10. exercise sheet: Particles and Fields

Exercise 28:

In the chiral basis, there are four independent solutions of the free Dirac equation of the form $\psi(x)=u(p) e^{-i p x}$, and $\psi(x)=v(p) e^{i p x}$ where

$$
u^{s}(p)=\binom{\sqrt{p \cdot \bar{\sigma}} \xi^{s}}{\sqrt{p \cdot \sigma} \xi^{s}}, \quad v^{s}(p)=\binom{\sqrt{p \cdot \bar{\sigma}} \eta^{s}}{-\sqrt{p \cdot \sigma} \eta^{s}}, \quad s=1,2
$$

Here ξ^{s} and η^{s} denote 2-component base spinors.
Provided the base spinors are orthonormalized

$$
\sum_{s=1,2} \xi^{s} \xi^{s \dagger}=\mathbb{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

show that the spin sums satisfy:

$$
\sum_{s} u^{s}(p) \bar{u}^{s}(p)=\gamma \cdot p+m, \quad \sum_{s} v^{s}(p) \bar{v}^{s}(p)=\gamma \cdot p-m .
$$

Exercise 29:

In the lectures, we have worked with Weyl as well as Dirac fermions and have written down the Majorana mass term in terms of the Weyl spinors. The Majorana spinor is defined as a Dirac spinor with the property of being its own charge conjugate,

$$
\begin{equation*}
\psi_{\mathrm{M}}^{c}=\psi_{\mathrm{M}}, \quad \text { where } \psi^{c}=-i \gamma^{2} \psi^{*} \tag{1}
\end{equation*}
$$

defines the charge conjugate of a Dirac spinor (i.e. the transformation that turns particles into antiparticles and vice versa).
(a) Start from an ansatz $\psi_{\mathrm{M}}=\binom{\eta}{\xi}$, and use the defining property to show that the Majorana spinor can equivalently be written as

$$
\begin{equation*}
\psi_{\mathrm{M}}=\binom{-i \sigma^{2} \xi^{*}}{\xi}=\binom{\eta}{i \sigma^{2} \eta^{*}} \tag{2}
\end{equation*}
$$

(b) Compute explicitly the Lagrangian for the Majorana spinor in terms of its chiral component η. For this, plug ψ_{M} into the Dirac Lagrangian $\mathcal{L}_{\mathrm{D}}=\bar{\psi} i \gamma^{\mu} \partial_{\mu} \psi-m \bar{\psi} \psi$. Convince yourself in this way that the final result is equivalent to the Lagrangian of the Weyl fermion η including a Majorana mass term up to an irrelevant global factor of 2.
Hint: you may find the relation $\sigma^{2} \bar{\sigma}^{\mu} \sigma^{2}=\left(\sigma^{\mu}\right)^{T}$ useful. Also remember that the component of a spinor is a Grassmann variable.
Conclusion: The Majorana particle is a particular kind of Dirac fermion that has the property of being its own charge conjugate. This requirement reduces the number of degrees of freedom of the particle from 4 for a Dirac fermion to 2 for a Majorana fermion.

Exercise 30:

Motivation: In the lecture, we found the important identity

$$
\begin{equation*}
\bar{A} \gamma^{\mu} A=\Lambda^{\mu}{ }_{\nu} \gamma^{\nu}, \tag{3}
\end{equation*}
$$

where A is connected with the $\left(\frac{1}{2}, 0\right) \oplus\left(0, \frac{1}{2}\right)$ representation of the Lorentz group. There is an alternative way to interpret this equation: it connects the Lorentz transformation of the 4 -vector γ_{μ} (RHS) with a "rotation" in spinor space (LHS), precisely such that the Dirac γ matrices look the same in any Lorentz frame. In fact, this alternative viewpoint is more general (and also allows for a straightforward generalization to curved space), and hence deserves to by studied in the following:
Exercise:
(a) Verify that the Dirac algebra

$$
\begin{equation*}
\left\{\gamma_{\mu}, \gamma_{\nu}\right\}=2 g_{\mu \nu} \tag{4}
\end{equation*}
$$

is invariant under generalized "rotations" of spinor space, so called spin-base transformations, $\gamma^{\mu} \rightarrow \mathcal{S} \gamma^{\mu} \mathcal{S}^{-1}$, where \mathcal{S} is allowed to be an element of the general linear group of 4×4 matrices with complex components $\operatorname{GL}(4, \mathbb{C})$.
(b) Verify that the Dirac equation

$$
\begin{equation*}
\left(i \gamma_{\mu} \partial^{\mu}-m\right) \psi(x)=0 \tag{5}
\end{equation*}
$$

is invariant under spin base transformations, provided that the Dirac spinor transforms as $\psi \rightarrow \mathcal{S} \psi$.
(c) Now, we define the Lorentz-transformed Dirac matrices: $\gamma^{\prime}{ }_{\mu}=\Lambda_{\mu}{ }^{\nu} \gamma_{\nu}$, i.e., somewhat contrary to the philospophy of Eq. (3), we accept that the Dirac matrices look differently in a different Lorentz frame. Show, that also the γ_{μ}^{\prime} satisfy the Dirac algebra (4).
(d) Use this to show that the Dirac equation (5) is also satisfied in the primed Lorentz system, provided the Dirac spinors now transform component-wise as scalars, i.e., $\psi^{\prime}\left(x^{\prime}\right)=\psi(x)$ under Lorentz transformations.
Conclusion: (a)-(d) demonstrate that the Dirac equation is separately and independently invariant under spin-base transformations $\mathcal{S} \in \mathrm{GL}(4, \mathbb{C})$ and Lorentz transformations $\Lambda_{\mu}^{\nu} \in$ $\mathrm{SO}(3,1)$.
In this light, Equation (3) can be interpreted as the statement that it is always possible to perform simultaneously a Lorentz and a spin-base transformation such that the Dirac matrices γ_{μ} have the same representation in any Lorentz frame. These spin-base transformations $\mathcal{S}=A$ form a subgroup of $\operatorname{GL}(4, \mathbb{C})$ corresponding to two representations of $\operatorname{SL}(2, \mathbb{C})$.

