12. exercise sheet: Particles and Fields

Exercise 34:

In exercise 26, we showed that a theory defined by the action

$$
S=\int d^{4} x\left(\bar{\psi} i \partial_{\mu} \gamma^{\mu} \psi+\frac{\lambda}{2}\left[(\bar{\psi} \psi)^{2}-\left(\bar{\psi} \gamma_{5} \psi\right)^{2}\right]\right)
$$

is invariant under vector transformations $\underline{\mathrm{U}}(1)_{\mathrm{V}}\left[\psi \rightarrow e^{i \alpha} \psi, \bar{\psi} \rightarrow e^{-i \alpha} \bar{\psi}\right]$, as well as axial transformations $\mathrm{U}(1)_{\mathrm{V}}\left[\psi \rightarrow e^{i \alpha \gamma_{5}} \psi, \bar{\psi} \rightarrow \bar{\psi} e^{i \alpha \gamma_{5}}\right]$, by studying the transformations infinitesimally.
Proof this invariance also directly for finite transformations by writing the interaction in terms of $\psi_{\mathrm{L}, \mathrm{R}}$ and $\bar{\psi}_{\mathrm{L}, \mathrm{R}}$ using the projectors $P_{\mathrm{L}, \mathrm{R}}$ of exercise 25 and studying the invariance of the resulting interaction under chiral transformations $\mathrm{U}(1)_{\mathrm{R}}$ and $\mathrm{U}(1)_{\mathrm{L}}$.

Exercise 35:

(a) The symmetry of the action of exercise 34 can also be verified by first showing that the Fierz transformations of exercise 33 imply the identity (Hint: take into account that the spinors are Grassmann-valued.)

$$
\left[(\bar{\psi} \psi)^{2}-\left(\bar{\psi} \gamma_{5} \psi\right)^{2}\right]=-\frac{1}{2}\left[\left(\bar{\psi} \gamma_{\mu} \psi\right)^{2}-\left(\bar{\psi} \gamma_{\mu} \gamma_{5} \psi\right)^{2}\right]
$$

Following exercise 27 , verify the chiral/axial symmetry of the model.
(b) Generalize this identity to the case of N_{f} flavors $\psi_{a}, \bar{\psi}_{a}, a=1, \ldots, N_{\mathrm{f}}$.

Exercise 36:

In the theory of strong interactions (QCD), gluon exchange can give rise to chirally invariant effective quark interactions of the type $\left(\bar{\psi}_{a} \gamma_{\mu} \psi_{a}\right)^{2}$ and $\left(\bar{\psi}_{a} \gamma_{\mu} \gamma_{5} \psi_{a}\right)^{2}$. According to exercise 35 (b), the anti-symmetric combination can be rewritten as

$$
\left[\left(\bar{\psi}_{a} \gamma_{\mu} \psi_{a}\right)^{2}-\left(\bar{\psi}_{a} \gamma_{\mu} \gamma_{5} \psi_{a}\right)^{2}\right]=-2\left[\left(\bar{\psi}_{a} \psi_{b}\right)\left(\bar{\psi}_{b} \psi_{a}\right)-\left(\bar{\psi}_{a} \gamma_{5} \psi_{b}\right)\left(\bar{\psi}_{b} \gamma_{5} \psi_{a}\right)\right] .
$$

(a) Start with a theory of the form

$$
S=\int d^{4} x\left(\bar{\psi} i \partial_{\mu} \gamma^{\mu} \psi-\frac{\lambda}{4}\left[\left(\bar{\psi}_{a} \gamma_{\mu} \psi_{a}\right)^{2}-\left(\bar{\psi}_{a} \gamma_{\mu} \gamma_{5} \psi_{a}\right)^{2}\right]\right)
$$

use the Fierz rearrangement, and rewrite the purely fermionic model in terms of a fermionscalar model by means of the Hubbard-Stratonovich transformation. Discuss the symmetry transformation of the scalar field. Hint: a matrix-valued scalar field is needed.
(b) Construct the general Yukawa theory exhibiting the same symmetries as in (a). For this, the representation of the interaction in terms of right- and left-handed spinors may be useful. What is the most-general potential to fourth order in the scalar field?

