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3. EXERCISE SHEET: PARTICLES AND FIELDS

Exercise 7:

From a pragmatic (physicist’s) viewpoint, functional differentiation ¢/d¢(x) can be defined
by the conditions that the algebraic rules for standard derivatives apply,
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where F;[¢] are functionals of ¢, and that additionally we have:
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Verify that

)
o / o(x)J(x) = J(y)

%exp ( / ¢(m)J(m)> = J(y) exp ( / d)(x)J(x)), (3)

where fx = deac.

Exercise 8:

Given a classical action S for a field ¢(z) in spacetime. We can formulate Hamilton’s principle
with the aid of the functional derivative:
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Show that for actions of the type S[¢] = [ d”yL(¢,d.¢;y), we obtain the Euler-Lagrange
equations as discussed in the lecture.
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Aufgabe 9:

For a classical field ¢(x, t) with an associated canonical conjugate momentum density 7(x, t),
we can define the Poisson brackets analogously to classical mechanics. Let A[p, 7] and B[¢, 7]
be two general phase space functionals, then the Poisson bracket in d = D — 1 space dimen-
sions is given by (we ignore the time argument ¢ in the following for simplicity)
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(a) Verify the fundamental Poisson brackets

{6(x),6()} =0, {r(x),7(y)} =0, {o(x).7(y)}=35"(x~y).

The time evolution of the field and the momentum is generated by the Hamilton function
H according to the canonical equations of motion

d(x) = {6(x), H}, #(x) = {r(x), H}.
(b) Compute the equations of motion for Klein-Gordon theory with the Hamilton function
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where #H(y) is the Hamilton density.



