11. EXERCISE SHEET: PARTICLES AND FIELDS

Exercise 31:

In the lectures, we have identified $M_{\mu\nu} = \frac{1}{2}\sigma_{\mu\nu} = \frac{i}{4}[\gamma_{\mu}, \gamma_{\nu}]$ with the generator of Lorentz transformations for the Dirac spinors. Verify this explicitly, by showing that $M_{\mu\nu} = \frac{1}{2}\sigma_{\mu\nu}$ satisfies the Lie algebra of the Lorentz group,

$$[M_{\mu\nu}, M_{\rho\sigma}] = -i(g_{\mu\rho}M_{\nu\sigma} - g_{\nu\rho}M_{\mu\sigma} - g_{\mu\sigma}M_{\nu\rho} + g_{\nu\sigma}M_{\mu\rho}).$$

Hint: First show that $[\gamma_{\mu}, M_{\rho\sigma}] = i(g_{\mu\rho}\gamma_{\sigma} - g_{\mu\sigma}\gamma_{\rho}).$

Exercise 32:

The Dirac matrices with defining property $\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}$ span an algebra of 4×4 matrices, a basis of which is given by

$$\tilde{\Gamma}^A = \{\mathbb{1}, \gamma^{\mu}, \sigma^{\mu\nu}, \gamma^{\mu}\gamma_5, \gamma_5\},\$$

where $\sigma_{\mu\nu} = \frac{i}{2} [\gamma_{\mu}, \gamma_{\nu}].$

(a) Convince yourself that these are 16 different elements (for $\sigma^{\mu\nu}$, only those with $\mu < \nu$ have to be counted as independent, since $\sigma^{\mu\nu}$ is antisymmetric).

(b) Construct a normalized basis of elements Γ^A , such that they satisfy the normalization condition

$$\operatorname{tr} \Gamma^A \Gamma^B = 4\delta^{AB}$$

Exercise 33:

In theories with fermionic self-interactions, the interaction terms often have the form

$$\bar{\psi}_1 \Gamma^A \psi_2 \bar{\psi}_3 \Gamma^B \psi_4,$$

where ψ_i denotes different spinors (e.g., different flavors, color, momenta ...). Writing the spinor indices explicitly, the interaction involves the Dirac structure $\Gamma^A_{ab}\Gamma^B_{cd}$. By means of Fierz transformations, the spinor indices can be rearranged,

$$\Gamma^A_{ab}\Gamma^B_{cd} = \sum_{C,D} C^{AB}_{CD}\Gamma^C_{ad}\Gamma^D_{cb},$$

with expansion coefficients C_{CD}^{AB} . Show that these coefficients can be computed in terms of the basis elements Γ^A by

$$C_{CD}^{AB} = \frac{1}{16} \text{tr} \left(\Gamma^A \Gamma^D \Gamma^B \Gamma^C \right),$$

provided the Γ^A are normalized as in exercise 32.