7. Exercise sheet: Particles and Fields

Exercise 19:

The generators $M_{\mu \nu} \equiv-M_{\nu \mu}$ of the Lorentz group $\mathrm{SO}(3,1)$ satisfy the Lie algebra

$$
\left[M_{\mu \nu}, M_{\rho \sigma}\right]=-i\left(g_{\mu \rho} M_{\nu \sigma}-g_{\nu \rho} M_{\mu \sigma}-g_{\mu \sigma} M_{\nu \rho}+g_{\nu \sigma} M_{\mu \rho}\right)
$$

Show that the components

$$
J_{i} \equiv \frac{1}{2} \epsilon_{i j k} M^{j k}, \quad K_{i} \equiv M_{i 0}=-M_{0 i}, \quad(i, j, k=1,2,3)
$$

satisfy the algebraic relations

$$
\left[J_{i}, J_{j}\right]=i \epsilon_{i j k} J_{k}, \quad\left[J_{i}, K_{j}\right]=i \epsilon_{i j k} K_{k}, \quad\left[K_{i}, K_{j}\right]=-i \epsilon_{i j k} J_{k}
$$

such that \mathbf{J} generates an angular momentum algebra and \mathbf{K} generates the Lorentz boosts.

Exercise 20:

Start from the Lie algebra for the generators \mathbf{J} and \mathbf{K} of the preceding exercise and introduce the combinations

$$
\mathbf{A}=\frac{1}{2}(\mathbf{J}+i \mathbf{K}), \quad \mathbf{B}=\frac{1}{2}(\mathbf{J}-i \mathbf{K}) .
$$

Show that these generators satisfy the following Lie algebra

$$
\left[A_{i}, A_{j}\right]=i \epsilon_{i j k} A_{k}, \quad\left[B_{i}, B_{j}\right]=i \epsilon_{i j k} B_{k}, \quad\left[A_{i}, B_{j}\right]=0
$$

such that the Lorentz algebra can actually be decomposed into two mutually commuting angular momentum algebras.

Exercise 21:

Show that the scalar product of two $\operatorname{SL}(2, \mathbb{C})$ spinors

$$
\xi \zeta \equiv \xi^{\alpha} \zeta_{\alpha}:=\epsilon^{\alpha \beta} \xi_{\beta} \zeta_{\alpha}, \quad \text { where } \epsilon^{\alpha \beta} \equiv i\left(\sigma_{2}\right)^{\alpha \beta}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

is invariant under Lorentz transformations $\xi_{\alpha}^{\prime}=a_{\alpha}{ }^{\beta} \xi_{\beta}, \zeta_{\alpha}^{\prime}=a_{\alpha}{ }^{\beta} \zeta_{\beta}$. Here a is an element of $\operatorname{SL}(2, \mathbb{C})$, i.e. a complex 2×2 matrix with $\operatorname{det} a=1$.
Hint: First proof and then use the following formula for general 2×2 matrices M :

$$
\epsilon M^{\mathrm{T}} \epsilon^{\mathrm{T}}=(\operatorname{det} M) M^{-1},
$$

where the superscript T denotes matrix transposition.

