible to determine the non-perturbative beta functions of the model.

In order to proceed one should define more closely the cutoff kernel appearing in

(3.13). A reasonable choice is to coarse-grain the theory relative to the modes of

the covariant Laplacian ∆:

Rk
ab(φ) = ZkhabRk(∆) . (3.19)

The regulator is specified through the non-negative function Rk(z) and is a function

of φ solely through the Laplacian. The wave function renormalization of the field

ξa has been used in (3.19) as an overall parametrization,since the fluctuation field

appears quadratic in the cutoff. It is convenient to compute the scale derivative of

(3.19) already at this stage. It yields

k∂kRk
ab[φ] = Zkhab (k∂kRk(∆)− ηRk(∆)) . (3.20)

For the sake of clarity the beta functions of the two sets of couplings {ζk, αk, L1,k, L2,k}
and {Zk,m

2
k} will be computed in two separate steps. The flow of Γs

k[ϕ(φ, ξ)] can

be obtained most easily by considering the limit ξ → 0 of (3.14). The result is a

flow equation of the form

k∂kΓ
s
k[φ] =

1

2
Tr

(
k∂kRk(φ)

Γ
(0,2)
k [φ, 0] +Rk(φ)

)
=

1

2
Tr
{
Gk

(
k∂kRk(∆)− ηRk(∆)

)}
, (3.21)

where the modified propagator Gk is the inverse of Z−1k Γk
(0,2)[φ, 0] + Rk(∆). It

shows how the fluctuations ξ drive the flow of the couplings {ζk, αk, L1,k, L2,k}. The
modified propagator is computed from (3.17) using (3.4),(3.11) and (3.18), and reads

Gk =
(
Pk(∆) + Σ

)−1
(3.22)

Pk(∆) = αk∆
2 + ζk∆+m2

1+Rk(∆)

Σ = Bµν∇µ∇ν + Cµ∇µ +D .
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3.3. Beta Functions of the Fourth-Order Derivative Expansion

The matrices Bµν , Cµ and D are endomorphisms in the tangent space. The explicit

form of Bµν and D is

Bµν
ab = 2δµν(αkRacbd − Tabcd)∂ρϕc∂ρϕd − 4Tacbd∂

µϕc∂νϕd

Dab = −ζkRacbd∂ρϕ
c∂ρϕd − αkRacbd2ϕ

c2ϕd

+(αkRacdeRbfg
e + 2Re(ab)fT

e
gcd)∂ρϕ

c∂ρϕd∂σϕ
f∂σϕg . (3.23)

Each term in Bµν and D consists of at least two derivatives of the field φa. This

implies that a Taylor expansion of (3.22) in Σ is possible, because the chosen trun-

cation ansatz considers only terms up to fourth order in derivatives. The tensor Cµ

contains three derivatives of φa and thus can be ignored3. The possibility to trun-

cate the expansion distinguishes this calculation from the one given in [86], where

the operator ζk∆ was assigned to Σ instead of Pk, such that in principle all orders

of the applied heat kernel expansion contribute to the renormalization of the chosen

truncation.

The expansion in Σ reads

Gk = P−1k − P
−1
k ΣP−1k + P−1k ΣP−1k ΣP−1k +O(∂6) .

Inserting this expansion into (3.21) and using the cyclicity of the trace, one obtains

k∂kΓ
s
k[φ] =

1

2
Tr f1(∆)− 1

2
TrΣf2(∆) +

1

2
TrΣ2f3(∆) +O(∂6) , (3.24)

with fl(z) ≡
k∂kRk(z)− ηRk(z)

P l
k (z)

. (3.25)

The commutator of Σ and Pk(∆) in the third term of the expansion was neglected

since it is of order O(∂4) and hence will only lead to terms of order O(∂6). The

traces appearing in (3.24) can be computed using off-diagonal heat kernel methods

[97, 98, 99]. One has to consider the traces

Tr∇µ1 . . .∇µr f(∆) (3.26)

which transform as tensors under isometries and the interest lies in the particular

cases 0 ≤ r ≤ 4 and f(∆) = fl(∆) for some l = 1, 2, 3. Introducing the inverse

Laplace transform L−1[f ](s) of f(z), the expression (3.26) can be written as∫ ∞
0

dsL−1[f ](s) Tr∇µ1 . . .∇µr e
−s∆ . (3.27)

3Also the traces linear in ∇µ do not add up with Cµ to a fourth-order operator but vanish.
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3. Fourth-Order Derivative Expansion of Nonlinear O(N) Models

The trace Tr (∇µ1 . . .∇µre
−s∆) is determined by an off-diagonal heat kernel expan-

sion (the case r = 0 yields the trace of the heat kernel itself). This expansion is

an asymptotic small-s expansion that corresponds, for dimensional and covariance

reasons, to an expansion in powers of the curvature and covariant derivative. It

yields

Tr (∇µ1 . . .∇µre
−s∆) =

∞∑
n=0

Bµ1...µr,n

(4πs)d/2
s

2n−[r]
2 , (3.28)

where [r] = r if r is even and [r] = r − 1 if r is odd. The coefficients Bµ1...µr,n

contain a number of powers of the derivatives of the field that increases with n, thus

only a finite number of them is needed to compute the traces with O(∂4) accuracy.
The relevant elements in the off-diagonal heat kernel expansion of the flow equation

(3.24) are

Tr es∆ =
1

(4π)d/2
tr

∫
ddx 1

12
s2−d/2HµνH

µν + f.i.c. + O(∂6)

TrBµν∇µ∇νe
s∆ =

1

(4π)d/2
tr

∫
ddx 1

2
s−d/2BµνHµν − 1

2
s−1−d/2Bµ

µ +O(∂6)

TrDes∆ =
1

(4π)d/2
tr

∫
ddx s−d/2D +O(∂6)

TrBµνBρσ∇µ∇ν∇ρ∇σe
s∆ =

1

(4π)d/2
tr

∫
ddx s−2−d/2

(
1
4
Bµ

µB
ν
ν +

1
2
B(µν)Bµν

)
+O(∂6)

TrDBµν∇µ∇νe
s∆ = − 1

(4π)d/2
tr

∫
ddx 1

2
s−1−d/2DBµ

µ +O(∂6)

TrD2es∆ =
1

(4π)d/2
tr

∫
ddx s−d/2D2 +O(∂6) , (3.29)

where Hµν is the commutator (2.8) of the covariant derivatives evaluated at φ, and

“f.i.c.” denotes field-independent contributions which only affect the renormaliza-

tion of the vacuum energy and will hence be neglected.

The final step in computing (3.26) is the s-integration, which can be expressed by

Q-functionals

Qn,l =
1

(4π)d/2

∫ ∞
0

ds s−nL−1[fl](s) , (3.30)
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3.3. Beta Functions of the Fourth-Order Derivative Expansion

These equal (for positive n) a Mellin transform4 of fl(z):

Qn, l =
1

(4π)d/2Γ[n]

∫ ∞
0

dz zn−1fl(z). (3.31)

The running of the effective action is finally given as

k∂kΓ
s
k[φ] =

1

2
tr

∫
ddx

{ 1

12
Q d

2
−2,1H

2
µν +

1

2
Q d

2
+1,2B

µ
µ −

1

2
Q d

2
,2B

µνHµν −Q d
2
,2D

+
1

2
Q d

2
+2,3

(
B(µν)Bµν +

1

2
(Bµ

µ)
2
)
−Q d

2
+1,3B

µ
µD +Q d

2
,3D

2
}

(3.32)

with the tensors B and D given in (3.23). The beta functions for {ζk, αk, L1,k, L2,k}
are denoted by {βζ , βα, βL1 , βL2} and can be extracted by comparing both sides of

the flow equation at ξ = 0. According to (3.4) the l.h.s. reads

k∂kΓ
s
k[φ] =

1

2

∫
ddx

(
βζ∂µφ

a∂µφa + βα2φ
a2φa

+ βL1(∂µφ
a∂νφa)

2 + βL2(∂µφ
a∂µφa)

2
)
, (3.33)

and the comparison with the r.h.s. of (3.32) yields the beta functions5

βζ = ζ(N−2)Q d
2
,2 + α(N−2)dQ d

2
+1,2 − L1(N+ d)Q d

2
+1,2 − L2((N−1)d+ 2)Q d

2
+1,2

βα =α (N−2)Q d
2
,2

βL1 =
1

6
Q d

2
−2,1 +

[
(2N − 5)L1 + 2L2 − α

]
Q d

2
,2 + 2

[
(d+ 1)L1 + 2L2 + dα

]
ζQ d

2
+1,3

+ ζ2Q d
2
,3 +

[
(2(N + 4) + 4d+ d2)L2

1 + 8L2
2 + 4(d+ 2)L2α+ d(d+ 2)α2

+ 2L1(2(d+ 6)L2 + (d2 + 3d+ 2)α)
]
Q d

2
+2,3

βL2 =− 1
6
Q d

2
−2,1 +

[
L1 + 2(N − 3)L2 − (N − 3)α

]
Q d

2
,2 + (N − 3)ζ2Q d

2
,3

− 2
[
L2((N − 2)d+ 2) + L1(N − 1 + d)− (N − 3)dα

]
ζ Q d

2
+1,3

+
[
(d2(N − 1) + 2d(N + 1) + 12)L2

2 + (N + 2d+ 6)L2
1 + d(d+ 2)(N − 3)α2

+ 2(d2 + 2d+ 4 +N(d+ 2))L1L2 − 2(d+ 2)(N − 1 + d)αL1

− 2(d+ 2)(2 + d(N − 2))αL2

]
Q d

2
+2,3 . (3.34)

4This reformulation can simply be checked by expressing fl(z) as a Laplace transform and applying
a substitution zs → y, where s is the Laplace parameter. One Q-functional with negative n
will appear in the subsequent calculations, which can be computed by the relation Qn

(
f(z)

)
=

(−1)iQn+i

(
di

dzi f(z)
)
. This can be checked by considering the derivative di

dzi f(z), where f(z) is
written as Laplace transform.

5suppressing the k subscripts
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3. Fourth-Order Derivative Expansion of Nonlinear O(N) Models

Finally, the flow of Zk and m2
k has to be determined. The simplest setting for this

purpose is a vertex expansion of the flow (3.14) in powers of the field ξa. Note that

in case of a constant background field φa
c the ansatz for the effective action (3.17)

reduces to

Γk[φc, ξ] =
Zk

2

∫
ddx
{
ζkhab∇µξ

a∇µξb + αkhab2ξ
a2ξb +m2

khabξ
aξb (3.35)

+
1

3
ζkZkRabcdξ

aξd∇µξ
c∇µξb +

4

3
αkZkRabcdξ

a∇µξ
b∇µξd2ξc

+
1

3
αkZkRabcdξ

a2ξb2ξcξd + ZkTabcd∇µξ
a∇µξb∇νξ

c∇νξd
}
+O(ξ6) .

In this particular limit the pullback connection (2.7) becomes trivial: ∇µ = ∂µ and

2 = ∂2. This observation is particularly useful, as the computations in momentum

space become easy. One can define ξa(x) =
∫
ddq eiqxξaq and obtains from (3.35) the

2-point function for incoming momentum pµ:

Γ
(0,2)
k [φc, 0]p,−p = Zk(αk p

4 + ζk p
2 +m2

k) . (3.36)

The target space indices are suppressed in this and the next two equations. The

scale derivative reads

k∂kΓ
(0,2)
k [φc, 0]p,−p = Zk

(
(βα − ηαk)p

4 + (βζ − ηζk)p2 + (βm2 − ηm2
k)
)
. (3.37)

On the other hand, the quantity k∂kΓ
(0,2)
k [φc, 0]p,−p can be computed from (3.14)

by applying two functional derivatives w.r.t. ξa, taking the limit φa = φa
c = const.

and transforming to momentum space. After these manipulations, the flow equation

(3.14) reduces to

k∂kΓ
(0,2)
k [φc, 0]p,−p = −

1

2Zk

Tr f2(q
2)Γ

(0,4)
k [φc, 0]p,−p,q,−q . (3.38)

The momentum space 4-point vertex function Γ
(0,4)
k [φc, 0] is obtained from (3.35)

and is relevant in our computation, while 3-point functions which appear in the

derivation vanish for constant φa
c . The trace that appears in (3.38) consists of

an internal trace on the tangent space of the model, that involves two of the four

indices of the 4-vertex, and a momentum space integral
∫
ddq/(2π)d. The tangent
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3.4. Phase Diagram in d = 3

space trace of the 4-point vertex reads

δ4Γ[φ, ξ]

δξa1,p δξa2,−p δξa3,q δξa4,−q

∣∣∣∣ξ=0
φc

ha3a4 =−Z2
k

[
2
3
ζk(q

2+p2)+ 2
3
αkp

4+4αkp
2q2+ 2

3
αkq

4
]
Ra1a2

+ 8
d
Z2

kq
2p2T c

a1 a2c
+ 4Z2

kq
2p2T c

a1a2 c (3.39)

The q-integration can be written in terms of Q-functionals and the result is an

expression that solely depends on p2. Comparing the power pn with n = 0, 2, 4 of

(3.38) with those of (3.37) and dividing both sides by Zk , the coefficients can be

determined as

βα−ηαk =
1

3
(N−2)αkQ d

2
,2

βζ−ηζk =
1

3
(N−2)ζkQ d

2
,2−
(
(dN−d+ 2)L2,k + (N+d)L1,k−(N−2)dαk

)
Q d

2
+1,2

βm2−ηm2
k =

1

12
(N−2)d(d+ 2)αkQ d

2
+2,2 +

1

6
(N−2)d ζkQ d

2
+1,2 . (3.40)

As anticipated, there is no explicit dependence on Zk, as it is a redundant parameter.

One interesting feature of the method arises at this point: Using (3.34), one can solve

the system of equations (3.40) in terms of the two unknown quantities {ηk, βm2}. For
a solution to exist, one equation of (3.40) must be redundant and it is a nontrivial

check of our computation, at this stage, that this actually holds true. The final

result for the anomalous scaling is

ηk =
2

3
(N − 2)Q d

2
,2 . (3.41)

This section shall be closed with the side note that one could also consider an

alternative treatment of the r.h.s. of the flow equation (3.14), which is based on

a heat kernel expansion of the Hessian as a fourth-order operator. The first few

elements of such an expansion are given in [100]. But this approach is unfeasible,

because the coefficients of the heat kernel expansion contain increasing orders of the

operator Bµν + ζk δ
µν , which means that infinitely many coefficients can in principle

contribute to the flow of the considered truncation.

3.4. Phase Diagram in d = 3

Having obtained expressions for the beta functions, their structure and the related

critical properties ought to be analyzed in more detail. The phase diagram of the

31



3. Fourth-Order Derivative Expansion of Nonlinear O(N) Models

two-dimensional case is simple, because it confirms the well-known asymptotic free-

dom of the theory in two dimensions [41] and hence does not contain a nontrivial

fixed point or a phase transition. The focus of this analysis, however, shall lie on

the particularly interesting case of three dimensions and the nontrivial critical prop-

erties of this model, which have already been studied intensively by other methods,

cf. for instance [42, 52, 53].

In order to evaluate the explicit running of the couplings, one first needs to deter-

mine explicit expressions for the Q-functionals. This means that a specific regulator

(3.19) has to be chosen which fulfills the requirements described in Sec. 2.4. An

adapted version of the optimized cutoff (2.34),

Rk[z] =
(
ζk(k

2 − z) + αk(k
4 − z2)

)
Θ(k2 − z) , (3.42)

is a suitable regulator which allows for an explicit calculation of the Q-functionals:

(Note that the k-subscript of the couplings will be suppressed in the remainder of

this chapter.)

Qn,l =
k2n+2

(4π)d/2 Γ(n)

( (2n+ 2− η + ∂t)ζ

n(n+ 1)(ζk2 + αk4 +m2)l
+

2k2(2n+ 4− η + ∂t)α

n(n+ 2)(ζk2 + αk4 +m2)l

)
,

The disadvantage of this choice is that the system of differential equations becomes

rather involved, since it has to be solved for the derivatives ∂tα ≡ k∂kα = βα

and ∂tζ = βζ , which also appear on the r.h.s. of the flow equation. To study the

critical behavior, the canonical dimensions of the couplings ought to be extracted

and the equations can be rewritten in terms of dimensionless couplings ζ̃ = k2−dζ,

α̃ = k4−dα, L̃1 = k4−dL1 and L̃2 = k4−dL2. Plugging the Q-functionals into (3.34)

and solving for the scale derivatives it is straightforward to determine the beta

functions {βζ̃ , βα̃, βL̃1
, βL̃2
}, which are involved rational functions and hence not

given here explicitly.

Now everything is prepared to study the phase diagrams and the critical properties

which arise from these flow equations. It is instructive to proceed in a systematic

way, by considering step-by-step more and more operators of the truncation. The

simplest truncation which only contains the coupling ζ was already studied in [43].

The computations outlined above confirm the results of this investigation and find

a nontrivial fixed point at ζ̃∗ = 16(N−2)/(45π2). The N -dependence of the critical

exponent ν and its relation to the eigenvalues of the stability matrix were already

described in Sec. 2.4. While the critical value ζ̃∗ depends linearly on N , the critical

exponent ν−1 = ΘR = − d
dζ̃
βζ̃ |ζ̃∗ is independent of N : it is 16/15 for all N . In this

sense the computation is a reminiscent of the one-loop large-N calculations [51],
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3.4. Phase Diagram in d = 3

apart from the small deviation of the critical exponent from the large-N value 1.

In order to become sensitive to this N -dependence, one apparently has to include

higher order operators. This agrees with the argument given in Sec. 3.1 that the beta

functions for different homogenous spaces have the same structure if one considers

a simple truncation [43]. In order to distinguish between the models and to become

sensitive to their specific properties, further operators have to be taken into account.

Following this idea, the coupling α and the related fourth-order operator can be

included. The corresponding renormalization group flow is depicted in Fig. 3.1

and confirms the nontrivial fixed point found in the simpler truncation. The case

N = 3 is presented as an example, while the flow diagrams for larger N differ from

Fig. 3.1 only in the N -dependent position of the fixed point which is situated at

ζ̃∗ = 16(N−2)/(45π2) and α̃∗ = 0. Since α is apparently not generated in this

truncation, the system of two couplings effectively reduces to the one-parameter

truncation just discussed.

0.00 0.02 0.04 0.06 0.08
- 0.010

- 0.005

0.000

0.005

0.010

Ζ

Α

Figure 3.1.: The flow of the couplings ζ̃ and α̃ calculated for N=3 in the truncation
{ζ, α}. The arrows point toward the ultraviolet. The removed region
lies beyond an unphysical singularity which is introduced by the choice
of the cutoff.

Note that the arrows of the flow point into the direction of increasing k, i.e. towards

the ultraviolet. It is interesting to note that the coupling α belongs to an IR-

irrelevant operator and exactly vanishes at the fixed point. In fact, already the

simple structure of βα which is given in (3.34) reveals that α has to vanish for every
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3. Fourth-Order Derivative Expansion of Nonlinear O(N) Models

possible fixed point, as the flow of the dimensionless coupling α̃ reads in d = 3:

βα̃ = α̃+ (N−2)Q 3
2
,2 α̃ (3.43)

Since Q 3
2
,2 is strictly positive for any reasonable regulator, see (3.31), the only pos-

sible fixed point value is α̃ = 0. This statement remains true when the couplings

L1, L2 are included. There is also a fixed point for λ = 1/α = 0, but this is a trivial

one whose critical exponents are equal to the canonical mass dimensions of the op-

erators. It is the three-dimensional analogue of the fixed point in four dimensions

which is discussed in [86].

The result α̃∗ = 0 agrees with an alternative computation of the effective action

of the nonlinear O(N) model up to fourth order, which is presented in [54], and in

which a term ∝ ∂2ϕ∂2ϕ is not generated, either. However, it is very likely that an

extension of the truncation to the sixth order in derivatives and an inclusion of op-

erators like e.g. 2ϕa2ϕ
a∂µϕ

b∂µϕb will affect the running of α and shift the position

of the fixed point.

In a next step, the truncation can be extended by adding L1(hab∂µϕ
a∂νϕ

b)2. The

resulting flow of the couplings ζ̃ and L̃1 of the O(3) model is depicted in Figure 3.2,

where the irrelevant coupling α̃ is set to α̃∗ = 0. It contains the nontrivial fixed

point which was already discovered in the leading order truncation and which has

only one relevant direction. The fixed point exists for all N , and while the critical

value of L̃1 is almost independent of N and close to −0.013, the fixed point value ζ̃∗

is an involved expression in N which for N = 3 attains the values 0.059. It increases

with N and approaches a linear function with a slope of roughly 0.036 for large N .

There are actually additional fixed points in the truncation with couplings ζ, α and

L1, some with negative ζ̃∗ and one with quite large values of L̃∗1 and ζ̃
∗. These could

be artifacts of the choice (3.42) of the cutoff functions which may develop singular-

ities for negative couplings. It does not seem to be possible to relate the additional

fixed points to known critical properties of sigma models and their physical relevance

remains doubtful. The focus of these investigation will hence lie on the fixed point

depicted in Figs. 3.1 and 3.2.

As anticipated, the inclusion of a non-vanishing fourth-order operator renders the

exponent ν sensitive to the dimension of the target space. The N -dependence of the

exponent is depicted in Fig. 3.3, while the numerical values are given in Tab. 3.1.

Since ν(N) is a very involved and long expression, it is more instructive to study

selected values of N . The values in the third row denoted by “full system” refer

to calculations with the truncation {ζ, α, L1}, in which the anomalous scaling η of

the fluctuation fields ξ is taken into account. If one sets Z ≡ 1, one obtains the
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0.00 0.02 0.04 0.06 0.08 0.10
- 0.030

- 0.025
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- 0.005

0.000
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L 1

Figure 3.2.: The flow of the couplings ζ̃ and L̃1 towards the UV for N = 3. It was
calculated in the truncation {ζ, α, L1} and depicts the plane α̃ = α̃∗ = 0.
The fixed point is at ζ̃∗ = 0.059 and L̃∗1 = −0.013 and has one IR-
relevant direction.

N 3 4 6 8 10 20
adiabatic approx. 0.824 0.924 0.969 0.981 0.987 0.995

with Z = 1 0.654 0.756 0.802 0.815 0.820 0.828
full system 0.704 0.833 0.895 0.912 0.920 0.931
literature 0.710 0.747 0.790 0.830 0.863 0.934

Table 3.1.: The critical exponent ν for various values of N and different approxima-
tions. The last row contains the best-known values from the literature.

values in the second row of Table 3.1. If one neglects, in addition, the k-derivative

of the couplings in k∂kRk on the r.h.s. of the flow equation, that amounts to an

adiabatic approximation, then one obtains the values in the first row of Table 3.1.

At the fixed point the k-derivative of the couplings vanish such that the approxima-

tion with Z = 1 and the cruder adiabatic approximation yield the same fixed point

couplings.

The last row serves for a comparison with values taken from the vast literature about

the critical properties of the O(N) universality class. For N = 3 and N = 4 the

values are taken from the review [42], which contains the results of many indepen-

dent computations of which the non-biased mean values were taken. For N > 5 the
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3. Fourth-Order Derivative Expansion of Nonlinear O(N) Models

mean values of the results in [53, 80, 81] were used, which have been obtained by

a high-temperature expansion, a strong-coupling expansion and six-loop RG expan-

sion including a Padé-Borel resummation. The corresponding values deviate from

each other by less than two percent.

4 6 8 10
N

0.5

0.6

0.7

0.8

0.9

1.0
Ν

adiabatic approx.

full system

literature

with Z=1

Figure 3.3.: The critical exponent ν as function of N , computed in the trunca-
tion {ζ, α, L1}. Depicted are the results of various approximations in
comparison with average values from the literature.

The three variations of the calculation which are presented here yield a critical ex-

ponent ν whose N -dependence roughly agrees with the results in the literature. The

values obtained in the adiabatic approximation deviate considerably from the refer-

ences values for small N , but show the correct large-N asymptotic limN→∞ ν = 1. If

one takes the running of the couplings in k∂kRk into account, the results for small N

improve significantly, especially if one neglects the wave function renormalization.

For large N , however, ν(N) approaches the value 5/6 instead of 1. If one includes

the wave function renormalization, one obtains a critical exponent ν(N) which is

closer to the reference value than the adiabatic result and whose asymptotic behav-

ior is better behaved as in the approximation with Z = 1. The deviation from the

best-known value is maximal for N = 5, where it is 14%, and the asymptotic value is

15/16 instead of 1. This is in fact the value that was found in the reduced truncation

with just one coupling and this agreement originates from limN→∞(L̃
∗
1/ζ̃
∗) = 0.

The wave function renormalization was included mainly for conceptual reasons, be-

cause the background and fluctuation fields are treated differently in the FRG for-

malism and hence may possess different renormalization properties. It is not clear to
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3.4. Phase Diagram in d = 3

what extent the scaling parameter Z improves the situation: on one hand a running

Z improves ν(N) for large N , while on the other hand Z = 1 yields more accurate

results for small N .

Also the mass parameter m2
k was included in order to examine if terms that go be-

yond the ansatz of a single-field functional can improve the accuracy of the results.

A truncation with couplings {ζ, α, L1,m
2} leads to the same fixed point as before

with slightly modified critical values and a positive mass parameter. However, the

results for the critical exponent get worse rather than better and are even a bit

worse than the values of the adiabatic approximation, yielding an asymptotic value

for ν of roughly 1.146. This is a surprising finding and certainly requires a better

understanding. For this purpose, the effects of higher-order terms in Γb
k[φ, ξ] have

to be studied.

Finally, the remaining operator with four derivatives, L2(hab∂µϕ
a∂µϕb)2, ought to

be included. Although it is of the same order as the operators with couplings L1

and α, it changes the flow more significantly, such that there is no nontrivial fixed

point for the system with couplings {ζ, α, L1, L2}. This statement holds true for all

possible modifications of the flow, i.e. in the adiabatic approximation, in the ap-

proximation with Z = 1 and also if one includes a mass parameter. In fact, already

in the cruder truncation {ζ, α, L2} there is no nontrivial fixed point and it seems as

if the renormalization of the coupling L2 is not well-balanced. The destabilization

of the flow induced by the L2-term does not seem to depend on a specific choice

of regulator. The alternative regulator Rk(z) = kd+2/z was explicitly tested and it

confirmed the existence of nontrivial fixed points as well as the N -dependence of

ν in the truncation {ζ, α, L1}, but also the disappearance of the fixed point if one

includes L2.

One may wonder why this term with four derivatives destabilizes the renormaliza-

tion group flow. In the computation of the full effective action, the renormalization

of an operator of a given order is always affected by operators of higher orders.

These contributions are lost if one applies a truncation. In the present case the beta

functions of L1 and L2 are quadratic functions in the couplings, see (3.34), and the

coefficients of the polynomials must be fine tuned such that both beta functions

vanish. In fact, the beta function of L2 is nearly zero, when evaluated at the fixed

point for the subsystem consisting of all other couplings. It is a reasonable expecta-

tion that the inclusion of higher order terms will slightly modify the flow in a way

that one can recover the fixed point and the information about the phase transition

of the O(N) model, that already show up in the truncation {ζ, α, L1} .
However, there could be more subtle explanations why the flow of the operator

37



3. Fourth-Order Derivative Expansion of Nonlinear O(N) Models

(hab∂µϕ
a∂µϕb)2 does not lead to a stable fixed point. Only two possibilities shall

be mentioned: In order to find a stable fixed point for the full system, one has to

enlarge the truncation consistently with regard to hidden symmetries involving the

background and the fluctuation fields. To this day the background field method is

the most effective way to deal with nontrivial field-space geometries in the frame-

work of the FRG. Nevertheless, further studies maybe needed to understand better

which truncations in terms of background and fluctuation fields ought to be chosen

in order to maintain the full reparametrization invariance of the theory. An ansatz

that is based on the so-called Nielsen identities was presented recently in the context

of gravity [95] and it could be interesting to apply this approach to the nonlinear

sigma model, too.

The second possibility is related to the arguments brought forward in [22] that the

regularization procedure of the FRG based on ∆Sk may require a corresponding

modification of the path integral measure, which in turn leads to an additional term

in the flow equation of the effective average action. While this term yields only a

renormalization of the vacuum energy in theories with linearly realized symmetries,

it can affect the renormalization of nontrivial operators in nonlinear theories. Possi-

ble consequences for the calculations presented above will be discussed in Sec. 4.1.

3.5. Monte Carlo Renormalization Group

While the FRG naturally addresses the renormalization properties of physical the-

ories, the starting point of Monte Carlo studies is the measurement of observables

as expectation values computed on large sets of field configurations. The running

of a coupling has to be determined by indirect methods that modify the UV cutoff

which in numerical simulations is naturally given by the lattice spacing a, Λ = π
a
.

Fluctuations above this scale cannot be resolved and are implicitly taken into ac-

count in the definition of the lattice action as an effective action at k = Λ. The IR

cutoff is naturally set by the extent of the lattice, λ = π
L
= π

NLa
. The investigations

in this section are performed on three-dimensional lattices with equal temporal and

spatial extent NL = NT , i.e. at zero temperature. The physical volume is hence

V = L3 = (NLa)
3.

The idea of the Monte Carlo Renormalization Group (MCRG) is to combine the ef-

ficient numerical tool of Monte Carlo simulations with RG transformations based on

the initial idea of block spins [63]. After it was first suggested in [101], it was devel-

oped in different directions [102, 103], which for instance employ a direct matching
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3.5. Monte Carlo Renormalization Group

of simulations at different lattices sizes. Since such procedures usually become very

expensive quickly, an alternative approach of MCRG will be used here instead, which

employs a microcanonical demon method [104]. It shall be briefly described here:

First, field configurations {nx} are generated on a lattice (NL, a) by a Monte Carlo

algorithm from a lattice action with couplings {gi}. Based on these, new config-

urations {n′x} on a smaller lattice (N ′L, a
′) are determined by a block spin trans-

formation as averages of 23 hypercubes on the initial lattice. These coarse-grained

configurations {n′x} could have been generated also from a certain action on the lat-

tice (N ′L, a
′), given by a set of couplings {g′i}. This set will contain in most cases an

infinite number of effective couplings, but for practical purposes one has to restrict

the analysis, like in FRG computations, to a finite ansatz

S[n] =
s∑

i=1

g′i Si[n] , (3.44)

and one assumes that the distribution of the states can be described sufficiently

well by the weight corresponding to this truncated action. Now a demon system is

considered, which is defined by the action

SD =
s∑

i=1

g′iE
D
i , (3.45)

where the ED
i are just real numbers taking values in some given range (−Em, Em).

If one couples both systems, the joint canonical partition sum reads

ZCan =

∫ Em

−Em

∏
i

dED
i

∫
Γ

e
−

s∑
i=1

g′i (Si+ED
i )
, (3.46)

where Γ denotes the configuration space. The expectation values
⟨
ED

i

⟩
Can

of the

demon energies can be computed exactly, since the integral factorizes and ED
i is

constrained: ⟨
ED

i

⟩
Can

=
1

g′i
− Em

tanh(g′iEm)
. (3.47)

This equation provides an invertible relation between g′i and
⟨
ED

i

⟩
C
. Assuming that

the lattices are large enough, the expectation value of the canonical ensemble can be

approximated by the microcanonical one. This expectation value, however, can be

computed without explicit reference to the coupling g′i by a microcanonical Monte
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Carlo simulation in accordance with

⟨
ED

j

⟩
Mic

=
1

ZMic

∫ Em

−Em

∏
i

dED
i

∫
Γ

ED
j δ(Si +E

D
i −S0

i ) , (3.48)

with ZMic =

∫ Em

−Em

∏
i

dED
i

∫
Γ

δ(Si +E
D
i −S0

i ) . (3.49)

The simulation starts at some configuration (for which the operators Si assume

the values S0
i ) and generates by a standard update algorithm new configurations,

for which the operators will assume some new values S ′i and which are accepted

if S ′i − S0
i ∈ (−Em, Em). By an iteration of such generation and acceptance steps

sufficiently many elements of the partition sum ZMic can be determined, on which⟨
ED

i

⟩
can be measured as average values. With these expressions for the expectation

values, one can directly obtain {g′i} from (3.47). Note that in order to reduce the

dependence on the specific starting configuration, an improvement was suggested in

[105] which employs a set of statistically independent starting configurations.

Knowing {gi} and {g′i} one can immediately determine the beta functions. While

the physical volumne remains unchanged under the block spin transformations (i.e.

the IR cutoff is not affected), the lattice spacing is doubled by an averaging over 23

hypercubes and the UV cutoff is hence halved:

N ′L =
NL

2
, a′ = 2a⇒ Λ′ =

Λ

2
. (3.50)

The running of the couplings is then given as

βgi = −a
∂gi
∂a

= −(g′i − gi) . (3.51)

So far the block spin transformation was described as a simple averaging over a

hypercube of the initial lattice. However, it was shown in [106] that an improved

block spin transformation is in fact more efficient in MCRG studies. In this improved

transformation the configurations {n′x} are statistically generated according to the

normalized probability distribution

1

N
exp

(
c(gi)n

′
x ·R(n)

)
, (3.52)

where R(n) =
∑
y∈2

ny is the sum over the configuration values in some 23 hypercube

2 of the (NL, a) lattice. The outlined procedure assignes to hypercubes in the initial

configuration an unique field value n′x on the coarse-grained lattice. The parameter

c(gi) determines how strongly n′x may fluctuate around the mean value of the under-
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lying degrees of freedom. Although an arbitrarily large c(gi) would ensure a strict

alignment, some smoothening is deliberatly taken into account, because it shifts the

system closer to the renormalized trajectory [106] and thus reduces the error which

is made by truncating the action. This shift and hence the improvement depends on

the position in coupling space. In order to find an appropriate parameter c(gi), an

ansatz in the couplings should be chosen and the coefficients should be fine tuned

such that measurements of physical observables on the initial lattices, like e.g. the

masses, agree with the computation of these observables on the coarse-grained lat-

tices with couplings {g′i}.
A comparison of the MCRG technique with the FRG calculations performed in the

previous section requires a truncation (3.44) which corresponds to (3.4) and includes

all operators up to fourth order in the derivatives. Note that an implementation of

the purely bosonic nonlinear O(N) models is particularly efficient in terms of ex-

plicitly constrained fields, which enable to use the elements of SO(N) as dynamical

variables by writting each field as nx = Oxn0 with Ox ∈ SO(N). The ansatz for the

action functional is therefore chosen as

S[n] =
4∑

i=1

gi Si[n] +O(∂6) (3.53)

where na are constrained N -tuple with n2 = 1 and the continuum operators read

S1 =

∫
d3x ∂µn∂

µn , S2 =

∫
d3x ∂2n∂2n , (3.54)

S3 =

∫
d3x (∂µn∂νn)(∂

µn∂νn) , S4 =

∫
d3x (∂µn∂

µn)2 . (3.55)

There is no direct one-to-one-correspondence between the operators in (3.53) and

(3.4), but the relation between both expansions can be derived easily by a suitable

change of coordinates, as it is depicted in appendix A.1. It yields

Leff =1
2
ζ hab∂µϕ

a∂µϕb + 1
2
αhab2ϕ

a2ϕb + 1
2
L1(hab∂µϕ

a∂νϕ
b)2 + 1

2
L2(hab∂µϕ

a∂µϕb)2

=1
2

ζ

4
∂µn∂

µn+ 1
2

α

4
∂2n∂2n+ 1

2

L1

16
(∂µn∂νn)

2 + 1
2

L2−4α
16

(∂µn∂
µn)2 .

(3.56)

It should be stressed that, although the two truncations (3.53) and (3.4) span the

same subspace in operator space, the truncation procedure works differently in FRG

and MCRG calculations. While operators of higher orders are completely neglected

in computations of the FRG, Monte Carlo simulations incorporate all possible oper-
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3. Fourth-Order Derivative Expansion of Nonlinear O(N) Models

ators that are generated and the configurations {nx} are thus affected by these. The

demon methods determines the renormalization of the chosen truncation based on

these configurations and hence takes also the influence of the higher-order operators

into account. Keeping this in mind one can turn towards the explicit analysis of the

renormalization flow.

Since the implementation and the execution of the Monte Carlo RG algorithm were

performed by Daniel Körner and Björn Wellegehausen, only some first results shall

be briefly depicted in this thesis with a particular emphasis on the comparison with

the FRG computations presented in the previous section. Note that these results

are preliminary and focussed on the case N = 3. An extended discussion based

on conclusive results is supposed to appear soon [107], including a more detailed

description of the implementation.

The continuum operators are discretized by the replacement rules

∂µn(x)→ nx+µ̂ − nx and ∂µn(x)→ nx − nx−µ̂, (3.57)

where the lattice spacing a = 1 was assumed and µ̂ denotes the unit vector in

direction µ. As an example, the first two terms of the truncation read:

S1 =2
∑
x,µ

nx · nx+µ̂ − 6V (3.58)

S2 =2
∑
x,µ,ν

nx · (nx+µ̂+ν̂ + nx+µ̂−ν̂)− 12
∑
x,µ

nx · nx+µ̂ + 36V (3.59)

The discretized form of S1 apparently appears as a term in the discretized operator

S2. In order to avoid mixing between the lattice operators, especially in the demon

method, the action functional is rewritten, such that the computation for the two-

coupling truncation, for instance, are in fact performed for the ansatz

S = G1 S̃1 +G2 S̃2 , (3.60)

with G1 = g1 − 6g2, G2 = g2, and S̃1 = S1, S̃2 = 2
∑
x,µ,ν

nx · (nx+µ̂+ν̂ + nx+µ̂−ν̂) .

A similar rearrangement, introducing G3 and G4, is applied, if one takes the further

operators into account. While this reformulation is necessary to improve the algo-

rithm, it makes the comparison to the FRG flows more difficult.

Following to the outlined procedure, the renormalization of the fouth-order expan-

sion (3.53) was investigated by block spin transformations from 323 to 163 lattices.

A linear ansatz in G1 and G2 was chosen for the transformation parameter c(Gi) and
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3.5. Monte Carlo Renormalization Group

test simulations with a focus on the measurement of the physical mass suggested to

choose c(Gi) = 3.4G1 + 0.6G2.

Analogous to Sec. 3.4 the truncation can be extended step by step, beginning with

the simple truncation {G1, G2}. For two couplings it is still feasible to compute at

each point {Gi} on a certain array in parameter space the corresponding {G′i}. The
resulting flow diagram for the case N = 3 is displayed in Fig. 3.4, with the arrows

of the flow pointing towards the IR.
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0.020

0.025

0.00 0.05 0.10 0.15 0.20 0.25

G2

G1

Figure 3.4.: The renormalization flow for the truncation with two couplings G1 and
G2 for N = 3. The arrows point towards the infrared.

In accordance with the results of the FRG computations, a nontrivial fixed point

can be identified clearly, which has one IR-relevant and one IR-irrelevant direction

and is situated at approx. (G∗1 = 0.122, G∗2 = 0.0158) ∼= (g∗1 = 0.217, g∗2 = 0.0158) .

The position of the fixed point does not agree with the findings of the FRG, as a

vanishing α∗ corresponds according to (3.56) to a vanishing g∗2. This deviation, how-

ever, is not surprising, since the exact position of the fixed point always depends on

the regularization scheme. Furthermore, it was already emphasized that the MCRG

computations are sensitive to generated operators of higher orders which affect the

value of α∗, and one can assume that an extension of the FRG truncation would

also lead to a non-vanishing α∗. While an exact quantitative agreement cannot be

expected, the structures of the renormalization flows Fig. 3.4 and Fig. 3.1 match

and show qualitative agreement between the two different methods.
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Figure 3.5.: The renormalization flow towards the IR for N = 3 computed in the
full fourth-order truncation, projected on the subspace {G1, G2, G3}.

Because the rearrangement of the MCRG couplings prevents a direct comparison of

truncations with three couplings, one can directly include G3 and G4 in a next step

and study the qualitative features of the full fourth-order renormalization flow. The

result for N = 3 is given in Fig. 3.5 and Fig. 3.6, in which the four-dimensional

flow is projected for the sake of presentation on the subspaces {G1, G2, G3} and

{G1, G2, G4}. A systematic computation of the flow on an array in parameter space

becomes inefficient in the enlarged parameter space. Instead, some trajectories are

explicitly determined by using renormalized couplings on the 163 lattice as initial

values on the 323 lattice in a subsequent block spin transformation.

The computations confirm the nontrivial fixed point which was already present in

the reduced truncation. Similar to the finding in the {ζ, α, L1} truncation of the

FRG analysis, the fourth-order operators only add irrelevant directions to the pa-

rameter space. Furthermore, the critical values of the higher order couplings are in

both calculations much smaller than the dominant first-order coupling ζ or G1. In

contrast to the FRG computations, however, the MCRG flow and its fixed point

remain stable even if one includes all fourth-order operators. This finding supports
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the conclusion of the FRG studies that the missing fixed point in the full fourth-

order system is only the result of an unbalanced truncation which probably will be

stabilized if one includes the effects of higher-order operators (to which the MCRG

computations are already sensitive). Being a complementary tool to investigate

non-perturbative effects, the numerical simulations on the lattice are able to pro-

vide further evidence for the non-perturbative renormalizability of the model and

hence for the asymptotic safety scenario.

Note that, although the focus of the MCRG computation was so far on the O(3)

model, test computations were performed for larger N which indicate similar but

shifted structures as for N = 3. Furthermore, if one systematically computes the

discrete beta functions on an array in parameter space, it is straightforward to

calculate the stability matrix as differences of these beta functions at neighouring

array points. Both issues are addressed by further numerical studies which will be

presented, together with additional results concerning the discussion above, in an

upcoming article [107].
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Figure 3.6.: The renormalization flow towards the IR for N = 3 computed in the
full fourth-order truncation, projected on the subspace {G1, G2, G4}.
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3.6. Conclusions

The renormalization properties of nonlinear O(N) models were investigated by

means of the analytic FRG and the numerical MCRG. Although the conceptual

aspects and derivations apply for general dimensions, the focus of the discussion

was on d = 3, since this case is interesting with regard to the concept of non-

perturbative renormalizability, is still efficiently accessible by numerical simulations

and provides well-studied critical properties which can serve as benchmarks.

Starting with the FRG approach the nonlinear models were studied first as the limit

of linear ones. However, all information that is accessible in this way (by a reason-

able amount of computational effort) only corresponds to a simple truncation in a

nonlinear formulation and is not sensitive to the nontrivial critical properties of the

model.

Therefore, a manifestly nonlinear analysis of the model was developed instead and

applied to a truncation which includes all covariant operators up to fourth order

in derivatives. The flow equation was formulated in a manifestly reparametriza-

tion invariant way, so that the results do neither depend on any specific choice

of coordinates on the target sphere, nor on an implicit embedding of the model

into a linear space. Since the symmetries of the theory are realized nonlinearly,

a geometric formulation was adopted in which a background (base point) depen-

dence is introduced in order to maintain the covariance of the model. Moreover,

the background field was used to construct a quadratic infrared cutoff term for the

fluctuations, whose purpose is to allow for an effective integration of the ultraviolet

modes while simultaneously respecting the symmetries of the model. The resulting

scale-dependent effective average action is O(N) invariant for both the transforma-

tions of the background and the fluctuation field. Due to the cutoff action, however,

the EAA becomes a genuine bi-field functional, which motivated the introduction of

a separat scaling parameter for the fluctuation fields.

The beta functions were derived in two steps by matching operators on both sides

of the flow equation (or its second derivative) evaluated at the base point. For

this purpose the flow equation was expanded in powers of a derivative operator and

off-diagonal elements of a heat kernel expansion were applied. The consistency of

the formalism was underlined by the appearance of nontrivial relations between the

renormalization flow of background and fluctuation operators.

In the restricted subspace of couplings, where L2 is set to zero, a fixed point for

all N emerges. It exhibits one relevant direction, which is already present in an

one-parameter truncation. The inclusion of further couplings (L1 and α) only adds

irrelevant directions, but it is required to become sensitive to the N -dependence of
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the critical exponents. The results for ν in the truncation {ζ, α, L1} agree qualita-

tively with the pre-existing literature, but show some numerical difference that is

likely due to the limited truncation ansatz. The presence of a nontrivial fixed point

was verified in various approximations and choices of the coarse-graining scheme.

However, this fixed point is lost in a truncation which includes the coupling L2. This

can be due to the limited truncation considered and the quadratic structure of the

computed beta functions, or it is maybe related to more subtle conceptual issues, of

which one will be discussed in Sec. 4.1.

The results of the FRG calculations were finally compared to lattice computations

as an alternative non-perturbative tool to study field theories. The Monte Carlo RG

was depicted which bases on the idea of block spin transformations. Starting with

specific coupling values on a large lattice, configurations are generated on which op-

timized block spin transformations are performed subsequently. From these blocked

configurations corresponding effective couplings can be determined by the demon

method and can be related to the initial couplings in order to obtain the renor-

malization flow of the theory. In comparison to the FRG computations, explicit

simulations were performed for an ansatz up to fourth order in the derivatives. The

results of these simulations are preliminary, but they already show qualitive agree-

ment between MCRG and FRG. The quantitative deviations can be explained by

differences in the truncation procedure. The MCRG finds a stable fixed point even if

one includes all fourth-order operators and it hence strongly supports the assumpa-

tion that the nonlinear O(N) models are non-perturbatively renormalizable. The

outlined procedure provides the means to study the renormalization flow of theories

by numerical simulations and can serve in this way as a useful complementation of

FRG calculations.
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Hamiltonian Action

The analysis presented in this chapter was developed in collaboration with Gian Paolo

Vacca and Luca Zambelli.

4.1. Modification of the Path Integral Measure

The aim of this chapter is to analyze nonlinear sigma models from a “Hamiltonian

point of view”, which means that the investigations will be based on a descripition

of the theory in terms of phase space coordinates. Before a functional RG formalism

will be developed for a Hamiltonian action functional in Sec. 4.2, the interplay be-

tween the path integral measure and the regularization procedure of standard FRG

shall be discussed first. This relation was pointed out in [22] and the main argument

will be briefly depicted here for the simple example of quantum mechanics, before

possible consequences for the calculations of nonlinear field theories like in Chap. 3

are discussed.

The path integral formulation is usually derived by starting from canonical quanti-

zation and integrating out the momenta at some point. This integration is, however,

not a necessary step and it is interesting to study to what the introduction of the

FRG regulator corresponds to on this level:

Zk[J ] =

∫
Dq µ[q] e−

∫
t ∂tq ∂tq+V (q)+ 1

2
qRkq− Jq (4.1)

=

∫
DqDp µ[q, p] e

∫
t i p

(
1+

Rk
−∂2t

)1/2

∂tq− 1
2
p2−V (q) + Jq

. (4.2)

Note that t denotes the time coordinate in this section (only). The cutoff action of

FRG apparently corresponds to a modification of the Legendre term p(t)∂tq(t)dt.

But this term and the path integral measure are directly related to the structure of

the phase space. The Legendre term is the pullback of the Liouville one-form λ = pdq

and the measure dλ = dpdq is the exterior derivative. A modification depending on
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k should hence affect both objects in a balanced way. The appropriate modification

of the path integral measure is given by

µ→ µk = µ · det1/2
(
1 +

Rk

−∂2t

)
(4.3)

This k-dependence of the measure can also be understood from another point of

view. It was mentioned in Sec. 2.4 that the cutoff action has the structure of a

Gaußian integral which becomes a rising δ-function for k → ∞ due to the diver-

gence of Rk. This representation of the δ-distibution as a limit of a Gaußian integral,

however, requires an appropriate normalization which is proportional to det1/2Rk for

k →∞. The measure (4.3) provides this regularization, while it yields at the same

time the correct limit µk→0 = µ (up to an irrelevant factor).

The important aspect of this modification of the measure is that it alters the flow

equation of FRG. Absorbing the k-dependent factor in (4.3) into the action func-

tional and taking the derivative k∂k, it is straightforward to derive that the flow

equation (2.33) reveices an additional term:

k∂kΓk =
1

2
Tr

{
k∂kRk

Γ(2) +Rk

}
− 1

2
Tr

{
k∂kRk

−∂2t +Rk

}
. (4.4)

As long as the regulator Rk is field-independent, this term only contributes to the

renormalization of the vacuum energy. The computations of Sec. 3.2-3.4, however,

are based on a background field expansion and a regulator which depends on the

base-point. It is hence worthwhile to investigate if and how these calculations are

affected by a modification of the measure. This is in fact a very difficult task,

since the action functional in configuration space contains infinitely many nontrivial

terms, see (3.10) and (3.11), such that a direct argumentation via a corresponding

Hamiltonian formulation of the expanded functional is impossible. Instead, one has

to use the normalization of the rising δ-function as guideline, which leads to the

ansatz

µk = µ · det1/2
(
1 +

Rk

ζ∆

)
, with ∆ = −∇µ∇µ . (4.5)

The covariant Laplacian serves as natural scale for the regulator. This choice can

also be understood, if one follows the reasoning [96] that the measure of the path

integral ought to be proportional to det1/2 S(2), where S is the bare action. The

Hessian of the full expanded action is too complicated, but one could regard the

kinetic operator of the fluctuations as a rough, first approximation which ignores
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the further interaction terms1. In this sense the denominator in (4.5) is chosen such

that it cancels with det1/2(ζ∆) in µ and hence provides the correct normalization

µk→∞ = det1/2Rk. Since the couplings in µ are bare ones, the ζ in the denominator

should be understood as bare coupling ζΛ as well. Using the ansatz (4.5), the

additional term in the flow equation (3.14) can be computed in the way mentioned

above and reads

− 1

2
Tr

{
k∂kRk

ζΛ∆+Rk

}
. (4.6)

One can deal with this trace by the same means that has been used in Sec. 3.3.

The result is proportional to the first trace in (3.29), but multiplied with a slightly

modified Qd
2
−2,1

- functional (3.31) which depends on a function f̂(z) which is similar

to (3.25), but has the denominator Rk(z) + ζΛz instead of Pk.

If one includes this term in the computation of Sec. 3.2-3.4, it leads to interesting

results: Note that the heat kernel expansion of (4.6) yields according to (3.29) no

second-order terms, but only operators of fourth order in the derivatives which affect

the running of L1 and L2. As a consequence of this contribution, the full fourth-order

truncation, including the problematic coupling L2, in fact stabilizes and a nontrivial

fixed point can be identified for each N . Similar to the results in the reduced

truncations, the critical ζ∗ increases with N and the critical couplings L∗1 and L∗2

are small in comparison to ζ∗, with L∗1 < 0 and L∗2 > 0. Furthermore, this fixed

point has only one IR-relevant direction in accordance with previous investigations

of the model and the MCRG computations. However, the critical exponent ΘR

corresponding to the relevant direction deviates strongly from the literature values

for ν(N) = 1/ΘR. While ΘR is supposed to be roughly of the form 1 + 1
N
, these

computations yield a critical exponent which is approximately four times too large

and converges to 4.228 for N →∞ instead of 1.

Note that a k-dependent coupling ζk in the denominator of (4.5) was explicitly

checked as an alternative modification of the measure, arguing that it still provides

the appropriate asymptotics due to ζk → ζΛ for k → ∞. However, this alternative

does not improve the computations, but, on the contrary, becomes unstable again

if one includes L2.

In order to clearify if a modification of the measure is really the necessary ingredient

to stabilize the covariant FRG computations of the nonlinear O(N) model, a refined

analysis is required how the path integral measure ought to be defined correctly in

nonlinear theories which are formulated in terms of a background field expansion.

1One could argue that the kinetic term of the fluctuations also includes α∆2, but since this
discussion focuses on the nontrivial fixed point with α∗ = 0, this operator can be neglected. It
was explicitly checked, yet, that an inclusion would not change the result α∗ = 0.
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4.2. Renormalization of the Average Effective Hamiltonian Action

This, however, constitutes a very difficult task, which will not be addressed here.

Instead, the “Hamiltonian point of view” shall be explored further by a Hamiltonian

formulation of the FRG.

4.2. Renormalization of the Average Effective

Hamiltonian Action

In most explicit computations the Lagrangian formulation of quantum field theory

is favored against the Hamiltonian one, since the latter has to deal with an increased

number of variables while loosing Lorentz covariance. For some questions, however,

the Hamiltonian formulation is more suitable or can provide additional insights. A

recent example is the use of Hamiltonian approaches in non-Abelian gauge theories,

cf. for instance2 [109] or [110],[111],[108].

Most recently, Gian Paolo Vacca and Luca Zambelli developed an alternative ap-

proach to QFT which is formulated in terms of phase space variables and describes

the renormalization of the effective Hamiltonian action following the ideas of the

FRG. While a detailed presentation is given in [23], a brief overview of the formal-

ism for the case of a scalar field theory shall be provided here, before the application

to sigma models is presented in the next section. The main motivation3 for the

investigation of the effective Hamiltonian action is the possibility to study alterna-

tive ansätze for the effective action functional, e.g. non-quadratic functionals of the

canonical momenta. It hence provides alternative expansion schemes for the trun-

cation of the effective average action. This will be demonstrated in the subsequent

section.

Note that the discussion in this chapter is developed in Minkowski spacetime4, since

it is the more natural setting for the Hamiltonian formalism. Note furthermore that

a “mostly plus” signature is used.

In order to describe the Average Effective Hamiltonian Action formalism, the func-

tional relations of the effective Hamiltonian action shall be explained first, before

a regularization is introduced and a flow equation is derived. The description is

2The Hamiltonian flow derived in [108] should not be confused with the flow equation in this chap-
ter which is formulated in phase space while [108] is based on a wave functional representation
of quantum states.

3Moreover, the path integral measure simplifies in phase space. However, if one introduces the
Lorentz-covariant Hamiltonian as it is done here, this advantage gets lost again. One could
consider a reduction of the phase space to longitudinal modes, but so far no projection has
been found that is covariant w.r.t. diffeomorphisms of the target manifold, see the remark in
Sec. 4.3.

4although a formulation in Euclidean space is possible as well
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given for scalar fields, which can be for example the coordinates in the nonlinear

spaces that were already discussed. The related target space indices, however, will

be suppressed in this section for the sake of brevity. A definion of the action and

the partition sum in terms of phase space variables is simply given by

S[ϖ,φ] =

∫
ddx ϖ ∂tφ−H

(
ϖ,φ

)
(4.7)

Z[I, J ] = eiW [I,J ] =

∫
DϖDφµ[ϖ,φ] ei

(
S[ϖ,φ]+I·ϖ+J ·φ

)
, (4.8)

whereϖ denotes the canonical momenta,H the Hamiltonian density and · represents
as in Sec. 2.4 the inner product of the Hilbert space. Analogous to the Lagrangian

formalism, the effective Hamiltonian action Γ[π, ϕ] is defined as Legendre transform

Γ[π, ϕ] = ext
I,J

{
W [I, J ]− I · π − J · ϕ

}
. (4.9)

It immediately follows that π and ϕ are the expectation values of the quantum fields:

π =
δW

δI
=
⟨
ϖ
⟩
, ϕ =

δW

δJ
=
⟨
φ
⟩
. (4.10)

With the relations

I = −δΓ[π, ϕ]
δπ

, J = −δΓ[π, ϕ]
δϕ

, (4.11)

for the source terms one can express the effective Hamiltonian action by the integro-

differential equation:

eiΓ[π,ϕ] =

∫
DϖDφµ[ϖ,φ] ei (S[π,φ]−

δΓ
δϕ
·(φ−ϕ)− δΓ

δπ
·(ϖ−π)) . (4.12)

It is important to stress that the effective Hamiltonian action provides a complete

description of a quantum theory and contains the entire information of the effective

(Lagrangian) action, which is related to the former by

Γ[ϕ] = ext
π

Γ[π, ϕ] . (4.13)

It is straightforward (in case of a Hamiltonian which is quadratic in the momenta)

to verify that (4.13) yields the correct expression for the Lagrangian effective action:

The source I vanishes according to (4.11) and the Gaußian integral of the momenta

leads to the standard Lagrangian.

The standard Hamiltonian formalism assigns a special rôle to the time direction and

is hence not Lorentz-covariant. It is possible to perform Lorentz-invariant computa-
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4.2. Renormalization of the Average Effective Hamiltonian Action

tions, but these usually require explicits checks which quickly become inconvenient.

It is therefore reasonable to use a manifestly invariant framework right from the

start and extend the Hamiltonian formalism outlined above to a covariant one. In

case of a Hamiltonian which is quadratic in the momenta, this simply amounts to

the introduction of d − 1 Gaußian integrals in the path integral (4.8). Note that

in nonlinear theories a nontrivial path integral measure comes along with these

Gaußian integrals. This effect will be taken into account in the derivation of the

flow equation, but it will be irrelevant in the explicit calculations in the following

section and can be neglected there. All relations (4.7) to (4.13) remain true for such

a covariant extension if one applies the simple replacement

π → πν , I → Iν . (4.14)

In order to regularize the quantum theory and analyze its renormalization, one can

follow the reasoning outlined in Sec. 2.4. The regularization is implemented by the

introduction of a cutoff action

Zk[I
ν , J ] = eiWk[I

ν ,J ] =

∫
DϖνDφµk e

i
(
S[ϖν ,φ]+∆Sk[ϖν ,φ]+Iν ·ϖν+J ·φ

)
(4.15)

∆Sk[ϖν , ϕ] = −
∫
ddx ϖν R

π
k(−∂2) ∂νφ . (4.16)

The quadratic form of the cutoff action will ensure a comparably simple structure

of the resulting flow equation, while it simultanously regulates ϖ as well as φ for an

appropriate choice of Rπ
k . The mass dimension of this regulator is smaller than the

one of the standard FRG regulator, but it has to fulfill the same constraints (2.30).

Owing to these properties the cutoff action suppresses the modes below the scale

k and leads to a gradual integration of momentum shells as Rπ
k decreases while k

is lowered. Note that only field-independent regulators will be considered in this

thesis.

Based on the regularized path integral (4.15) one can define the Average Effective

Hamiltonian Action (AEHA) Γk [πν , ϕ] as the modified Legendre transform

Γk [πν , ϕ] + ∆Sk [πν , ϕ] = ext
J,Iν

{
Wk[I

ν , J ]− Iν · πν − J · ϕ
}
. (4.17)

One can immediately derive expressions for the sources

J = −δΓk

δϕ
−Rπ

k ∂
νπν , Iν = −δΓk

δπν
+Rπ

k ∂
νϕ (4.18)
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and use these to obtain an integro-differential equation for the AEHA:

eiΓk[πν ,ϕ] =

∫
DϖνDφµk e

i
(
S[ϖν ,φ]+∆Sk[(ϖ−π)ν ,φ−ϕ]−

δΓk
δπν
·(ϖ−π)ν−

δΓk
δϕ
·(φ−ϕ)

)
. (4.19)

Owing to the properties of the regulator, the AEHA interpolates between the bare

action in the UV5 and the full effective action in the IR:

Γ[πν , ϕ]
k→0←−− Γk[πν , ϕ]

k→∞−−−→ S[πν , ϕ] . (4.20)

The k → 0 limit is trivial, since the regulator simply vanishes. In the k →∞ limit,

the cutoff action (accompanied by an appropriate regulator-dependent normalization

in the measure) serves as a rising δ-function for each component (φ − ϕ)a and

pν(ϖ − π)νa in target space, where p denotes the Fourier variable if one performs

such transform. The emergence of these constraints is explicitly demonstrated for a

simple example in [23] and can be understood very intuitively, since the diverging

regulator suppresses all modes apart from the ones for which (φ− ϕ)a and pν(ϖ −
π)νa are identically zero. The rising constraint for the momenta applies only to

the longitudinal modes, as the cutoff action completely vanishes for all transverse

modes with pν ⊥ (ϖ − π)νa . However, it is straightforward to check by a successive

integration of the quantum momenta ϖ that in case of a bare Hamiltonian which

is quadratic in the momenta the coincidence limit ϖµ → πµ is effectively given also

for the transverse modes in the path integral. With ϖµ → πµ and φ → ϕ, the

appropriate limit Γk[πν , ϕ]
k→∞−−−→ S[πν , ϕ] is ensured.

In order to investigate the effective action, a flow equation for the AEHA can be

derived in a similar way as for the EAA. The derivative of (4.19) w.r.t. the logarithm

of the momentum scale yields

iΓ̇k[πν , ϕ] =
µ̇k

µk

− i

∫
ddx

⟨
(ϖ − π)νṘπ

k ∂
ν(φ− ϕ)

⟩
k
. (4.21)

The r.h.s. of this equation can be expressed in terms of Rπ
k and Γk, if one employs the

relations (4.18) for the source terms and rewrites the connected two-point functions

5Note that it, once again, implicitly assumed that a fundamental theory exist such that the limit
Λ→∞ can be performed.
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as follows (by suppressing the indices for the sake of convenience)

i
⟨
T

(
(ϖ − π)⊗ (ϖ − π) (ϖ − π)(φ− ϕ)
(φ− ϕ)(ϖ − π) (φ− ϕ)(φ− ϕ)

)⟩
k
= W

(2)
k [I, J ] =

(
δWk

δI
⊗
←−
δ
δI

δ2Wk

δJδI
δ2Wk

δIδJ
δ2Wk

δJδJ

)

=

(
π ⊗

←−
δ
δI

δπ
δJ

δϕ
δI

δϕ
δJ

)
=

(
I ⊗

←−
δ
δπ

δI
δϕ

δJ
δπ

δJ
δϕ

)−1
= −

(
δΓk

δπ
⊗
←−
δ
δπ

δ2Γk

δϕδπ
−Rπ

k∂
δ2Γk

δπδϕ
+Rπ

k∂
δ2Γk

δϕδϕ

)−1
(4.22)

≡ −

(
A B

B̃ D

)−1
= −

(
A−1+A−1B(D−B̃A−1B)−1B̃A−1 −A−1B(D−B̃A−1B)−1

−(D−B̃A−1B)−1B̃A−1 (D−B̃A−1B)−1

)

This directly leads to the flow equation of the Average Effective Hamiltonian Action:

iΓ̇k[π, ϕ] =
µ̇k

µk

− Tr

{(
δ2Γk

δπδϕ
+Rπ

k∂

)ν (
δ2Γk

δπδπ

)−1
νµ

Ṙπ
k∂

µ (4.23)

[
δ2Γk

δϕδϕ
−
(
δ2Γk

δπδϕ
+Rπ

k∂

)µ(
δ2Γk

δπδπ

)−1
µν

(
δ2Γk

δϕδπ
−Rπ

k∂

)ν
]−1

Since only field-independent regulators are considered in this chapters, the additional

term in the flow equation only describe the renormalization of the vacuum energy

and will hence be neglected in the following.

4.3. Applications to Sigma Models

In order to further investigate the new Hamiltonian formulation of the FRG, one

should study its application to test models. Before the interesting case of a nonlinear

sigma model will be examined in more detail, a brief consistency check is provided

by a simple computation of the linear sigma model. Suppressing spacetime and

target space indices again for the sake of brevity, the simple truncation6

Γk[π, ϕ] =

∫
ddx 1

2
πµπµ − πµ∂µϕ− Vk(ϕ) , (4.24)

6Remember that a “mostly plus” signature of Minkowski spacetime is used in this chapter.
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is considered, which corresponds to the local potential approximation in standard

FRG. The second derivatives of the action functional then read

δ2Γk

δϕδϕ
= − δ

2Vk
δϕδϕ

,
δ2Γk

δπµδϕ
= ∂µ ,

δ2Γk

δπµδπν
= ηµν . (4.25)

The flow equation (4.23) simplifies to

iΓ̇k[π, ϕ] = −
1

2
Tr

{
(Rπ

k∂ + ∂)ν Ṙπ
k∂ν

[
− δ

2Vk
δϕδϕ

+ (Rπ
k∂ + ∂)µ (Rπ

k∂ + ∂)µ

]−1}
.

(4.26)

It is convenient to apply a Fourier transform and to introduce the operator Ωµ
k(p):

Ωµ
k(p) = Rπ

k(p
2) pµ + pµ (4.27)

⇒ iΓ̇k[π, ϕ] = −Tr

{
Ωµ

k Ω̇k,µ

[
δ2Vk
δϕδϕ

+ Ωµ
k Ωk,µ

]−1}
. (4.28)

If one chooses

Ωµ
k(p) = pµ +

(
k
pµ

p
− pµ

)
Θ(k2 − p2) , (4.29)

with p =
√
pµpµ , the flow equation becomes

iΓ̇k[π, ϕ] = −
1

2
Tr

{
Ṙk

[
δ2Vk
δϕδϕ

+ p2 +Rk

]−1}
, (4.30)

where Rk denotes the optimized regulator (2.34) which is related to Ωk by Rk =

Ω2
k−p2 and Ṙk = 2Ωµ

kΩ̇k,µ. Performing the analytic continuation p0 → ip4 of (4.30),

one obtains the same flow equation for the potential Vk as given by the standard

FRG formalism in Euclidean spacetime (if one takes into account the sign conven-

tion in (4.24)). The choice (4.29) or Rπ
k =

(
k
p
− 1
)
Θ(k2 − p2) can obviously be

understood as the Hamiltonian version of the optimized regulator and will be used

also in the following calculations.

While the Hamiltonian formalism simply agrees with the Lagrangian one for simple

linear models, it really becomes interesting in nonlinear theories. An operator of

the kind hab(ϕ) πµ
aπb,µ constitutes a nontrivial interaction of the fields π and ϕ and

naturally generates operators of higher order in π. The test case for the application

of the AEHA scheme to such theories will be the nonlinear O(N) models, which have

already been discussed in much detail by the alternative non-perturbative methods
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of MCRG and standard Lagrangian FRG and whose critical properties provide a

useful benchmark.

Even though a covariant calculation of the renormalization flow would be desirable,

the extension of background field methods as they were used in Sec. 3.2 to phase

space coordinates is nontrivial and would require a lot of additional consideration.

The calculations in thesis will therefore be performed in a specific parametrization

which is convenient from a computational point of view. For our purposes the

stereographic coordinates are particular efficient. The metric is given as

hab(ϕ) = (1 + ϕ2)−2δab , hab(ϕ) = (1 + ϕ2)2δab , with ϕ2 =
N−1∑
a=1

ϕaϕa . (4.31)

Note that for remainder of this chapter the square v2 of any (N−1)-tuple va or va

with (upper or lower) target space indices will denote this kind of sum. Working in

this coordinate frame, the ansatz

Γk[π, ϕ] =

∫
ddx Vk(Z)− πµ

a∂µϕ
a (4.32)

shall be studied in more detail, where Vk(Z) is a generic function of

Z ≡ 1
2
hab(ϕ)πµ

aπb,µ . (4.33)

Owing to the Legendre term πµ
a∂µϕ

a, the usual kinetic term hab∂µϕ
a∂µϕb of the La-

grangian formalism will be generated in the effective Hamiltonian action as well,

and one could consider the inclusion of this operator in the ansatz. Furthermore,

the Legendre term itself could be renormalized. However, a tedious but straightfor-

ward computation of this generalization of (4.32) explicitly showed that a potentiell

scaling parameter of the Legendre term would not run at all, and the renormaliza-

tion of the standard kinetic term is directly proportional to the renormalization of

the coupling gk in the simple ansatz V (Z) = gk Z. This is no surprise, since both

operators are related to each other by the Legendre transform of the bare action.

The following analysis will thus just focus on the running of Vk(Z), which will be

called “momentum potential”.

In order to project the flow equation (4.23) on V̇k, it can be evaluated at constant

ϕ. In fact, the most convenient choice is a vanishing field configuration ϕ→ 0. The

structure of the computation simplifies considerably while no information about

V̇k(Z) is lost, since this is a function of Z only which does not vanish for ϕ → 0,

but is equal to 1
2
π2

µ

(
≡ 1

2
π2
)
. Note that all terms which are generated in the flow
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equation can be uniquely decomposed into three different types of operators: 1.

Covariant expressions in terms of the operator Z, 2. other covariant expressions

which include operators that are not considered in the chosen truncation (like e.g.

habπµ
aπ

ν
b h

cdπc,µπd,ν), or 3. terms which break the reparametrization invariance, but

vanish for ϕ→ 0. A simple example is (1 + ϕ2)δabπµ
aπb,µ = Z − ϕ2(ϕ2 + 1)δabπµ

aπb,µ.

The evaluation at ϕ → 0 thus provides the required projection on covariant opera-

tors, which constitute the actual physical content of the theory. The generation of

terms which break reparametrization invariance is just an artefact of the calcula-

tions.

The second functional derivatives evaluated at ϕ = 0 read7

δ2Γk

δπν
b δπ

µ
a

∣∣∣∣
ϕ=0

= V ′k(Z) δ
abηµν + πa,µπb,ν V

′′
k (Z) , (4.34)

δ2Γk

δϕbδπµ
a

∣∣∣∣
ϕ=0

= −∂µδab ,
δ2Γk

δπµ
b δϕ

a

∣∣∣∣
C0

= ∂µδ
b
a , (4.35)

δ2Γk

δϕbδϕa

∣∣∣∣
ϕ=0

= 4Z V ′k(Z) δab . (4.36)

By means of the projectors

Π∥
ab
µν
(π) =

πµ
aπ

ν
b

π2
=
πµ
aπ

ν
b

2Z
, Π⊥

µν
ab = δabη

µν − πµ
aπ

ν
b

π2
, (4.37)

the inverse of δ2ππΓk can be written as(
δ2Γk

δπ2

∣∣∣∣
ϕ=0

)−1
= V ′−1k Π⊥(π) + (V ′k + 2ZV ′′k )

−1Π∥(π) . (4.38)

If ones applies a Fourier transform and utilizes the notation (4.27), the flow equation

(4.23) for the momentum potential (4.32) becomes

iV̇k(Z) =Tr

{
Ωµ

k(p)
[
V ′−1k Π⊥(π) + (V ′k + 2ZV ′′k )

−1Π∥(π)
]
µν

Ω̇ν
k(p)

4ZV ′k − Ωµ
k(p)

[
V ′−1k Π⊥(π) + (V ′k + 2ZV ′′k )

−1Π∥(π)
]
µν

Ων
k(p)

}
(4.39)

=Tr

 V ′−1k Ωµ
kΩ̇k,µ δab −

V ′′
k

V ′
k(V

′
k+2ZV ′′

k )
(Ωπ)a(Ω̇π)b(

4ZV ′k − V
′−1
k Ωµ

kΩk,µ

)
δba +

V ′′
k

V ′
k(V

′
k+2ZV ′′

k )
(Ωπ)b(Ωπ)a

 . (4.40)

Using projectors in the same way as above with (Ωπ)a = (Ωµπµ)a instead of πµ
a ,

one can find an expression like (4.38) in target space for the denominator of (4.40).

7The spacetime indices are again suppressed.
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Taking the trace in target space finally yields

iV̇k(Z) =

∫
p

(N−2)Ωµ
kΩ̇k,µ

4ZV ′2k − Ωµ
kΩk,µ

+
Ωµ

kΩ̇k,µ −
V ′′
k

V ′
k+2ZV ′′

k
(Ωπ)a(Ω̇π)bδ

ab

4ZV ′2k − Ωµ
kΩk,µ +

V ′′
k

V ′
k+2ZV ′′

k
(Ωπ)2

. (4.41)

Having an exact equation for the renormalization of a generic momentum potential,

one can now study it for specific ansätze. The simplest ansatz is

Vk(Z) = gk Z , (4.42)

and should be checked first. The flow equation strongly simplifies in this case:

iV̇k(Z) =

∫
p

(N−1)Ωµ
kΩ̇k,µ

4Zg2k − Ωµ
kΩk,µ

d
dZ

()|Z=0

=⇒ ġ1,k = i

∫
p

4 g2k (N−1)Ω
µ
kΩ̇k,µ

(Ωµ
kΩk,µ)2

(4.43)

If one chooses the optimized regulator (4.29), the evaluation of the integral by means

of analytic continuation p0 → ip4 yields the beta function

βg = −
4 kd−2(N−1)

(4π)d/2 Γ(d/2 + 1)
g2k . (4.44)

Note that gk corresponds in case of the simple ansatz (4.42) directly to the equally

denoted gk = ζ−1k in the simplest Lagrangian truncation of the nonlinear sigma

model, that was discussed in [43]. In fact, (4.44) agrees with the result therein (up

to a scheme-dependent numerical factor) and hence provides a further consistency

check of the AEHA. The result contains a nontrivial fixed point for d > 3, but the

critical properties of the model in three dimensions are not correctly reproduced

as discussed in Chap. 3. The covariant calculation within the Lagrangian FRG

requires for this purpose a truncation which includes operators of fourth order in

the derivatives. In order to compare both formulations it is interesting to study in

which way an enlargement of the Hamiltonian ansatz improves the computations.

If one uses the optimized regulator (4.29) for the analysis, the running (4.41) of a

generic momentum potential simplifies to

iV̇k(Z) =

∫
p

Θ(k2 − p2)

 (N−2)k2

4ZV ′2k − k2
+

k2 − V ′′
k

V ′
k+2ZV ′′

k

k2

p2
pµpν π

µ
aπ

ν
b δ

ab

4ZV ′2k − k2 +
V ′′
k

V ′
k+2ZV ′′

k

k2

p2
pµpν π

µ
aπν

b δ
ab


=

∫
p

Θ(k2 − p2)

 (N−2)k2

4ZV ′2k − k2
− 1 +

4ZV ′2k

4ZV ′2k − k2 +
V ′′
k

V ′
k+2ZV ′′

k

k2

p2
pµpν π

µ
aπν

b δ
ab


(4.45)
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The Fourier integral can be performed if one expands the last term in πµπν

iV̇k(Z) =

∫
p

Θ(k2 − p2)
(

(N − 1)k2

4ZV ′2k − k2
(4.46)

+
∞∑
n=1

(−1)n 4ZV ′2k
(4ZV ′2k −k2)n+1

(
V ′′k

V ′k + 2ZV ′′k

)n
k2n

p2n
pµ1 ...pµ2nπ

µ1
a1
...πµ2n

a2n
δa1a2 ...δa2n−1a2n

)

and utilizes the relation∫ sym

p

pµ1 ...pµ2n

p2n
=

∫ sym

p

1

c (n, d)

(
δµ1µ2 ... δµ2n−1µ2n + permutations

)
(4.47)

c(n, d) =
n−1∏
i=0

(d+ 2i) = 2n
Γ[d/2 + n]

Γ[d/2]
(4.48)

for symmetric integrals. The r.h.s. of (4.47) consists of all permutations in µi modulo

the identities δµ1µ2 = δµ2µ1 . However, all permutations apart from the first, depicted

one lead to combinations of the momenta in (4.46) which cannot be expressed in

terms Z and are hence not considered in the truncation. The coefficient c(n, d)

depends on the order n of the expansion and the spacetime dimension d and was

determined by a combinatorical analysis based on the multiplication of both sides

of (4.47) with δµ1µ2 ... δµ2n−1µ2n which has to yield the integrand 1.

Evaluating the integral by means of the same analytic continuation as before, the

result for V̇k(Z) finally reads

V̇k(Z) =
kd

(4π)d/2Γ[d/2+1]

(
(N−1)k2

4ZV ′2k − k2
(4.49)

+
∞∑
n=1

(−1)nk2n4ZV ′2k
(4ZV ′2k − k2)n+1

(
V ′′k

V ′k + 2ZV ′′k

)n
2−nΓ[d/2]

Γ[d/2 + n]
(2Z)n

)

This flow equation for a generic momentum potential can now be studied more

explicitly by applying different ansätze for Vk(Z). A natural choice is a polynomial

series

V (Z) =
s∑

i=1

giZ
i , (4.50)

in which the scale index was suppressed, as it will be in remainder of this chapter. It

should be stressed that an expansion in higher than quadratic orders in the momenta

is different from an expansion in order of derivatives, since the relation π ∝ ∂ϕ no

longer holds true.

The beta functions of gm can be computed from (4.49) by takingm derivatives w.r.t.

Z and subsequently evaluating at Z = 0. This can be done without too much effort

60



4.3. Applications to Sigma Models

despite the appearance of an infinite sum in (4.49), because all but the first m−1
terms in the sum are of higher order in Z and do not contribute to the running of

gm. A systematic analysis with increasing order s of the truncation could thus be

performed:

The renormalization of gm is determined only by the couplings gl with l < m. This

immediately follows from the structure of (4.49). As an example, the first three

(dimensionless) beta functions shall be stated here:

βg1 = g1 −
2(N − 1)

3π2
g21 (4.51)

βg2 = 5g2 −
8(N − 1)

3π2
g41 −

8(3N − 2)

9π2
g1g2

βg3 = 9g3 −
32(N − 1)

3π2
g61 −

64(3N − 2)

9π2
g31g2 −

8(5N − 7)

15π2
g22 −

4(3N − 1)

3π2
g1g3

For each order of the truncation there are two fixed points: the trivial one with

gm = 0 for all m and a nontrivial one, at which the couplings gm assume finite,

positive values for N ≥ 3. The example s = 3 reads

g∗1 =
3π2

2(N − 1)
, g∗2 =

81π6

2(N − 1)2(3N − 7)
, g∗3 =

243π10(585N2 − 1722N + 1057)

10(N − 1)4(3N − 7)3
.

The nontrivial fixed point has (for N ≥ 3) only one IR-relevant direction in accor-

dance with the general expectation and with the investigations in Chap. 3. The

critical exponents corresponding to the irrelevant directions depend on N , but not

the exponent ΘR of the relevant direction which is the inverse of the critical expo-

nent ν. Instead of a N -dependent ν, the AEHA computation yields the N → ∞
value ν = 1 for all N . This is the result of the simplest truncation and it cannot be

improved, since the higher couplings have no impact on βg1 . In case of the example

s = 3 the critical exponents of the renormalization flow are(
1 , − 1 +

4

3(N − 1)
, − 3 +

4

N − 1

)
. (4.52)

The higher orders in Z are irrelevant and will hence vanish in the IR description of

the theory. This agrees with the successful use of quadratic actions like (4.42) or

(2.1) as effective theories for low energies. If one investigates the renormalization

properties starting from such scale of an effective, quadratic theory and employing

the Hamiltonian formalism8, one finds a nontrivial fixed point in the UV at each

8The covariant version of the Hamiltonian can be introduced at this scale without problems due
to its quadratic structure.
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4. Renormalization of the Hamiltonian Action

order of the truncation, which indicates the non-perturbative renormalizability of

the model. The corresponding fundamental theory seems to be more than quadratic

in the momenta9.

One may wonder if the non-quadratic structure of the UV theory is compatible

with the regularization procedure. The longitudinal modes are properly regularized

by the cutoff action, which provides the constraint δ(pµ(ϖ − π)µ) for k → ∞.

But while the coincidence limit ϖµ → πµ is effectively given for the transverse

modes as well in case of a quadratic Hamiltonian, it is very unlikely that a similar

behavior also holds true for bare Hamiltonians of higher orders. A solution to this

problem could be the elimination of the redundancy which was introduced by the

enlargement of phase space by restricting the whole analysis to longitudinal modes

only. This could be formally implemented by introducing the constraint δ(Πµν
⊥ ϖν)

with Πµν
⊥ = 1− pµpν

p2
into the path integral. Such a projection maintains the Lorentz-

covariance of the computation, but breaks the reparametrization invariance. This

invariance, however, is already broken by working in a specific choice of coordinates.

If one applies this idea, the calculations proceed in the same way as outlined above

up to Eq. (4.45). As πµ ∝ pµ, the flow equation would simplify at this point to

iV̇ (Z) =

∫
p

Θ(k2 − p2)

(
(N−2) k2

4ZV ′2 − k2
− 1 +

4ZV ′2

4ZV ′2 − k2 V ′

V ′+2ZV ′′

)
. (4.53)

The resulting beta functions and the fixed point structure are almost the same as

above and differ only by the numerical values of c1, c2 in the factors of the kind

(c1N − c2). The existence of a nontrivial fixed point at each order of the truncation

remains true and ΘR is still 1, i.e. ν = 1, for all N , while the remaining exponents

increase with N .

4.4. Conclusions

The aim of this chapter was to explore if the “Hamiltonian point of view” on quan-

tum field theories and nonlinear sigma models in particular can provide some ad-

ditional insights. The analysis of the path integral measure (as well as the UV-

asymptotics of the cutoff action) suggests that the standard flow equation of the

FRG ought to be complemented by an additional regulator-dependent term. Pos-

sible consequences of such a modification were considered for the covariant anal-

ysis of nonlinear O(N) models which was performed in Chap. 3. A stabilization

9This finding is not equivalent, but similar to the result that the nontrivial fixed point which was
found in Chap. 3 contains derivative operators of more than quadratic order.
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4.4. Conclusions

of the fourth-order computations could be found, which supports the relevance of

these measure corrections. However, the results for the critical exponent ν deviate

strongly from the literature values, and in order to draw a decisive conclusion a

more refined analysis of the measure is required for theories which are formulated

in terms of a background field expansion.

The main part of the chapter was then devoted to the recently proposed Average

Effective Hamiltonian Action approach, which is a Hamiltonian formulation of the

FRG. First, a brief introduction to the AEHA and a derivation of the correspond-

ing flow equation were presented, before the consistency of this approach with the

standard Lagrangian FRG was shown by its application to simple truncations of

linear and nonlinear sigma models. The interesting property of the Hamiltonian

formulation is the possibility to investigate an alternative expansion of the trun-

cation. The nonlinear O(N) models, in which operators of higher order in the

momenta are naturally generated, were therefore studied as a test case. Using stere-

ographic coordinates, the flow equation for a generic function V (Z) of the expression

Z = 1
2
hab(ϕ)πµ

aπb,µ was derived. Employing a polynomial ansatz for V (Z) a fixed

point with only one IR-relevant direction could be found in three dimensions for

each N at every order of the truncation. While the approach is very stable, it is

not sensitive to the nontrivial critical properties of the model which are encoded in

ν(N). Although the exponents corresponding to the irrelevant directions depend on

N , the one corresponding to the relevant direction yields the N → ∞ result 1 for

all N . At the end, a possible restriction of the analysis to longitudinal momentum

modes was briefly discussed and a qualitative agreement with the previous results

was found.
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5. Renormalization of the CP1

Model with Topological Term

The investigations presented in this chapter have already been published in [112].

One of the most interesting characteristics of the two-dimensional O(3) ∼= CP1

model, introduced in Sec. 2.3, is the nontrivial topology of the target space which

allows for instantons and the definition of a topological charge Q, given in (2.16),

that represents the winding number of the field configurations. The winding num-

ber labels distinct topological sectors of the configuration space and hence enables

a weighting of these in the path integral by adding the term iθQ to the (Euclidean)

action1. The inclusion of such a θ-term in the action has attracted much attention

since Haldane showed that antiferromagnetic spin-S chains can be mapped onto

the O(3) model with θ = 2πS [113]. The physical properties of the model depend

nontrivially on the topological parameter, most prominently the mass gap which

vanishes for θ = π [114]. Furthermore, the vacuum energy density is a function of θ

which can be seen in a large-N expansion as well as a dilute instanton gas approx-

imation, cf. [115] and references therein. This θ-dependence of the mass gap and

vacuum energy are also confirmed by numerical simulations, see e.g. [116] and [117].

More information about lattice computations of the sigma model with topological

term are given in [118]. More recently, the case θ slightly below π was considered

as a toy model for walking technicolor [119, 120].

Since the winding number is not altered by fluctuations, one would naively expect

that this topological operator is not renormalized. In addition, it was explicitly

shown in [117, 120] that since the topological charge distinguishes between differ-

ent vacua, it cannot be an irrelevant operator that renormalizes to zero. On the

other hand, the investigation of non-Abelian gauge theories, which share interest-

ing properties with the sigma model, indicated that a finite renormalization of the

θ-parameter occurs in the extreme momentum ranges. These nontrivial effects were

first studied in [25, 26] and [27], and subsequently also by means of the Functional

1In Minkowski spacetime the additional term in the action simply reads θQ.
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Renormalization Group (FRG) [28]. The result of the latter investigation was a fi-

nite, discrete renormalization of θ in the extreme UV and the extreme IR. A similar

behavior in the extreme IR was found in an analysis of the coupling of Chern-Simons

theory [29].

The purpose of this chapter is to examine by means of the FRG formalism if a

similar renormalization of the topological parameter also occurs in nonlinear sigma

models. The analysis will follow [28] and investigate a more general class of op-

erators by considering a spacetime-dependent coupling θ → θα(x), where α is an

auxiliary scalar field. The case α(x) = 1 will be evaluated at the end. In order to

perform a reparametrization invariant investigation, the topological operator (2.16)

ought to be considered in its covariant formulation

Q[ϕ] =
1

2π

∫
d2x ϵµν

√
hϵab ∂µϕ

a∂νϕ
b , (5.1)

where h = dethab. It is reasonable to start the analysis with a simple ansatz for the

EAA which consists only of the operators of the bare action, assuming that these

are the dominant ones. If one takes the auxiliary field α(x) into account, the ansatz

reads

Γk[ϕ] =
1

2
ζk

∫
d2x hab(ϕ)∂µϕ

a∂µϕb +
i

2π
θk

∫
d2x ϵµν

√
hϵab α ∂µϕ

a∂νϕ
b , (5.2)

A covariant formulation of the flow equation of the model will be derived in the

next section, before the renormalization of the coupling ζ is discussed in Sec. 5.2.

Thereafter the renormalization of θ is analyzed, first in the UV (Sec. 5.3) and

subsequently in the IR (Sec. 5.4). The former will rely on an off-diagonal heat

kernel expansion and the latter on a “fermionic” reformulation of the flow equation

and an application of the index theorem. Since these computations do not commute

with α(x)→ 1, it should be kept in mind that the results of this analysis only hold

true if one regards the topological term as the limit of such a more general operator.

5.1. Topological Terms in the FRG

The geometrical properties of nonlinear O(N) models, the covariant background field

method and its application in the FRG formalism were already discussed in much

detail in Sec. 3.2. Analogous to the standard action functional, the topological term

(5.1) can be expanded in powers of fluctuations ξ about the background φ according

to (3.9), by utilizing an affine parametrization φλ, λ ∈ [0, 1] of the geodesic which
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5. Renormalization of the CP1 Model with Topological Term

connects φ with the full field ϕ:

Q[ϕ] =
∑
n≥0

1

n!

dn

dλn
Q[φλ]

∣∣∣∣
λ=0

=
∑
n≥0

1

n!
∇n

λQ[φλ]

∣∣∣∣
λ=0

. (5.3)

Owing to the one-loop structure of the flow equation (3.14), the renormalization of

the single-field action functional is driven by the second order in the fluctuations ξ,

which is in case of the topological charge

Q[φ, ξ]|ξ2 =
1

2π

∫
d2x ϵµν

√
hϵab α

(
∇µξ

a∇νξ
b +Ra

cde∂µφ
e∂νφ

bξcξd
)
. (5.4)

Again, the covariant derivative as well as the metric and the Riemann tensor have to

be understood as evaluated at the base-point φ. Taking into account the commutator

of the pullback derivatives (2.8) and using the first Bianchi identity, one can calculate

the second derivative w.r.t. ξ , evaluated at the base-point ϕ = φ:

Q
(0,2)
ab [φ, 0] = − 1

π
ϵµν(∂µα)

√
hϵac∇c

ν ,b . (5.5)

This result shows that the flow equation is sensitive to the topological term, only if it

is considered in a generalized form which contains a spacetime-dependent auxiliary

field. It follows

Γ
(0,2)
k,ab [φ, 0] =− ζk(∇µ∇µ)ab + ζk Racdb∂µφ

c∂µφd︸ ︷︷ ︸
=Mab

− i

π
θk ϵ

µν(∂µα)
√
hϵac∇c

ν ,b︸ ︷︷ ︸
=Bab(α)

= ζk ∆̃ab −Bab(α) . (5.6)

As the physical properties of the system should be independent of the specific reg-

ularization scheme, there is some freedom to choose an appropriate regulator Rk.

A reasonable choice with regard to the following computations is a coarse-graining

with respect to the Laplacian operator ∆̃ab = −(∇µ∇µ)ab+Mab. For the truncation

studied here, a coarse-graining w.r.t. ∆ab = −(∇µ∇µ)ab, for instance, would not

change the discussion of the renormalization in the UV. In the IR, however, the

choice ∆̃ab becomes particularly useful, since it allows for an interesting reformula-

tion of the problem, see Sec. 5.4.

In order to make the computations more transparent, it is furthermore convenient
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to rescale the regulator and extract a factor2 ζk. The regulator thus reads

Rk = ζkRk(∆̃) ⇒ Ṙk = ζk
(
Ṙk(∆̃)− ηζRk(∆̃)

)
with ηζ = −

ζ̇k
ζk
. (5.7)

In case a further specification of the regulator Rk is necessary in this chapter, the

optimized regulator (2.34) will be used.

The beta functions, βζ = ζ̇k and βθ = θ̇k, can be determined by matching the corre-

sponding operators on both sides of the flow equation, which is given in (3.14). As

mentioned in Sec. 3.2, the only way to determine the renormalization of a covariant

single-field functional is to evaluate the flow equation at ϕ = φ, i.e. ξ = 0. This is

also a convenient choice from a computational point of view and the l.h.s. of (3.14)

simplifies to

Γ̇k[φ] =
1

2
βζ

∫
d2x hab(φ)∂µφ

a∂µφb +
i

2π
βθ

∫
d2x ϵµν

√
hϵab α ∂µφ

a∂νφ
b . (5.8)

In order to project the r.h.s. of (3.14) onto these operators, an expansion in B(α)

is employed which is justified for small fluctuations ∂µα and leads to a separation of

symmetric and antisymmetric tensors:

Γ̇k =
1

2
Tr

{
ζk
(
Ṙk(∆̃)− ηζRk(∆̃)

)
ζkRk(∆̃) + ζk∆̃−B(α)

}

=
1

2
Tr


Ṙk − ηζRk

Rk + ∆̃︸ ︷︷ ︸ + ζ−1k (Ṙk − ηζRk)(Rk + ∆̃)−1B(α)(Rk + ∆̃)−1 +O(B2)


=

1

2
Tr
{

W (∆̃) + ζ−1k B(α) f(∆̃) + O(B2)
}
. (5.9)

The terms of order O(B2) will be neglected in the following analysis. It was explic-

itly checked that they only yield terms of fourth or higher order in the derivatives

which are not considered in the truncation.

The first term in (5.9) contains no antisymmetric tensor and hence does not con-

tribute to the running of θ. It will be discussed first. The relevant contributions to

βθ are given by the second term and will be investigated in Sec. 5.3 and 5.4, where it

will also become apparent that the second term does not contribute to the running

of ζ.

2This rescaling is compatible with the required asymptotic behavior of the regulator owing to the
well-established asymptotic freedom of the model with regard to the coupling g = ζ−1/2.
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5.2. The Running of ζ

The renormalization of ζ is determined solely by the expression 1
2
Tr
{
W (∆̃)

}
, which

can be calculated by means of a Laplace transform and a heat kernel expansion:

1

2
Tr
{
W (∆̃)

}
=

1

2

∫ ∞
0

ds W̃ (s) Tr
{
e−s∆̃

}
=

1

2

∫ ∞
0

ds W̃ (s)
1

4πs

∞∑
n=0

sncn .

The first few coefficients of this heat kernel expansion are well-studied, cf. [121].

Only c1 = −
∫
x
Ma

a, with Mab defined in Eq. (5.6), affects the running of ζ, because

all coefficients cn with n ≥ 2 are of higher orders in the derivatives, and c0 simply

yields a field-independent renormalization of the vacuum energy. The s-integration

for n = 1 simplifies to
∫∞
0
ds W̃ (s) = W (0). For the optimized regulator given

above, this expression is equal to 2−ηζ . The trace of −Mab in target space yields

hab ∂µφ
a∂µφb, since Rabcd = hachbd − hadhbc on S2, and one can relate both sides of

the flow equation such that

1

2
βζ

∫
d2x hab(φ)∂µφ

a∂µφb =
1

8π
(2−ηζ)

∫
d2x hab(φ)∂µφ

a∂µφb

⇒ βζ =
1

4π
(2− ηζ) ⇔ βζ =

2ζk
4πζk − 1

. (5.10)

Note that g with ζ = g−2 is the usually studied coupling of the model and its beta

function is

βg = −
1

4π
g3
(
1− g2

4π

)−1
. (5.11)

This result confirms the well-known asymptotic freedom of the nonlinear sigma

model in two dimensions [41]. The pole at g2 = 4π is only an unphysical artefact of

the specific regulator choice (5.7). The beta functions (5.10) and (5.11) agree with

previous computations within the FRG scheme [43], apart from an unimportant nu-

merical factor which is due to a slightly different regularization.

Since the mass spectrum of the theory, i.e. the threshold in the flow equation, de-

pends on θ, one should expect that also βζ is affected by this parameter. The beta

function (5.10), however, is independent of θ, and higher orders in B(α) in the ex-

pansion (5.9) do not influence the running of ζ, either, but only yield antisymmetric

tensors . The absence of a θ-dependence is not a shortcoming of the specific expan-

sion. In an alternative treatment of the flow equation by means of a heat kernel

expansion of a modified Laplacian, which incorporates the derivative operator B(α),

βζ is also independent of θ.

A direct investigation of the mass spectrum of the nonlinear sigma model is difficult
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within the covariant FRG scheme employed here, since the introduction of a mass

term for the full field ϕ or the background φ would break the reparametrization

invariance. One could introduce a covariant mass term m2
khab(φ)ξ

aξb for the fluc-

tuations and compute its running in the way outlined in [79]. However, explicit

calculations show that the flow of m2
k is not affected by θk, either. One has to con-

clude that the chosen ansatz for the effective action is apparently not sensitive to the

nontrivial θ-dependence of the spectrum, and one ought to study larger truncations

for this purpose.

5.3. Renormalization of θ in the UV

In order to evaluate the second term in (5.9), one can again apply a Laplace trans-

form, f(∆̃) =
∫∞
0
ds f̃(s) exp (−s∆̃) , and evaluate the action of B(α) on this ex-

pression by means of off-diagonal elements of a heat kernel expansion:

Tr
{
ζ−1k B(α)f(∆̃)

}
(5.12)

=
i

π

θk
ζk

∫
d2x d2y ϵµν

√
hϵab

∫ ∞
0

ds f̃(s)
⟨
x| (∂µα)∇ν |y

⟩bc︸ ︷︷ ︸
=∂µα(x)∇ν(x)δ(x−y)

⟨
y| e−s∆̃ |x

⟩ a
c︸ ︷︷ ︸

≡Ω(y,x,s)

= − i

π

θk
ζk

∫
d2x d2y ϵµν

√
hϵab

∫ ∞
0

ds f̃(s) α(x) δ(x− y) ×

×
(
1

2
Hµν(y)Ω(y, x, s) +∇µ(x)∇ν(y)Ω(y, x, s)

)ba

,

where Hµν is the commutator of the pullback derivatives introduces in (2.8). Follow-

ing the reasoning that the limit α(x)→ 1 is performed at the end, it is justified to

neglect the surface terms coming from integration by parts. Since the infinitesimal

separation of x and y regularizes the expression and provides access to nontrivial

information about the UV, the δ-function δ(x− y) ought to be understood as limit

y → x which has to be performed carefully.

In order to evaluate (5.12), appropriate expressions for the off-diagonal elements

Ω(x, y, s) are required, which shall be derived here. Note that the indices of the tar-

get manifold will be suppressed for sake of brevity and that the following derivation

applies for two dimensions, but could be generalized to other dimensions. Starting
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with the generic ansatz

Ω(x, y, s) =
⟨
x
∣∣e−s∆̃∣∣y⟩ = 1

4πs
e−

|x−y|2
4s

∞∑
n=0

sncn(x, y) , (5.13)

the following constraint can be deduced from
(

d
ds

+ ∆̃x

)
Ω(x, y, s) = 0 for the coeffi-

cients cn(x, y):

n cn + (xµ − yµ)∇xµ cn + ∆̃x cn−1 = 0 . (5.14)

For n = 0 the constraint simplifies to (xµ − yµ)∇xµc0 = 0 and is solved by

c0(x, y) = P e−
∫ x
y dzµ Γ∂µφ , (5.15)

where P denotes the ordering of the operators according to the path from y to x,

which is understood to be a straight line here. The covariant derivative ∇xµc0(x, y)

was discussed in much detail, for instance, in (the appendix of) [122] for the case

of a gauge field and the result can be transferred to the pullback connection Γ∂µφ

with little effort. It yields

∇xµ c0(x, y) =

∫ 1

0

dt t (x−y)ρ c0(x, z)Hρµ(z) c0(z, y) with z = y + t(x−y) . (5.16)

This expression can be expanded in different ways:

∇xµ c0(x, y) (5.17)

= −1

2
c0(x, y)Hµρ(y)(x− y)ρ +

1

3
c0(x, y)∇σHµρ(y)·(x− y)σ(x− y)ρ +O(x− y)3

= −1

2
Hµρ(x)(x− y)ρc0(x, y) +

1

6
∇σHµρ(x)·(x− y)σ(x− y)ρc0(x, y) +O(x− y)3 .

While Eq. (5.16) proves that (xµ − yµ)∇xµc0 = 0 due to the antisymmetry of Hρµ ,

especially the relations (5.17) will be relevant for the calculation of (5.12). Based

on c0 , a recursive solution for the higher coefficients can be constructed as3

cn(x, y) = −c0(x, y)
∫ 1

0

dλ λn−1
(
c−10 (x, y) ∆̃ cn−1(x, y)

)∗λ
. (5.18)

3The expression is inspired by the solution to a similar problem in gauge theory [123], which is
yet a bit simplier owing to the choice of a specific gauge.
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The symbol
(
A(x, y)

)∗λ
denotes an expansion4 of some operator A(x, y) about y in

powers of (x− y)µ, in which each factor (x− y)µ is multiplied by λ. Although this

expression is rather abstract, it will be sufficient for the purposes of this investigation.

Remembering that (xµ − yµ)∇xµ c0 = 0, it indeed provides the correct off-diagonal

heat kernel coefficients:

(xµ − yµ)∇xµcn =− c0
∫ 1

0

dλ λn−1(x− y)µ∂xµ

(
c−10 ∆̃ cn−1

)∗λ
=− c0

∫ 1

0

dλ λn−1λ
∂

∂λ

(
c−10 ∆̃ cn−1

)∗λ
=− c0

[
λn
(
c−10 ∆̃ cn−1

)∗λ]λ=1

λ=0

+ n c0

∫ 1

0

dλ λn−1
(
c−10 ∆̃ cn−1

)∗λ
= − ∆̃ cn−1 − n cn . (5.19)

Based on this expansion of Ω(x, y, s) one can evaluate the trace (5.12). According

to (5.18), all cn with n ≥ 1 are of second or higher order in the derivatives, such that

the action of ∇µ(y)∇ν(x) on these coefficients yields only terms of fourth or higher

order in the derivatives which are not considered in our truncation. The derivatives

of c0 are given in (5.17). Applying them in (5.12) yields

Tr
{
ζ−1k B(α)f(∆̃)

}
(5.20)

= − i

π

θk
ζk

∫
d2xϵµν

√
hϵab α(x) lim

y→x

∫ ∞
0

ds f̃(s)
1

4πs

(
1

2
Hµν(x) + δµν

1

2s

− 1

4s2
(x−y)µ(x−y)ν+

(x−y)ν
2s

Hµρ(x)(x−y)ρ+
1

2
Hνµ(x)

)b
c

e−
|x−y|2

4s cca0 (x, y)+O(∂φ)3

= − i

π

θk
ζk

∫
d2x ϵµν

√
hϵab α lim

y→x

∫ ∞
0

ds f̃(s)
1

8πs2
e−

|x−y|2
4s ×

×Hbc
µρ(x)(x− y)ρ(x− y)ν (c0)c

a(x, y) +O
(
(∂φ)3

)
.

The function c0(x, y) = e−
∫ x
y Γ∂φ dx′

of the pullback connection can be regarded as

the identity in the further calculations, as the higher orders in the corresponding

series only lead to terms which are beyond the chosen truncation. The tensor ϵabH
ba
µρ

is equal to −2ϵab∂µφa∂ρφ
b, taking into account that Hba

µρ = Rba
cd∂µφ

c∂ρφ
d and that

for a sphere Rabcd = hachbd − hadhbc. In two dimensions the Lorentz indices can be

4Owing to the recursive construction, the coefficient cn is expandable about y in powers of (x−y)µ
as long as cn−1 is, and because c0 is expandable, this holds true for all cn.
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5. Renormalization of the CP1 Model with Topological Term

rearranged as follows

ϵab ϵ
µν ∂µφ

a∂ρφ
b (x− y)ρ (x− y)ν = ϵab ∂1φ

a∂2φ
b(x− y)22 − ϵab ∂2φa∂1φ

b(x− y)21

=
1

2
ϵab ϵ

µν ∂µφ
a∂νφ

b(x− y)2 . (5.21)

The renormalization of the topological parameter θ can now be determined by a

comparison of (5.20) with the l.h.s. of the flow equation as it is given in Eq. (5.8):

i

2π
βθ

∫
d2x ϵµν

√
hϵab α ∂µφ

a∂νφ
b

=
i

2π

θk
ζk

∫
d2x ϵµν

√
hϵab α lim

y→x

∫ ∞
0

ds f̃(s)
(x− y)2

8πs2
e−

|x−y|2
4s ∂µφ

a∂νφ
b

=⇒ βθ =
θk
ζk

lim
u→0

∫ ∞
0

ds f̃(s)
u2

8πs2
e−

u2

4s . (5.22)

This beta function vanishes for any finite value of s in the limit u→ 0. In order to

analyze if the limit s → 0 yields relevant contributions, it is useful to notice that

the inverse Laplace transform f̃(s) is in fact a function of k2s which can be denoted

by σ(k2s):

σ(k2s) = L−1
[
Ṙk(z)− ηkRk(z)(
z +Rk(z)

)2
]
(s) (5.23)

=−L−1
[
k∂k
(
z +Rk(z)

)−1]
(s)−L−1

[
ηk Rk(z)(
z +Rk(z)

)2
]
(s)≡−k∂k σ1(k2s)−ηk σ2(k2s) .

This can be understood if one considers the Laplace transform at k = 1, rescales

with z → z/k2 and remembers that the structure of the regulator is z · r(z/k2) for
dimensional reasons. The case σ1, for instance, reads

(
z +Rk=1(z)

)−1
=

∫ ∞
0

ds σ1(s) e
−sz (5.24)

⇒ k2
(
z +Rk(z)

)−1
=

∫ ∞
0

ds σ1(s) e
−s z

k2 =

∫ ∞
0

ds′ k2σ1(k
2s′) e−s

′z .

The limit s → 0 can be probed in a controlled way, if one integrates βθ = 2 k2∂k2θ

from the extreme UV down to some finite k0 and applies two substitutions, first
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5.3. Renormalization of θ in the UV

s→ 1
4
u2s and then p2 ≡ 1

4
u2k2s:

θ(∞)− θ(k20) =
∫ ∞
k20

dk2 lim
u→0

∫ ∞
0

ds
u2

8πs2
e−

u2

4s

[
−∂k2 σ1(k2s)− ηk

1

2k2
σ2(k

2s)

]
θ

ζ
(k2)

= − lim
u→0

∫ ∞
0

ds
1

2πs2
e−

1
s

∫ ∞
k20

dk2
[
∂k2 σ1

(
1

4
u2k2s

)
+ ηk

1

2k2
σ2

(
1

4
u2k2s

)]
θ

ζ
(k2)

= −
∫ ∞
0

ds
1

2πs2
e−

1
s lim

u→0

∫ ∞
1
4
k20 u2s

dp2
[
∂p2σ1(p

2)
θ

ζ

(
4p2

u2s

)
+

1

2p2
σ2(p

2) η

(
4p2

u2s

)
θ

ζ

(
4p2

u2s

)]
The limit u→ 0 can be performed, while the s-integration remains finite and simply

yields 1
2π
. The result is

θ(∞)− θ(k20) =
1

2π

∫ ∞
0

dp2
[
−∂p2σ1(p2)

θ

ζ
(∞)− 1

2p2
σ2(p

2) η(∞)
θ

ζ
(∞)

]
. (5.25)

The p2-integration is finite for an appropriate choice of regulator5. The renormal-

ization of θ down to any finite scale k0 obviously depends only on the values of θ,

ζ and ζ̇ in the extreme UV and is formally given by a discrete “jump” at k = ∞.

However, it is well-known and was confirmed in Sec. 5.2 that the theory is asymp-

totically free. This statement refers to the coupling g = ζ−1/2, which means that ζ

diverges in the UV. The corresponding beta function, in contrast, remains finite for

ζ → ∞, as given in (5.10). As a result, there is in fact no renormalization of the

topological term at any finite k, as long as the bare coupling θ∞ does not diverge:

θk = θ∞ for any k > 0 . (5.26)

This finding agrees with the usual expectation that the topological charge is not

renormalized. However, the argumentation given above holds true only for finite k0,

but cannot be extended to k = 0. A careful investigation of the extreme IR and the

zero modes is additionally required and will be given in the following chapter.

If one compares the analysis presented above with the one in [28], the structural

similarities between Yang-Mills theory and the nonlinear sigma model are, once

more, remarkable. According to [28], the renormalization of the topological charge

in Yang-Mills theories is restricted for k > 0 to a jump in the extreme UV, similar

to (5.25). However, taking the asymptotic freedom of the theory into account (i.e.

ḡ → 0) as it was done here, this jump vanishes as well.

5For instance,
∫∞
0

s−1σ2(s) ds =
∫∞
0

dz Rk=1(z)[z +Rk=1(z)]
−2.
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5. Renormalization of the CP1 Model with Topological Term

5.4. Renormalization of θ in the IR

In Yang-Mills theory the investigation of the topological parameter in the IR [28]

is based on a reformulation of a four-dimensional problem in terms of an eight-

dimensional representation of the Clifford algebra [27] which relies on the ’t Hooft

symbol ηαβν [124]. A similar reformulation in a “fermionic language” is possible in

case of the nonlinear sigma model and allows to study the zero modes. However,

since there is no ’t Hooft symbol available, one first has to develop a suitable repre-

sentation of the Clifford algebra.

Consider a four-dimensional representation of the Gamma matrices Γµ which is

based on two-dimensional matrices Ωµ as follows

Γµ ≡

[
0 Ωµ

ΩT
µ 0

]
with Ω1 ≡

(
0 1

−1 0

)
= ϵab , Ω2 ≡

(
1 0

0 1

)
= δab . (5.27)

Note that this construction does not introduce additional spinorial degrees of free-

dom, but is built upon the symmetric and the antisymmetric tensor in the tanget

space of the model. The Γµ are defined on the tensor product of the tangent space

with itself. The identities

ΩµΩ
T
ν = δµνδ

a
b + ϵµνϵ

a
b ΩT

µΩν = δµνδ
a
b − ϵµνϵab (5.28)

⇒ ΩµΩ
T
ν + ΩνΩ

T
µ = ΩT

µΩν + ΩT
νΩµ = 2δµνδ

a
b ΩµΩ

T
ν − ΩT

µΩν = 2ϵµνϵ
a
b

will become useful and ensure the algebraic relation

{
Γµ,Γν

}
=

[
ΩµΩ

T
ν + ΩνΩ

T
µ 0

0 ΩT
νΩµ + ΩT

νΩµ

]
= 2δµν14 . (5.29)

Moreover, one can define the gamma matrix Γ∗,

Γ∗ = −

[
ϵab 0

0 ϵab

]
Γ1Γ2 =

[
−ϵabΩ1Ω

T
2 0

0 −ϵabΩT
1Ω2

]
=

[
12 0

0 −12

]
, (5.30)

{
Γ∗,Γµ

}
= 0 , Γ2

∗ = 14 , (5.31)

which provides a notion of chirality. In the following computations the Dirac oper-

ators

/D ≡ Γµ∇µ, D ≡ Ωµ∇µ, and DT ≡ ΩT
µ∇µ (5.32)
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5.4. Renormalization of θ in the IR

will be of particular importance and one may wonder if these expressions are well-

defined, since the connection Γa
cb∂µφ

c acts on the same space as the gamma matri-

ces. However, both objects are simply linear combinations of ϵab and δ
a
b and hence

commute with each other.

By means of these Dirac operators the flow equation can be rewritten. According

to (5.9), the running of θ is determined by:

i

2π
βθ

∫
d2x ϵµν

√
hϵab α ∂µφ

a∂νφ
b =

i

2π

θk
ζk

∫
d2x ϵµν

√
hϵab ∂µα(x)

⟨
x|∇νf(∆̃)|x

⟩ba
=

i

4π

θk
ζk

∫
d2x ∂µα(x) tr2

{⟨
x|(ΩµDT − ΩµTD)f(∆̃)|x

⟩}
, (5.33)

where tr2 denotes the trace in the two-dimensional tangent space of the model. The

flow equation holds true for each field configuration and it can hence be evaluated

at a configuration which is convenient from a computational point of view. In

the present case self-dual fields are a particular useful choice, i.e. fields for which

∂µφa = ϵµρ ϵab ∂ρφ
b. Remembering that Rabcd = hachbd − hadhbc and [∇µ,∇ν ]ab =

Rabcd∂µφ
c∂νφ

d, it is easy to check that for self-dual fields

Mab = ϵµνϵac(∇µ∇ν)
c
b ,

∆̃ab = −DTD , ∆̃ab − 2Mab = −DDT . (5.34)

With these relations the r.h.s. of (5.33) can be written as

i

4π

θk
ζk

∫
d2x ∂µα(x) tr2

{⟨
x| (ΩµDT − ΩµTD)f(−DTD) |x

⟩}
(5.35)

=
i

4π

θk
ζk

∫
d2x ∂µα(x) tr2

{⟨
x|ΩµDTf(−DDT)− ΩµTDf(−DTD)

−ΩµDT
(
f(−DDT)− f(−DTD)

)
|x
⟩}

.

The last term in (5.35) is of order O
(
(∂φ)3

)
and can be neglected, since f(−DDT)

and f(−DTD) differ only in terms of second order in the derivatives. The two-

dimensional trace can now be expressed by means of the gamma matrices as a
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5. Renormalization of the CP1 Model with Topological Term

four-dimensional trace:

i

4π

θk
ζk

∫
d2x ∂µα(x) tr2

{⟨
x|ΩµDTf(−DDT)− ΩµTDf(−DTD)|x

⟩}
=

i

4π

θk
ζk

∫
d2x ∂µα(x) tr4

{⟨
x|

[
1 0

0 −1

][
ΩµDT 0

0 ΩµTD

]
f

([
−DDT 0

0 −DTD

])
|x
⟩}

=
i

4π

θk
ζk

∫
d2x ∂µα(x) tr4

{⟨
x|Γ∗Γµ /Df(− /D2

)|x
⟩}

. (5.36)

In the IR regime the trace is well-defined due to the presence of the regulator and

one can integrate by parts6 in order to shift the derivative acting on α(x) to the

trace. It acts on bra and ket vector separately and can be contracted7 with Γµ.

The resulting expression shows that only the zero modes provide a non-vanishing

contribution:

i

2π
βθ

∫
d2x ϵµν

√
hϵab α ∂µφ

a∂νφ
b = − i

2π

θk
ζk

∫
d2x α(x) tr4

{⟨
x|Γ∗ /D

2
f(− /D2

)|x
⟩}

.

(5.37)

The spectrum of − /D2
is degenerate and all non-zero-modes appear in pairs of op-

posite “chirality”, which cancel each other in the trace due to Γ∗ . In order to

determine the contribution of the zero modes, one can integrate the beta function

(5.37) between k = 0 and a finite, but arbitrarily small k0. Since ζ̇ is a continuous

function (as confirmed in Sec. 5.2), it is a reasonable approximation to consider

ζk = ζ0 and ζ̇k = ζ̇0 in this infinitesimal momentum range. The renormalization of

θ due to IR effects is hence given as

(θk20 − θ0)
∫
d2x ϵµν

√
hϵab α ∂µφ

a∂νφ
b = Tr4

{
α ζ−10 Γ∗ lim

λ→0

∫ k20

0

dk2 θ(k2)λf(λ)

}

= Tr4

{
α ζ−10 Γ∗ lim

λ→0

∫ k20

0

dk2 θ(k2)λ

(
− d

dk2
[Rk(λ) + λ]−1− 1

2k2
ηζ0

Rk(λ)

(Rk(λ) + λ)2

)}
.

6Assuming appropriate properties of α(x) such that the surface terms can be neglected. Remem-
ber that the limit α(x)→ 1 is performed at the end.

7The matrix Γµ anticommutes with Γ∗ and, utilizing the cyclicality of the trace, it can be con-

tracted with the derivative acting on |x
⟩
. The resulting /D then commutes with /Df(− /D

2
).
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Owing to the structure λ r(λ/k2) of the regulator, one can apply a reparametrization

p2 = λ−1k2 which yields

Tr4

{
α ζ−10 Γ∗ lim

λ→0

∫ k20/λ

0

dp2 θ(p2λ)

(
− d

dp2
[Rp(1) + 1]−1 − 1

2p2
ηζ0

Rp(1)

(Rp(1) + 1)2

)}

Now the limit λ → 0 can be performed. Note that a possible contribution from

p2 = k20/λ→∞ is suppressed by the regulator expressions. The result is

(θk20 − θ0)
∫
d2x ϵµν

√
hϵab α ∂µφ

a∂νφ
b (5.38)

= −Tr4
{
α ζ−10 Γ∗

∫ ∞
0

dp2 θ0

(
d

dp2
[Rp(1) + 1]−1 +

1

2p2
ηζ0

Rp(1)

(Rp(1) + 1)2

)}
The first part of the p-integral simply yields −θ0 due to limp→∞Rp(1) = ∞ and

limp→0Rp(1) = 0. In order to compute the second part one has to specify Rk. Using

the optimized regulator, whose rescaled version reads Rp(1) = (p2−1)Θ(p2−1), the

integral yields θ0
1
35
ηζ0 , such that

(θk20 − θ0)
∫
d2xϵµν

√
hϵab α ∂µφ

a∂νφ
b =

θ0
ζ0

(
1− 1

35
ηζ0

)
Tr4
{
αΓ∗

}
. (5.39)

The trace Tr4 {αΓ∗} ought to be considered in the regularized form lim
s→0

Tr4
{
αΓ∗e

s /D
2}
.

It represents the analytical index of − /D2
and can be directly related to the topo-

logical index according to the Atiyah-Singer index theorem [125].

In order to compute lim
s→0

Tr4
{
αΓ∗e

s /D
2}

one can employ a heat kernel expansion si-

miliar to Eq. (5.13). Starting with the ansatz

⟨
x|es /D

2

|y
⟩
=

1

4πs
e−
|x−y|2

4s

∞∑
n=0

snCn(x, y) , (5.40)

where Cn are 4× 4 matrices defined on the tensor product of the target space with

itself, constraints for these coefficients can be derived in the same way as in Eq.

(5.14) and read

nCn +(x−y)µ
[
∇µ 0

0 ∇µ

]
Cn −

[
∇µ∇µ + ϵabϵ

µν∇µ∇ν 0

0 ∇µ∇µ−ϵabϵµν∇µ∇ν

]
Cn−1=0.

The relevant contribution to the index is provided by C1, since all higher coefficients

are suppressed in the limit s→ 0, while C0 only yields a field-independent vacuum
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renormalization. The coefficient C1 can be constructed from the solution

C0 =

[
c0 0

0 c0

]
, with c0 given in Eq. (5.15) , (5.41)

analogously to (5.18) as

C1 =

[
c+1 0

0 c−1

]
with c+1 = c0

∫ 1

0

dλ
(
c−10 (∇µ∇µ + ϵabϵ

µν∇µ∇ν) c0
)∗λ

c−1 = c0

∫ 1

0

dλ
(
c−10 (∇µ∇µ − ϵabϵµν∇µ∇ν) c0

)∗λ
. (5.42)

Multiplying C1 by Γ∗ and taking the trace, the terms containing ∇µ∇µ cancel each

other, while the terms containing ϵabϵ
µν∇µ∇ν add up. They can be written as

2 ϵacϵ
µν(∇µ∇ν)

c
b = ϵacϵ

µνRc
bde∂µφ

d∂νφ
e = 2 ϵadϵ

µν∂µφ
d∂νφb . (5.43)

Finally, the coincidence limit y → x is taken such that c0 → 12 and the trace yields

lim
s→0

Tr4

{
αΓ∗e

s /D
2
}
= − 1

2π

∫
d2x ϵµν

√
hϵab α ∂µφ

a∂νφ
b . (5.44)

Using this result in Eq. (5.39) one obtains an explicit expression for the renormal-

ization of θ in the extreme IR:

θk20 − θ0 = −
1

2π

θ0
ζ0

(
1− 1

35
ηζ0

)
. (5.45)

Since the topological parameter θk does not run from the UV down to any finite

scale k0, the relation between bare and full effective coupling is solely determined

by this “jump” in the IR and reads

θ0 =
(
1− 1

2π

(
1− 1

35
ηζ0
)
ζ−10

)−1
θ∞ . (5.46)

Inserting the result (5.10) for ζ̇0 and rearranging the expression leads to

θ0 =
2π ζ0 (4π ζ0 − 1)

8π2 ζ20 − 6π ζ0 +
33
35

θ∞ . (5.47)
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The bare and the renormalized parameter are linearly related by a factor that de-

pends only on the effective coupling ζ0 in the infrared. The nonlinear O(3) model

apparently constitutes another example of a theory with topological term in which

the corresponding parameter is affected by a renormalization in the IR, similar to

Yang-Mills and Chern-Simons theory [28, 29]. It should be emphasized, yet, that

the derivation of (5.47) relied on a generalization of the topological operator by in-

troducing an auxiliary field, for which the limit corresponding to the actual winding

number is considered at the end. The physical interpretation of this construction

amounts to a topological term which arises from an interaction with a scalar field

that assumes a constant expectation value at the end.

The observed renormalization is an effect of the extreme IR. It thus seems to be

impossible to investigate this issue further by means of methods like e.g. lattice

computations, which are restricted to finite volumnes. On the other hand, result

(5.47) does not contradict recent numerical simulations [117, 120] which showed that

the θ-term is a relevant operator and does not renormalize to zero8.

A comment on the periodicity properties shall conclude this discussion: The topo-

logical charge is introduced as a phase in the path integral and since the winding

number Q assumes integer values for smooth fields, one would expect that the phys-

ical properties of the theory are 2π-periodic in θ. The renormalization derived in

(5.47), however, is linear in θ. Although many other analytic and numerical com-

putations, cf. for instance [115, 118, 59], also lack periodicity, it yet demands an

explanation. It was conjectured in [59] that the |θ| > π vacua of the model suffer

from a strongly increased pair production which leads to a break down of these vacua

until values |θ| < π are reached. This conjecture was motivated by such findings

in the massive Schwinger model [126, 127] which has similar properties as the CPn

models with regard to the vacua properties. In fact, recent large-n computations

[128] indicate that such effects are present in CPn models as well. Following this

argumentation, one should trust the result (5.47) only for θ < π.

5.5. Conclusions

The renormalization of the topological charge in the CP 1 ∼= O(3) nonlinear sigma

model was studied by means of the Functional Renormalization Group. A similar

approach could be applied as in Yang-Mills theory [28] where a nontrivial renor-

malization of the topological operator was found in the extreme UV and IR, by

considering the topological term as a specific limit of a more general operator. In

8Note that the value of the pathologic ζ0 = 1
4π is only an artefact of the regulator choice.
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order to compute the renormalization in the UV, an off-diagonal heat kernel ex-

pansion as well as a careful analysis of a coincidence limit were performed. The

extreme IR was studied by means of a reformulation of the flow equation in terms

of a specific representation of the Clifford algebra, which enabled to compute the

contributions of zero modes using the index theorem.

The analysis showed that a possible renormalization of θ in the UV is suppressed

by the asymptotic freedom of the model. In the IR, however, a discrete and finite

renormalization occurs as an effect of zero modes. In accordance with the findings

in Yang-Mills and Chern-Simons theories [28, 29], this article thus provides further

evidence that topological operators can be affected by a renormalization in the ex-

treme IR. It should be kept in mind, however, that the calculations rely on the

interpretation of the topological charge as a certain limit of an interaction with an

auxiliary field which finally assumes a constant value.
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6. Supersymmetric Extentions and

their Discretizations

The analysis presented in this chapter originates from a collaboration with Daniel

Körner, Andreas Wipf and Christian Wozar and has already been presented in [129].

The idea of symmetry relations between bosonic and fermionic degrees of freedom,

denoted as supersymmetry, first arose in dual models which were an early version of

string theory [130, 131, 132], and independently in [133]. It quickly gained attenta-

tion and supersymmetric field theories were developed systematically [134, 135, 136],

motivated by two remarkable features of this concept: First, supersymmetry is in-

teresting from a conceptual point of view, because it was proven (based on a small

set of physically reasonable assumptions) that fermionic symmetry generators allow

for the only possible nontrivial extension of the Poincaré symmetry [137, 35]. This

extension is given in terms of a graded Lie algebra. The anticommutator of the su-

percharges Qα, as the generators of supersymmetry transformations, is for example

given by:

{QI
α, Q̄

J
β} = 2i δIJγµαβ∂µ = 2 δIJγµαβPµ , I, J = 1, ...,N (6.1)

A characterstic property of theories with (unbroken) supersymmetry is the degener-

acy of the energy spectrum, which is represented in the algebra by the commutator

[
QI

α, Pµ

]
= 0 , I = 1, ...,N . (6.2)

Each excited state is part of a multiplet of superpartners which have the same mass

and are related by supersymmetry transformations.

The second motivation for the study of supersymmetry lies in model building and the

attempt to solve open problems in particle physics. Owing to a cancellation of the

quantum corrections coming from bosonic and fermionic superpartners, supersym-

metric theories have improved renormalization properties. Particular interestingly

aspects are the possibility to solve the hierarchy problem of the Higgs sector and to
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6. Supersymmetric Extentions and their Discretizations

unify electroweak and strong interactions at a high energy scale [138]. Besides this,

supersymmetry has gained attention, as it naturally provides candidates for dark

matter particles [139], and because analytical insights into a confinement mecha-

nism have been obtained in supersymmetric extensions of gauge theory [140, 141].

Finally, supersymmetry is also an important building block of string theories.

Despite this theoretical motivation, there have been no experimental indications

so far that supersymmetry is indeed realized in nature. The masses of the ob-

served fermionic and bosonic particles are not degenerate, such that a mechanism

would be required to explain the breaking of a possible fundamental supersymme-

try. For this purpose many investigations of supersymmetry breaking have been

performed and increasingly refined breaking mechanisms have been suggested, see

e.g. [142, 143, 144, 145].

In spite of the strong interest in supersymmetric models, a non-pertubative inves-

tigation of these theories is restricted by a conceptual shortcoming of the lattice

approach. Supersymmetry is an extension of spacetime symmetry and is hence bro-

ken by the discretization of a theory on the lattice. This breaking is inevitable,

since the Leibniz rule cannot be implemented exactly on the lattice [146]. Even the

restoration of supersymmetry in the continuum limit is not ensured, but requires

the fine tuning of each relevant operators that is due to the symmetry breaking on

the finite lattice. Since this procedure becomes unfeasible in most cases, alternative

approaches have been developed with the aim to maintain at least a part of the

supersymmetry on the lattice [147]. The expectation is that the full symmetry is

automatically restored in the continuum limit without the need for fine tuning, if

a part of the symmetry is already implemented on the lattice. One of these ap-

proaches relies on the possibility to combine supercharges in models with enlarged

superalgebra, i.e. with N ≥ 2, such that they form a nilpotent operator Q which is

employed to construct a Q-exact formulation S = QΛ of the lattice action, where

Λ is some specific functional.

Since two-dimensional CPn models are Kähler manifolds, it is possible to construct

N = 2 supersymmetric extensions of them [61] which can be used as testing ground

for this procedure. These models provide a particular useful testing ground, since

their numerical simulations require less computer resources than e.g. Yang-Mills

theories. Furthermore, it was shown in [148] that the supersymmetry of these the-

ories is not spontaneously broken, so that one can focus on the problem of the

explicit breaking due to the discretization prescription. The Q-exact approach out-

lined above was applied to the supersymmetric CP1 ∼= O(3) model in [149, 150] and

the investigations of Ward identities indicated the restoration of the full supersym-
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6.1. Supersymmetric O(N) Models

metry in the continuum limit. However, the lattice discretization employed in these

investigations explicitly breaks the O(3) symmetry of the theory and numerical sim-

ulations based on this lattice action reveal that the O(3) symmetry is not restored

in the continuum limit. This lattice construction can thus not be identified with the

two-dimensional nonlinear O(3) model1. The test simulations and measurements

which show this failure are presented in more detail in [129].

A more precise analysis of the supersymmetric O(3) ∼= CP1 model with particular

emphasis on the interplay of O(3) and supersymmetry is hence required and shall

be given in this chapter. Although it is crucial that the theory belongs to the class

of CPn models and hence exhibits an N = 2 supersymmetry, the analysis will be

developed in the formulation of the O(N) models, since the features of the O(3)

symmetry are more transparent there. First, a brief introduction to the theory is

given, before a supersymmetric version of the stereographic projection is developed.

This projection will become useful in the construction of a lattice action and in the

derivation of an expression for the second supersymmetry transformation in terms

of explicitly constrained field variables. Based on the latter, the possibility to con-

struct a Q-exact lattice formulation can be analyzed. Finally, a supersymmetric

Ward identity is briefly discussed, before a manifestly O(3) symmetric lattice action

is presented for which explicit numerical results have been obtained.

6.1. Supersymmetric O(N) Models

Supersymmetric O(N) models were first discussed in [152] and [153]. A convenient

way to derive the supersymmetric extension of nonlinear sigma models is provided by

the superspace formalism [154]. Superspace is the extension of the usual spacetime

by additional Grassmanian coordinates θ. Superfields are fields which are defined

on this space (x, θ) and consists of bosonic and fermionic components. The super-

symmetric extension of two-dimensional nonlinear O(N) models can be constructed

in terms of constrained superfields Φ which are real, bosonic N -tupels. They are

defined on a superspace which consists of two real Grassmannian coordinates (θ1, θ2)

that can be combined to a spinor θ. Owing to the nilpotency of these coordinates,

the superfield can be expanded as

Φ(x, θ) = n(x) + iθ̄ψ(x) +
i

2
θ̄θf(x). (6.3)

1Note that the O(3) symmetry of the model cannot be spontaneously broken due to the Mermin-
Wagner theorem [151].
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6. Supersymmetric Extentions and their Discretizations

In accordance with the superfields also the components n and f are real, bosonic N -

tupels, while ψα (α =1, 2) denotes a fermionic N -tupel which fulfills the Majorana

condition. The conventions concerning gamma matrices and the resulting Fierz

relations are described in appendix A.2.

The constraint n2 = 1 of the bosonic fields can be promoted to the superfields, such

that Φ2 = 1. In terms of the component fields, this constraint amounts to

n2 = 1, n ·ψα = 0 and n · f = i
2
ψ̄ψ . (6.4)

The generators Qα of the first supersymmetry act on the space of superfields as

Qα =
∂

∂θ̄α
− i (γµθ)∂µ, Q̄α = − ∂

∂θα
+ i (θ̄γµ)∂µ , (6.5)

and infinitesimal transformations are generated by ϵ̄ Q as

δϵn = iϵ̄ψ, δϵψ = /∂nϵ+ fϵ, δϵf = iϵ̄/∂ψ . (6.6)

The corresponding super-covariant derivative reads

Dα =
∂

∂θ̄α
+ i (γµθ)∂µ, D̄α = − ∂

∂θα
− i (θ̄γµ)∂µ , (6.7)

and anticommutes with the symmetry transformations. It is now simple to construct

supersymmetric functionals as spacetime integrals of the coefficient2 of θ̄θ in any

covariant combination of fields Φ and derivatives DΦ. This follows directly from

(6.5), as supersymmetric transformations affect the term proportional to θ̄θ only by

a total spacetime derivative. Due to the Grassmannian nature of these coordinates,

the projection on the θ̄θ-coefficient can be obtained by integration w.r.t. θ and θ̄.

The supersymmetric extension of the O(N) models can hence be constructed as

S =
1

2g2

∫
d2xd2θ D̄ΦDΦ =

1

2g2

∫
d2x ∂µn∂

µn+ iψ̄/∂ψ − f 2 . (6.8)

By construction, the theory is invariant under the supersymmetry transformations

(6.6) as well as O(N) transformations of Φ or simultanously of n,ψ and f . Addi-

tionally, it exhibits a chiral Z2 symmetry ψ → iγ∗ψ on the classical level. Quantum

fluctuactions, however, dynamically generate a mass term and induce a sponta-

neous breaking of the chiral symmetry [155]. This mass gap could be determined in

[156, 157] by comparing computations of the free energy obtained by the thermo-

2usually called D-term
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6.2. Supersymmetric Stereographic Projection

dynamic Bethe ansatz and by perturbation theory. The former computations rely

on the S-matrix of the theory which was derived in [158]. Since the bosonic field f

appears only quadratic, it can be eliminated by a Gaussian integration. However,

the constraint (6.4) has to be taken into account, such that the integration effects a

substitution f = i
2
(ψ̄ψ)n. The on-shell action is thus

S[n,ψ] =
1

2g2

∫
d2x ∂µn∂

µn+ iψ̄/∂ψ + 1
4
(ψ̄ψ)2 , (6.9)

which is invariant under the on-shell supersymmetry transformations

δϵn = iϵ̄ψ, δϵψ
α = (/∂nϵ)α + i

2
(ψ̄ψ)n ϵα . (6.10)

6.2. Supersymmetric Stereographic Projection

So far the explicitly constrained formulation of the theory has been considered. In

order to analyze the model efficiently by means of numerical simulations, however, it

is favorable to work with unconstrained dynamical degrees of freedom. Stereographic

coordinates are a natural choice for this purpose and the stereographic projection

(2.11) of bosonic fields can directly be extended to the superfields. A real, bosonic,

but unconstrained superfield U (x, θ) = u(x)+iθ̄λ(x)+ i
2
θ̄θg(x) is introduced, which

is related to Φ by(
Φ⊥

ΦN

)
=

1

1 +U 2

(
2U

1−U 2

)
, with Φ⊥ = (Φ1, ...,ΦN−1)

T (6.11)

The superfield U as well as the bosonic fields u and g and the Majorana fermions

λα are (N−1)-tupels. The decomposition of this projection into field components

reads: (
n⊥

nN

)
= ρ

(
2u

1− u2

)
, with ρ =

1

1 + u2
(6.12)(

ψα
⊥

ψα
N

)
= ρ

(
2λα − 4ρ(uλα)u

−4ρuλα

)
,(

f⊥

fN

)
= ρ

(
2g − 2ρu

[
2ug − iλ̄λ+ 4iρ(uλ̄)(uλ)

]
+ 4iρλ̄(uλ)

−4ρug + 2iρ(λ̄λ)− 8iρ2(uλ̄)(uλ)

)
.
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6. Supersymmetric Extentions and their Discretizations

The inverse transformation in superspace is U = Φ⊥/(1+ΦN) and it reads in terms

of field components:

u =
1

2ρ
n⊥, with ρ =

1 + nN

2
(6.13)

λα =
1

2ρ
ψα
⊥ −

1

4ρ2
ψα
N n⊥,

g =
1

2ρ
f⊥ −

1

4ρ2
fN n⊥ −

i

4ρ3
ψ̄NψN n⊥ +

i

4ρ2
ψ̄⊥ψN .

The constrained supersymmetric action is already given in its on-shell formulation

(6.9), such that the projection relations of the auxiliary fields f and g are not

relevant in the following analysis. Applying (6.12), an unconstrained formulation of

the supersymmetric nonlinear O(N) model can be deduced from (6.9) as:

S[u,λ] =
2

g2

∫
ddx ρ2

(
∂µu∂

µu+ iλ̄/∂λ+ 4iρ (λ̄u)γµ(λ∂µu) + ρ2(λ̄λ)2
)
. (6.14)

The corresponding supersymmetry transformations read:

δϵu = iϵ̄λ, δϵλ
α = (/∂uϵ)α + iρ(λ̄λ)u ϵα − 2iρ (λ̄u)λ ϵα . (6.15)

The coordinate transformation affects not only the action, but also the path integral

measure. Since the measure is relevant in Monte Carlo simulations, the Jacobian

of the stereographic projection should be studied in more detail, using a lattice

regularization. Since the transformation only relates values of the fields on a fixed

lattice site, it is sufficient to calculate the Jacobian for a given site. The only

nontrivial factors in the measure of the constrained formulation are δ-functions which

represent the constraints (6.4) for the fields n and ψ. The stereographic projection

is a transformation between N−1 degrees of freedom and the δ-functions ought to

be considered as3

δ(n2−1) δ(nψ1) δ(nψ2) =
1

2|nN |

[
δ
(
nN −

√
1− n2

⊥

)
+ δ
(
nN +

√
1− n2

⊥

)]
×

×
∏
α=1,2

nN δ

(
ψα
N +

n⊥ψ
α
⊥

nN

)
. (6.16)

Consequently, the measure on a given site (whose index will be suppressed for sim-

plicity) transforms as

dn dψ1 dψ2 δ(n2 − 1)δ(n ·ψ1)δ(n ·ψ2) = 1
2
J(u) du dλ1 dλ2 , (6.17)

3Note that δ-functions of Grassmannian variables factorize linearly.
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6.2. Supersymmetric Stereographic Projection

with the Jacobian

J(u) =
√
1− n2

⊥(u)
∣∣sdet{(n⊥,ψ⊥)→ (u,λ)}

∣∣ . (6.18)

According to (6.12) n does not depend on λα, and ψα does not depend on λβ for

β ̸= α. The superdeterminant is hence given by

sdet{(n⊥,ψ⊥)→ (u,λ)} = det(∂n⊥/∂u)

det(∂ψ1
⊥/∂λ

1) · det(∂ψ2
⊥/∂λ

2)
. (6.19)

All three determinants are equal to

(2ρ)N−1
1− u2

1 + u2
with ρ =

1

1 + u2
.

Expressing the square root in (6.18) in terms of the new fields,

√
1− n⊥ =

1− u2

1 + u2
,

the Jacobian finally reads

J(u) =
1

(2ρ)N−1
∝
(
1 + u2

)N−1
. (6.20)

The functional integral measure for the supersymmetric O(3) model in stereographic

coordinates is thus ∏
x

dux dλ
1
x dλ

2
x

(
1 + u2

x

)2
. (6.21)

Note that this computation verified that the Jacobian of the purely bosonic model

is proportional to
√
h with the metric hab = ρ2δab:

JB(u) ∝ ρN−1 =
1

(1 + u2)N−1
. (6.22)

Note that in an off-shell formulation of the theory the superdeterminant of the

transformation is multiplied by det(∂f⊥/∂g) and becomes the identity, as also

det(∂f⊥/∂g) = (2ρ)N−1 1−u2

1+u2 . Furthermore, there is an additional factor |nN |−1

due to the δ-function of the f -constraint (6.4), such that the measure of the path

integral in terms of stereographic coordinates is flat in the off-shell formulation4.

This simplification provides a further example of a cancellation of fermionic and

bosonic contributions due to superymmetry.

4If one integrates out the unconstrained auxiliary field g of the stereographic coordinates, one
obviously reobtains the measure (6.20) coming from the coefficients of g in the action.
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6. Supersymmetric Extentions and their Discretizations

6.3. N = 2 Supersymmetry and Symmetric

Discretizations

It was already mentioned in Sec. 2.3 that the target manifold of the bosonic CP1 ∼=
O(3) model is Kähler and the corresponding potential can be written in terms of

the complex field u = u1 + iu2 as K(u, ū) = log(1 + ūu). It was pointed out in

[61] that a nonlinear sigma model whose target manifold is Kähler possesses an

N =2-supersymmetric extension. In order to determine the second supersymmetry

of the O(3) model, one can study a generic ansatz in terms of the unconstrained

fields (δu = iϵ̄(AI)λ, etc.) and derive constraints for the matrices AI , etc., from the

supersymmetry algebra and the invariance of the action5. Following this approach,

the second pair of supersymmetry transformations can be identified as

δu = σ2ϵ̄λ , δλ = iσ2
(
/∂u− iρ (λ̄λ)u+ 2iρ (λ̄u)λ

)
ϵ , (6.23)

where σ2 denotes the second Pauli matrix, which does not act on spinor indices

here, but on the field components. Both supersymmetries (6.15,6.23) can also be

obtained by deriving the complex supersymmetry from the Kähler potential, cf. [61],

and decomposing the complex fields and complex transformation parameters into

real ones.

It is interesting to see how the second supersymmetry, which is only present in the

case N = 3 but not in generic O(N) models, reads in terms of constrained field

variables. In order to derive this expression the inverse stereographic projection

(6.13) can be applied to (6.23) and one obtains the concise expression

δn = in× ϵ̄ψ , (6.24)

δψ = −n× ∂µn γµϵ− iϵ̄ψ ×ψ ,

where × denotes the vector product of three-tupels. The nontrivial proof that the

action (6.9) is invariant under these transformations is presented in appendix A.3.

The on-shell supersymmetries (6.10) and (6.24) are generated by the supercharges

QI = i

∫
γµγ0ψ∂µn , QII = −i

∫
γµγ0ψ(n× ∂µn) . (6.25)

This result is in agreement with the supercurrents constructed in [152].

5A more detailed example of this approach can be found in [159], where it is applied to the
Wess-Zumino model.
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As mentioned in the introduction of this chapter, it is possible in some theories

with N ≥ 2 superalgebra to formulate a lattice action which is invariant under a

part of the supersymmetry by constructing a nilpotent supercharge Q such that the

lattice action can be written as S =QΛ. This approach is applied to the nonlin-

ear O(3) model in [149, 150], but the chosen lattice discretization breaks the O(3)

symmetry and cannot restore it in the continuum limit. This raises the question

if there are other ways to find a partly supersymmetric but still O(3) symmetric

discretization?

A symmetry of the model has to be a symmetry of the action (6.9), but is also has

to be compatible with the constraints n2 = 1 and nψ = 0. Any supersymmetry

has to be a combination of the transformations given in (6.10) and (6.24). If one

considers the discretization of these, one notices that the first transformation (6.10)

breaks the constraint nψ = 0 on the lattice6, because

δI(nxψ
α
x ) = iϵ̄ψxψ

α
x +

∑
y∈G

nxD
αβ
xynyϵ

β + i
2
(ψ̄xψx)n

2
xϵ

α (A.9)
=
∑
y∈G

nxD
αβ
xynyϵ

β, (6.26)

where the subscripts x, y denote lattice sites and G the set of all these sites. The

variation of the constraint does not vanish for arbitrary nx, no matter which lattice

derivative Dxy one uses, since the Leibniz rule is broken on the lattice [146]. In

contrast, the second transformation respects the constraints at each lattice site7:

δII(nxψx) = i(nx × ϵ̄ψx) ·ψx −
∑
y∈G

nx · (nx ×Dxynyϵ)− inx · (ϵ̄ψx ×ψx) = 0

δII(n
2
x) = 2inx · (nx × ϵ̄ψx) = 0 . (6.27)

One can conclude that no nontrivial combination of the two transformations δI and

δII can be a symmetry of the lattice theory, since the second transformation can-

not restore the violation of the constraints caused by the first one. The second

transformation on its own, however, cannot be a symmetry of the action because of

{QII
α , Q̄

II
β } = 2iγµαβ∂µ. The superalgebra furthermore shows that an approach based

on a nilpotent supercharge is not possible, either, because a nilpotent charge has to

be a combination of both charges QI and QII and hence violates the constraints.

Could one circumvent this restriction by “improving” the lattice action? Compar-

ing the formulation used in this chapter with the one investigated in [149, 150],

one sees that the latter one contains an additional topological term. However,

6Actually, it is also not a symmetry of the discretized action, but the breaking of the constraints
is more severe.

7taking into account the cyclicality of the triple product
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6. Supersymmetric Extentions and their Discretizations

such a term does not affect the supersymmetry transformations (6.10) and (6.24)

and hence cannot solve the problem. From a systematic point of view, there are

only two modifications possible which are compatible with an O(3)-invariant con-

tinuum limit. The first possibility is to modify the terms that are already present

in the action. For example, one could introduce non-local interaction terms like∑
x,y,z,w Cxyzw(ψ̄xψy)(ψ̄zψw) instead of

∑
x(ψ̄xψx)

2 [160]. The second possibility

could be an inclusion of additional terms in the lattice action which vanish in the

continuum limit. Any change of the action, however, does not have an impact on

the constraints and hence cannot prevent their breaking. A modification of the con-

straints, by contrast, would directly alter the geometry of the target manifold and is

thus no alternative. It follows that an improvement of the discretization could only

maintain a part of supersymmetry by rendering the lattice action invariant under

the second transformations. But this is not possible due to the structure of the

superalgebra.

Although these arguments were developed for a specific choice of coordinates, they

also hold true for any reparametrization (n,ψ) → (n′,ψ′), because such a trans-

formation is a bijective mapping between field values at a certain point x in space-

time, which commutes with discretization. As a consequence, one will observe the

same pattern of symmetry breaking as depicted in (6.26) and (6.27) in any other

parametrization. The single ambiguity which could arise from the discretized deriva-

tive of the bosonic field is irrelevant since the presented arguments do not depend

on the details of the lattice derivatives.

One has to conclude that it is simply not possible to construct a discretization of

the nonlinear O(3) model which maintains O(3) invariance as well as an exact su-

persymmetry. From this point of view, the symmetry breaking that occurs in the

ansatz of [149, 150] is inevitable.

Since this analysis is based on the specific geometrical features of the CP1 model,

one cannot immediately draw analogous conclusions for general supersymmetric CPn

models. This issue requires more consideration.

6.4. O(3) Symmetric Discretization and Simulations

Since both symmetries cannot be maintained simultanously and since the Q-exact
formulation is not able to provide an appropriate continuum limit, it is reasonable

to study the system in an O(3) symmetric discretization which breaks the supersym-

metries, but aims to restore these in the continuum limit. In order to obtain such a

discretization, one ought to start with the manifestly O(3) symmetric formulation
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6.4. O(3) Symmetric Discretization and Simulations

given in (6.9). The corresponding lattice action reads

S[n,ψ] =
1

2g2

∑
x,y∈G

(
nT

xKxyny + iψ̄α
xM

αβ
xy ψ

β
y + 1

4
(ψ̄xδxyψy)

2
)
, (6.28)

where α, β denote spinor indices and Kxy and Mαβ
xy represent lattice derivatives,

which are proportional to the identity w.r.t. the O(3) indices. In a next step, the

discretized action (6.28) can be stereographically projected, so that the Monte Carlo

algorithm can be implemented in terms of unconstrained dynamical variables. If one

directly discretized the unconstrained formulation (6.14), ambiguities would arise

concerning the discretization of the metrical factors in front of the kinetic terms.

For instance, it is not clear a priori if ρxρy or 1
2
(ρ2x + ρ2y) is the correct discretization

of ρ2 in front of ∂µu∂
µu =̂ux

∑
y ∆xyuy in order to maintain O(3) invariance8. The

outlined procedure based on the stereographic projection, however, proves that the

geometric mean ρxρy is in fact the right choice. Applying (6.12) to (6.28) yields the

manifestly O(3) symmetric and unconstrained discretization

S[u,λ] = SB + S2F + S4F , with

SB =
1

2g2

∑
x,y

4ρxu
T
xKxyuyρy + ρx(1− u2

x)Kxy(1− u2
y)ρy ,

S2F =
2i

g2

∑
x,y;α,β

λ̄α
x

[(
ρ− 2ρ2uuT

)
x
Mαβ

xy

(
ρ− 2ρ2uuT

)
y
+ 4

(
ρ2u
)
x
Mαβ

xy

(
ρ2uT

)
y

]
λβ

y ,

S4F =
2

g2

∑
x

ρ4x(λ̄xλx)
2 . (6.29)

As described above, the reparametrization yields the nontrivial Jacobian:∏
x∈G

dnx dψ1
x dψ

2
x δ(n

2
x −1)δ(nψ1

x)δ(nψ
2
x) −→

∏
x∈G

dux dλ1
x dλ

1
x

(
1 + u2

x

)2
.

The measure can be absorbed into the action as Sm = −2
∑

x log(1+u
2
x). Moreover,

the four-fermion interaction can be eliminated by a Hubbard-Stratonovich transfor-

mation [161], which introduces an auxiliary bosonic field σ:

S[u,λ] = SB + S2F +
1

2g2

∑
x∈G

(
σ2
x + 4iσxρ

2
x λ̄xλx

)
(6.30)

The action is then quadratic in the fermionic fields, i.e. S̃F =
∑

x∈G λ̄xQ
F
xy(u, σ)λy ,

and a Gaussian integral can be performed formally. The fermion determinant, i.e.

8This is actually the critical point which leads to a symmetry breaking in [149, 150].
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6. Supersymmetric Extentions and their Discretizations

more precisely the Pfaffian9 Pf QF = (detQF)1/2 which appears in the measure is a

function of bosonic fields only and can be incorporated in the action as well. The

result is a purely bosonic path integral which can be efficiently investigated by Monte

Carlo methods:

Z =

∫ ∏
x∈G

duxdσx (detQF)1/2 e−S̃B−Sm , S̃B = SB +
1

2g2

∑
x∈G

σ2
x ,

=

∫ ∏
x∈G

duxdσx e−S̃B[u,σ]−Sm[u]+ 1
2
log detQF[u,σ] . (6.31)

Since the supersymmetry of the continuum CP1 = O(3) model is neither spon-

taneously nor explicitly broken, the bosonic and fermionic masses in the numerical

simulations ought to be degenerate in the continuum limit, where the explicit break-

ing induced by a finite lattice spacing vanishes. The masses hence serve as a direct

indicator of supersymmetry restoration.

Besides the mass degeneracy, also the supersymmetric Ward identity derived for the

bosonic action in [149, 150] is comparably easy to access and will serve as bench-

mark for the restoration of supersymmetry. The lattice action in [149, 150] can be

written in terms of a nilpotent charge Q as S = g−2QΛ and it differs from the

lattice action studied here only by surface terms which should become negligible

on sufficiently large lattices. Since the action as well as the measure are invariant

under the supercharge Q, the following relation holds true for the supersymmetric

continuum theory:
∂ lnZ
∂(g−2)

= ⟨−QΛ⟩ = 0 . (6.32)

Since the field-independent factors in the partition sum Z are usually not relevant, it

was not made explicit in (6.31), but the path integral measure of Z actually contains

the factor gV , where V denotes the total number of lattice sites. The integration of

the auxiliary field is a Gaußian integration of two independent degrees of freedom

at each lattice site which provides a factor g2V . This is partly compensated by the

factor g−V that accompanies the introduction of the field σ. The fermion operator

QF is proportional to g−2, so that its determinant is proportional to g−2·dimQF
,

where dim QF is the dimension of the fermion operator in terms of O(3) and spinor

components as well as lattices sites. The differentiation of (6.31) hence yields

∂ lnZ
∂(g−2)

= −1

2
V g2 − g2

⟨
S̃B

⟩
+

1

2
g2 dimQF . (6.33)

9For the sake of simplicity, the sign of the Pfaffian will be ignored in the discussion here.
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6.4. O(3) Symmetric Discretization and Simulations

In the investigated lattice system is dimQF = 4V and the supersymmetric Ward

identity (6.32) is hence fulfilled if ⟨
S̃B

⟩
=

3

2
V . (6.34)

Having two indicators of supersymmetry restoration, one can now proceed to study

explicit numerical computations. Since the implementation of the algorithm and

the measurements on the resulting configurations were done by Daniel Körner, only

the important results shall be briefly presented in this thesis, while a more detailed

discussion can be found in [129].

Based on the lattice discretization described in this section, numerical simulations

have been performed on Nt ×Ns = 8× 8, 16× 16 and 24× 24 lattices by means of

an HMC algorithm which employs Wilson derivatives :

Mαβ
xy = γαβµ

(
∂symµ

)
xy

+ δαβ
ra

2
∆xy , Kxy = −

(
∂symµ

)2
xy

+
(ra
2
∆xy

)2
, (6.35)

where ∂symµ is the symmetric lattice derivative, ∆xy the lattice Laplacian, a the lat-

tice spacing, and r some mass parameter that is introduces in order to suppress

fermion doublers, see [14]. The Wilson derivatives provide an ultralocal implemen-

tation of the derivative operators, but have the disadvantage that the introduction

of the mass term leads to an explicit breaking of the chiral symmetry10. Further

details of the implementation as well as an alternative formulation based on group

valued variables and the SLAC derivative are given in [129].

In case of intact O(3) symmetry, the expectation value of the constrained fields

should vanish, e.g. ⟨n⟩ = 0. It was confirmed that this holds true and the Monte

Carlo computations are in fact invariant under O(3) transformations11. In order

to investigate supersymmetry, the masses are determined from the O(3) symmet-

ric two-point functions, which can easily be measured on the configurations. The

exponential decrease of the two-point functions in time direction depends on the

energy of the states. The mass can be determined from a cosh-fit of the two-point

functions12, based on the assumption that the lowest eigenstate, i.e. the mass of the

ground state, dominates the faster-decresasing excited states for sufficiently large

lattices. The only quantities in the simulations that provide a unit of lenghts (or

10Note that is is not possible to construct a lattice formulation of fermions in terms of local
interactions which maintains chiral symmetry exact (without introducing additional flavors)
[162].

11There may occur a problematic interplay between the stereographic projection and the HMC
momenta, but this can be resolved by a simple algorithmic modification.

12A cosh-fit has to be applied due to the finite, periodic length of the lattice.
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6. Supersymmetric Extentions and their Discretizations

inverse energy) are the lattice spacing a or the lattice length L = aNs. Physically

meaningful expressions of the masses have hence to be given in units of a−1 or L−1.

In case of supersymmetry the masses of bosonic and fermionic degrees of freedom

ought to be degenerate. The left panel of Fig. 6.1 displays the relation between these

masses for three different lattices sizes V and for different physical lengths L (which

are implicitly measured in units of mF )
13. It shows that no mass degeneracy can

be obtained, not even in the continuum limit (which means larger lattices at fixed

physical volumne), but there is an increasing gap between bosonic and fermionic

masses instead.
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Figure 6.1.: Left Panel: Comparison of bosonic and fermionic masses in units of the
box size L for three different lattice sizes V using Wilson fermions. The
dotted line denotes the case mF = mB. Right Panel: Scaling behaviour
of the bosonic and fermionic mass w.r.t. the fine tuning parameter κ
for N = 162 and g−2 = 1.4 . κc = 0.382(1) is marked by the black dot.
The dashed line denotes the lattice cutoff of 1/16.

This lack of a supersymmetric continuum limit is in fact not really surprising, as

the explicit breaking at finite lattice spacing, which is further amplified by the mass

term of the Wilson derivative, generates relevant operators with respect to renor-

malization. In order to compensate for these, one has to introduce counter terms

by means of a fine tuning procedure. Inspired by a similar issue in case of N = 1

super Yang-Mills theory [163], a fine tuning mass parameter m has been included

in the computations by a modification of the fermionic derivative operator

Mαβ
xy →Mαβ

xy +mδαβδxy.

Similar to the case in super Yang-Mills theory, a useful indicator for the right choice

of m is given by the chiral condensate. For the critical value at which the explicit

13The physical length or the physical size of the spacing depend on the value set for g.
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6.4. O(3) Symmetric Discretization and Simulations

breaking of the chiral symmetry due to the Wilson mass is compensated, the conden-

sate increases sharply and one obtains the signature of a discrete chiral symmetry

which is only spontaneously broken (and additively renormalized); cf. [129] for more

details.
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Figure 6.2.: Comparison of bosonic and fermionic masses in units of the box size L
for three different lattice sizes at κ = κc.

The right panel of Fig. 6.1 shows how the fermionic mass decreases linearly with

increasing fine tuning parameter κ = (4 + 2m)−1, while the bosons are unaffected.

For the critical fine tuning κc the masses are degenerate, whereas the discrepancy

grows again if one increases κ further. As depicted in Fig. 6.2, measurements on

different lattices confirm the degeneracy of fermionic and bosonic masses, if m is

tuned to the value suggested by the chiral condensate. The results indicate that the

degeneracy is stable for increasing lattices sizes and it hence seems possible to obtain

a supersymmetric continuum limit by introducing only one fine tuning parameter.
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Figure 6.3.: Expectation value of the bosonic action S̃B at κ = κc for different box

sizes L. In the supersymmetric continuum limit one expects 2⟨S̃B⟩
3V

= 1.
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6. Supersymmetric Extentions and their Discretizations

This agrees with the measurements of the Ward identity for the bosonic action. The

expectation value of S̃B is displayed in Fig. 6.3, calculated on different lattice sizes

and different physical volumes. Although the deviation from the expected result 3
2
V

is more than 7%, the expectation value seems to approach the correct continuum

limit for increasing lattice sizes.

6.5. Conclusions

In this chapter the supersymmetric extension of the nonlinear O(3) model was ana-

lyzed with particular interest in the discretization of supersymmetric theories. After

an introduction to the concept of supersymmetry and to the specific model, a su-

persymmetric version of the stereographic projection has been developed and the

corresponding transformation of the path integral measure was computed in a lattice

regularization. The second supersymmetry of the CP1 ∼= O(3) model was derived in

terms of constrained field variables and the resulting expression allowed for a con-

clusive discussion of the possibility to construct a lattice discretization of the model

which maintains both O(3) as well as a part of supersymmetry. The analysis how the

symmetry transformations act on the field constraints revealed that such a construc-

tion is impossible. As a consequence, a manifestly O(3) symmetric discretization

was chosen in order to perform explicit Monte Carlo computations with the aim to

restore supersymmetry in the continuum limit. A stereographic projection has been

applied in a second step, such that the algorithm could be implemented in terms

of unconstrained variables. The degeneracy of fermionic and bosonic masses as well

as a Ward identity for the bosonic action served as indicators for the restoration

of supersymmetry. Explicit simulations showed that fine tuning is necessary, but

already the introduction of a single mass parameter led to results which strongly

indicate the restoration of supersymmetry in the continuum limit.
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7. General Conclusion

Nonlinear sigma models have been established as a versatile tool to explore non-

perturbative aspects of quantum field theories. While their structure is rich enough

to provide descriptions of interesting phenomena in many areas of physics, they are

well accessible to various analytic and numerical methods. They can therefore serve

as ideal testing ground for conceptual investigations of different non-perturbative

approaches to quantum field theory. Two of these approaches, lattice field theory

and the Functional Renormalization Group (FRG), have been addressed in this the-

sis. They were studied in their application to nonlinear O(N) and CPn models,

which are employed as toy models or effective descriptions of many physical sys-

tems. Apart from being physically interesting, the numerous previous studies of

these models offered useful benchmarks for the applied methods.

Although lattice field theory and the FRG have already been used for many years

as complementary tools in field theory, only limited knowledge is available about

a direct comparison of both approaches. For this purpose the renormalization flow

of nonlinear O(N) models in three dimenions was examined by means of both ap-

proaches. The model is a particularly interesting testing ground with regard to the

concept of non-perturbative renormalizability.

Starting with the FRG calculations, it was quickly realized that it becomes unfeasi-

ble to study the nonlinear model as a limit of the linear one, if one wants to study

operators of higher orders. Instead, a manifestly nonlinear and covariant formula-

tion of the model was employed to study an ansatz of the effective average action

which includes all operators up to the fourth order in the derivatives. In order

to find a reparametrization invariant formulation of the flow equation, a covariant

background field expansion was applied. The beta functions could be extracted

from this by means of off-diagonal heat kernel expansions. It was noticed that the

introduction of the regulator inevitably leads to an action functional which depends

separately on background and fluctuation fields. In order to account for this, a scal-

ing parameter for the fluctations as well as a mass parameter were introduced.

The investigation of the flow equations showed that the nontrivial fixed point which

was already detected in the simplest truncation remains stable if one includes two
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7. General Conclusion

of the three possible fourth order operators. These operators only add IR-irrelevant

directions to the parameter space, and one of the couplings is identically zero at the

fixed point. The second fourth order operator, however, renders the FRG computa-

tion sensitive to the N -dependence of the critical properties of the model, such that

the critical exponent ν of the correlation length could be determined in qualitative

agreement with the literature values. The inclusion of the mass term does not pro-

vide an improvement of the results and the impact of the scaling of the fluctuation

field seems to be ambigious.

Despite these promising findings in the reduced truncation, no nontrivial fixed point

could be identified in the full fourth order ansatz for the effective action. Further

investigations are required to clearify if this lack of a fixed point is only a short-

coming of the limited truncation or if it points towards more subtle conceptual

issues. One possible conceptual problem could be related to the treatment of the

path integral measure in the FRG framework. Following arguments which suggest a

regulator-dependent modification of the path integral measure, an additional term

in flow equation was considered. Choosing an ansatz for the measure, the computa-

tions seem to stabilize and a nontrivial fixed point with only one relevant direction

could be found for the full fourth order truncation. However, the critical exponents

deviate strongly from the literature results. Therefore no final conclusion can be

drawn, but further considerations are necessary about the appropriate definition of

the path integral measure in nonlinear theories which are formulated in terms of a

background field expansion.

After the renormalization flow was derived in the FRG framework, the Monte Carlo

Renormalization Group (MCRG) was introduced as a possibility to determine flow

diagrams in coupling space from computations in lattice field theory. The presented

approach relies on block spin transformations on the lattice and the subsequent de-

termination of renormalized couplings by means of a microcanonical demon method.

Relating initial and renormalized couplings yields the beta functions as well as flow

diagrams. The preliminary results for a full fourth order truncation confirm the

existence of a nontrivial fixed point which has only one relevant direction and hence

provide further evidence for the scenario of non-perturbative renormalizability. The

results of MCRG and FRG agree qualitatively with each other and the quantitative

deviations could be explained by differences in the regularization and truncation

procedures. Having a numerical tool to compute flow diagrams, it would be inter-

esting to draw further comparisons of both non-perturbative methods by applying

them to other models.

The Average Effective Hamiltonian Action is a formulation of the FRG in phase
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space and has been recently proposed as an alternative approach to investigate the

renormalization of theories. In this thesis applications to the nonlinear sigma model

were considered in order to test this new ansatz. A Lorentz covariant formulation

was used, although properties of its UV regularization have to be clearified further

for the case of Hamiltonians which are more than quadratic in the momenta.

First, the consistency of this approach with the standard Lagrangian formulation

was shown in simple truncations of the linear and nonlinear sigma model. Because

operators of higher order in the canonical momenta are naturally generated in the

Hamiltonian formulation of nonlinear sigma models, an expansion of the action

functional in powers of momenta was considered. Such an expansion is not directly

comparable to the usual derivative expansion, but provides an alternative access to

the renormalization properties of the model. The nonlinear O(N) model was stud-

ied in detail and the flow equation was derived for a generic function of a covariant

operator which is quadratic in the canonical momenta. The result was examined

for a polynomial ansatz in three dimensions and a stable nontrivial fixed point with

only one IR-relevant direction could be found at each order of the truncation. The

corresponding critical exponent ν, however, does not show the correct dependence

on N .

Finally, the FRG framework was used to address the subtle question of a possible

renormalization of topological charges. The topological term of the two-dimensional

CP1 ∼= O(3) model was studied as the limit of a more general operator that contains

an auxiliary field which is set constant at the end. The investigation of the UV was

performed by means of a heat kernel expansion and a careful analysis of a coinci-

dence limit and revealed that a possible running in the extreme UV is suppressed

by the asymptotic freedom of the theory. The extreme IR had to be studied sep-

arately and a special representation of the Clifford algebra was constructed which

made it possible to formulate the bosonic problem in terms of Dirac operators and

to apply the index theorem. This analysis revealed a finite discrete renormalization

of the topological charge due to zero modes. After similar findings in Yang-Mills

and Chern-Simons theory, this result for the CP1 model is a further indication that

topological parameters may be renormalized due to effects in the extreme IR.

The last chapter of this thesis focussed on the lattice approach and in particular

on the possibility to construct discretizations of supersymmetric field theories which

maintain a part of the supersymmetry. The supersymmetric extension of the non-

linear O(3) ∼= CP1 model was studied for this purpose, because its target space is a

Kähler manifold and the theory hence exhibits an additional supersymmetry. First,

a supersymmetric version of the stereographic projection was developed and the
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corresponding Jacobian was computed, before an expression for the second super-

symmetry was derived in terms of constrained field variables. A thorough analysis

of both supersymmetry transformations and their action on a lattice discretization

of the model showed that it is impossible to construct a lattice formulation of the

theory which maintains the O(3) symmetry as well as a part of supersymmetry at

finite lattice spacing. Thereafter, a manifestly O(3) symmetric discretization was

chosen and Monte Carlo simulations were performed in order to investigate if the

supersymmetry can be restored in the continuum limit. The measurement of the

mass degenenarcy of bosons and fermions as well as a Ward identity suggest that

this is indeed possible if only one parameter is fine tuned. Besides providing a non-

perturbative method to investigate this specific supersymmetric model, the analysis

also stressed the problem that the attempt to formulate a manifestly supersymmet-

ric lattice action of some model can be in conflict with other symmetries of the

considered theory.

This thesis illustrated that the well-established nonlinear sigma models still provide

interesting insights into non-perturbative effects of quantum field theories. Besides

the possibility to deepen the understanding of phenomena which are yet not fully

understood, like supersymmetric field theories or topological charges, conceptual

investigations of the lattice approach as well as of covariant and Hamiltonian for-

mulations of the FRG could be performed.
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A. Appendix

A.1. Two Alternative Formulations of a Fourth-Order

Derivative Expansion

In order to determine the relation between the covariant (3.4) and the constrained

formulation (3.53) of the fourth-order derivation expansion of the nonlinear O(N)

model, one can choose stereographic coordinates (2.9) as examplary unconstrained

parametrization of (3.4) and apply the inverse stereographic projection (2.11).

It is straigth forward to check that the bare action functionals of both formulations

are equal up to a numerical factor

4

(1 + ϕ2)2
∂µϕ∂

µϕ =∂µn∂
µn , (A.1)

such that ζ = g1
4
. A similar, but a bit more tedious calculation yields the stereo-

graphic projection of

∂2n∂2n =
4∂2ϕ∂2ϕ

(1 + ϕ2)2
+

16(∂µϕ∂
µϕ)2

(1 + ϕ2)3
+

16(∂µϕ∂
µϕ)(ϕ∂2ϕ)

(1 + ϕ2)3
− 32(ϕ∂µϕ)(∂

µϕ∂2ϕ)

(1 + ϕ2)3

− 64(ϕ∂νϕ)
2(∂µϕ∂

µϕ)

(1 + ϕ2)4
+

64(ϕ∂µϕ)(∂
µϕ∂νϕ)(ϕ∂νϕ)

(1 + ϕ2)4
(A.2)

This expression looks quite complicated, but can be written in a compact way in

terms of 2ϕa, which reads in stereographic coordinates

2ϕa =∂2ϕa +
2

1 + ϕ2
(ϕa(∂µϕ∂

µϕ)− 2∂µϕ
a(ϕ∂µϕ)) , (A.3)

and leads to

hab2φ
a2φb =1

4
(∂2n∂2n)− 4

(1 + ϕ2)4
(∂µϕ∂

µϕ)2 = 1
4
(∂2n∂2n)− 1

4
(∂µn∂

µn)2.

(A.4)
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The operators corresponding to the couplings L1 and L2 can be translated analogous

to (A.1). The reformulation of the covariant action (3.4) in terms of constrained

fields is finally given as

Leff =1
2
ζ hab∂µϕ

a∂µϕb + 1
2
αhab2ϕ

a2ϕb + 1
2
L1(hab∂µϕ

a∂νϕ
b)2 + 1

2
L2(hab∂µϕ

a∂µϕb)2

=1
2

ζ

4
∂µn∂

µn+ 1
2

α

4
∂2n∂2n+ 1

2

L1

16
(∂µn∂νn)

2 + 1
2

L2−4α
16

(∂µn∂
µn)2 . (A.5)

A.2. Conventions and Fierz Identities

The two-dimensional Majorana representation used in Chap. 6 is given in terms of

Pauli matrices as

γ0 = σ3, γ1 = −σ1, γ∗ = iγ0γ1 = σ2 . C = −iσ2, (A.6)

The conjugate spinor is defined as χ̄ = χTC and fulfills the Fierz relation

ψχ̄ = −1
2
χ̄ψ1− 1

2
(χ̄γµψ)γµ − 1

2
(χ̄γ∗ψ)γ∗. (A.7)

Due to the symmetry properties

χ̄ψ = ψ̄χ, χ̄γµψ = −ψ̄γµχ, χ̄γ∗ψ = −ψ̄γ∗χ (A.8)

the two last terms in (A.7) vanish for χ = ψ such that

ψψ̄ = −1
2
ψ̄ψ 1 . (A.9)

A.3. Invariance of the Nonlinear O(3) Action under

the Second Supersymmetry

The invariance of the on-shell action

S[n,ψ] =

∫
d2x ∂µn ∂

µn+ iψ̄/∂ψ + 1
4
(ψ̄ψ)2 (A.10)

under the second supersymmetry transformations (6.24) shall be proven here. The

variation of the Lagrangian is1

δL = 2i∂µn·∂µ(n×ϵ̄ψ)−2iψ̄/∂(n×/∂nϵ)+2ψ̄/∂(ϵ̄ψ×ψ)−(ψ̄ψ) ψ̄(n×/∂nϵ) . (A.11)
1up to a negligible boundary term ∂µ(−ψ̄γµ(ϵ̄ψ ×ψα))
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The term ∝ ψ5 vanishes, since ψ is a Grassmannian field with only four independent

degrees of freedom. It will be shown that the first and the second term in (A.11)

cancel each other as well as the third and the fourth one. Starting with the first two

terms, they can be written as

2i∂µn(n× ϵ̄∂µψ)− 2iψ̄(n× ∂2nϵ)− 2iψ̄γµγνϵ(∂µn× ∂νn) . (A.12)

The last term vanishes since ∂µn × ∂νn is parallel to n and hence perpendicular

to ψ. Integrating the second term by parts one sees that the first and second term

cancel owing to the cyclicity of the triple product.

The cancellation of the third and fourth term in (A.11) is a bit more involved.

First, one partially integrates the third term and obtains −2∂µψ̄γµ(ϵ̄ψ ×ψ). Since
nψα = 0 for both spinor components α, it follows that ϵ̄ψ̄×ψ is parallel to n such

that

−2∂µψ̄γµ(ϵ̄ψ ×ψ) = −2(∂µψ̄γµn) n(ϵ̄ψ ×ψ) . (A.13)

The condition ψ̄n = 0 implies ∂µψ̄n = −ψ̄∂µn. (A.13) can hence be written as

2(ψ̄/∂n) n(ϵ̄ψ ×ψ). To proceed further, one utilizes ψ̄1n1 = −ψ̄2n2 − ψ̄3n3 and the

Fierz relation ψ̄iγ
µψi = 0:

2(ψ̄1/∂n1 + ψ̄2/∂n2 + ψ̄3/∂n3)
[
n1ϵ̄ψ2 · ψ3 − n1ϵ̄ψ3 · ψ2 + cyclic terms

]
(A.14)

= 2ψ̄2γ
µψ3

(
∂µn2 · n1 − ∂µn1 · n2

)
ϵ̄ψ2 + 2ψ̄3γ

µψ2

(
∂µn1 · n3 − ∂µn3 · n1

)
ϵ̄ψ3 + c. t .

The Fierz relation (ᾱγµβ) ϵ̄α = 1
2
ᾱα (β̄γµϵ) can be employed, which holds for Ma-

jorana spinors, and one obtains

(ψ̄2ψ2)ψ̄3γ
µϵ(n1∂µn2 − n2∂µn1) + (ψ̄3ψ3)ψ̄2γ

µϵ(n3∂µn1 − n1∂µn3) + cyclic terms .

Finally, using (ᾱα)ᾱ = 0 the third term in (A.11) can be written as

(ψ̄ψ) ψ̄(n× /∂nϵ) . (A.15)

As a result, the third and fourth term in (A.11) cancel each other. This proves that

the action is invariant under the second supersymmetry transformation (6.24).

The invariance of the constraints can be shown easily:

δ(n2) = 2in · (n× ϵ̄ψ) = 0

δ(n ·ψ) = i(n× ϵ̄ψ) ·ψ − n · (n× /∂nϵ)− in · (ϵ̄ψ ×ψ) = 0 .
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Zusammenfassung

Das Ziel dieser Arbeit war die Untersuchung und Weiterentwicklung von nicht-

störungstheoretischen Methoden der Quantenfeldtheorie anhand ihrer Anwendung

auf nichtlineare Sigma-Modelle.

Während ein großer Teil der physikalischen Phänomene der Quantenfeldtheorie

durch die Störungstheorie erfolgreich vorhergesagt werden können, sind manche As-

pekte im Bereich großer Kopplungsstärken noch nicht endgültig verstanden und

bedürfen geeigneter nicht-störungstheoretischer Methoden zur ihrer Analyse. Diese

Arbeit hat sich auf zwei Ansätze konzentriert, die numerische Behandlung von

Feldtheorien auf diskretisierten Raumzeitgittern und die Funktionale Renormierungs-

gruppe (FRG) als Beschreibung des Renormierungsflusses von effektiven Wirkungen.

Betrachtungen der nichtlinearen O(N) Modelle haben gezeigt, dass zur korrekten

Analyse der kritischen Eigenschaften im Rahmen der FRG ein Ansatz gewählt wer-

den muss, der vierte Ableitungsordungen enthält. Hierfür wurde ein kovarianter

Formalismus entwickelt, der auf einer Hintergrundfeldentwickung und der Entwick-

lung eines Wärmeleitungskerns beruht. Abgesehen von einer destabilsierenden Kop-

plung deuten die Ergebnisse auf einen nichttrivialen Fixpunkt und damit auf die

nicht-störungstheoretische Renormierbarkeit dieser Modelle hin. Die resultierenden

Flussdiagramme wurden schließlich noch mit den Ergebnissen einer numerischen

Analyse des Renormierungsflusses mithilfe der Monte Carlo Renormierungsgruppe

verglichen und es wurde hierbei qualitative Übereinstimmung gefunden.

Desweiteren wurde eine alternative Formulierung der FRG in Phasenraumkoordi-

naten untersucht und ihre Konsistenz an einfachen Beispielen getestet. Darüber

hinaus wurde eine alternative Entwicklung der effektiven Wirkung in Ordnungen

der kanonischen Impulse auf die nichtlinearen O(N) Modelle angewandt, mit dem

Ergebnis eines stabilen nichttrivialen Fixpunktes dessen kritischen Eigenschaften je-

doch nicht die erwartete N -Abhängigkeit zeigen.

Mithilfe der FRG wurde schließlich noch die Renormierung topologischer Operatoren

anhand der Windungszahl des O(3) ∼= CP1-Modells untersucht. Durch die Verallge-

meinerung des topologischen Operators und die Entwicklung und Anwendung einiger

eleganter mathematischen Methoden konnten Hinweise auf einen diskreten Sprung

des topologischen Parameter im extrem Infraroten gefunden werden.

Abschließend wurde die supersymmetrische Erweiterung des O(3) ∼= CP1-Modells

betrachtet im Hinblick auf die Möglichkeit derartige Theorien mit erweiterter Super-

symmetrie auf einem Raumzeitgitter so zu diskretisieren, dass zumindest ein Teil der

Supersymmetrie nicht gebrochen ist. Es konnte gezeigt werden, dass dies prinzipiell

nicht möglich ist ohne dabei gleichzeitig die O(3)-Symmetrie zu brechen.
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