8. Exercise sheet: Particles and Fields

Exercise 22:

Consider the relation between Lorentz 4 -vectors and spinors. This relation is constructed with the help of

$$
\left(\sigma_{\mu}\right)_{\alpha \dot{\beta}}=(\mathbb{1}, \boldsymbol{\sigma}), \quad\left(\bar{\sigma}_{\mu}\right)^{\dot{\alpha} \beta}=(\mathbb{1},-\boldsymbol{\sigma}),
$$

where $\boldsymbol{\sigma}$ are the Pauli matrices.
Proof the following identities:

$$
\begin{align*}
& \frac{1}{2} \operatorname{tr}\left(\bar{\sigma}^{\mu} \sigma_{\nu}\right)=\delta_{\nu}^{\mu} \tag{1}\\
& \left(\sigma^{\mu}\right)_{\alpha \dot{\beta}}\left(\bar{\sigma}_{\mu}\right)^{\dot{\gamma} \delta}=2 \delta_{\alpha}^{\delta} \delta_{\dot{\beta}}^{\dot{\gamma}} \tag{2}\\
& \sigma_{\mu} \bar{\sigma}_{\nu}+\sigma_{\nu} \bar{\sigma}_{\mu}=\bar{\sigma}_{\mu} \sigma_{\nu}+\bar{\sigma}_{\nu} \sigma_{\mu}=2 g_{\mu \nu} . \tag{3}
\end{align*}
$$

Exercise 23:

(a) Deduce with the aid of the representation of the Lorentz transformation matrix $\Lambda^{\mu}{ }_{\nu}$ in terms of spin and boost generators \mathbf{J} und \mathbf{K} the relation between Λ and the Lorentz transformation matrix for spinors a :

$$
\sigma_{\mu} \Lambda_{\nu}^{\mu}=a \sigma_{\nu} a^{\dagger} .
$$

(b) In turn, show that a 4 -vector constructed from two independent $\operatorname{SL}(2, \mathbb{C})$ spinors $\xi^{\alpha}, \eta^{\dot{\beta}}$

$$
V_{\mu}=\xi^{\alpha}\left(\sigma_{\mu}\right)_{\alpha \dot{\beta}} \eta^{\dot{\beta}}
$$

has the correct transformation properties under Lorentz transformations.
Hint: the relation between the transposed of a 2×2 matrix and its inverse from the preceding exercise sheet may also be helpful.

Exercise 24:

(a) Consider a Grassmann algebra consisting of only two different numbers θ_{1} und θ_{2} with the properties

$$
\theta_{1}^{2}=0, \quad \theta_{2}^{2}=0, \quad\left\{\theta_{1}, \theta_{2}\right\}=0
$$

Show that a representation of this algebra can be constructed with the aid of the Pauli matrices σ_{i} and the combination

$$
\sigma_{-}=\frac{1}{2}\left(\sigma_{1}-i \sigma_{2}\right)
$$

such that the Grassmann algebra can be realized by 4×4 matrices, e.g., $\theta_{1} \rightarrow \sigma_{-} \otimes \mathbb{1}$ and $\theta_{2} \rightarrow \sigma_{3} \otimes \sigma_{-}$.
(b) Convince yourself that the following identities hold independently of the representation

$$
\exp \left(\theta_{1} \theta_{2}\right)=\frac{1}{1-\theta_{1} \theta_{2}}=1+\ln \left(1+\theta_{1} \theta_{2}\right)
$$

(c) Determine the set of solutions x of the equation

$$
x^{2}=1+\theta_{1} \theta_{2} .
$$

(d)* Given a Grassmann algebra with n different numbers

$$
\theta_{i}^{2}=0, \quad\left\{\theta_{i}, \theta_{j}\right\}=0, \quad i, j=1, \ldots, n
$$

How many linearly independent elements does the algebra have?

* Extra exercise for the willing.

