
Kapitel 3

Quantum Fields near Bla
k Holes

In the theory of quantum �elds in 
urved spa
etimes one treats the gravitational �eld 
lassi
ally.

The stru
ture of spa
etime is des
ribed by a manifold M on whi
h a metri
 g

��

with Lorentz

signature is de�ned. The matter �elds propagating in 
lassi
al spa
etime are treated as quantum

�elds. For linear �elds a satisfa
tory theory 
an be 
onstru
ted.

The approximation in whi
h gravity is treated 
lassi
ally should break down when the spa
etime


urvature approa
hes Plan
k s
ales. But it should hold for a wide variety of phenomena, in
luding

the parti
le 
reation near a bla
k hole with S
hwarzs
hild radius mu
h greater than the Plan
k

length.

The diÆ
ulties in the transition from 
at to 
urved spa
etime lies in the absen
e of the notion of

global inertial observers or of Poin
are transformations whi
h underlie the notion of parti
les in

Minkowski spa
etime. If one a

epts that quantum �eld theory in general 
urved spa
etime is a

quantum theory of �elds, not parti
les, then one soon realizes that the the notion of global inertial

observers is irrelevant for the formulation of the theory.

For a �eld theory the Stone-von Neumann theorem does not hold and in�nitely many inequivalent

irredu
ible representation of the 
anoni
al 
ommutation relations exist. In 
at spa
etime, Poin
are

symmetry is used to pi
k out a preferred representation. This is a
hieved by sele
ting a invariant

va
uum state whi
h is equivalent to a sele
tion of a parti
le notion. In a general 
urved spa
etime

there does not appear to be any preferred notion of parti
les. A
tually, in spa
etimes whi
h are


at in the asymptoti
 past and the asymptoti
 future and for whi
h a natural notion of parti
les

is available in both asymptoti
 regions, the 
orresponding two representations are, in general,

inequivalent.

A way out of these diÆ
ulties in pi
king a parti
ular representation is to formulate the theory

via the algebrai
 approa
h. No parti
ular representation of the 
ommutation relations need to be


hosen and one needs not de�ne a preferred notion of parti
les.

The framework and stru
ture of Quantum �eld theory in 
urved spa
etimes emerged from Parkers

analysis of parti
le 
reation in the very early universe [1℄. The theory re
eived enormous impetus

from Hawking's dis
overy, that bla
k holes radiate as bla
kbodies due to parti
le 
reation [2℄. A
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omprehensive summary of the work in the 1970's 
an be found in the book of Birrell and Davies

[3℄ and a more up-to-date review 
an be found in Fulling [4℄.

3.1 The Unruh E�e
t

Any one-parameter group of Lorentz boost isometries in Minkowski spa
etime has orbits whi
h are

timelike in a globally hyperboli
 region. Su
h a region may be viewed as spa
etime in its own right

and we may 
onstru
t a quantum �eld theory on it. When we do that, we obtain a remarkable


on
lusion, namely that the standard Minkowski va
uum 


M


orresponds to a thermal state in

the new 
onstru
tion. This means, that an a

elerated observer will feel himself to be immersed in

a thermal bath of parti
les with temperature proportional to his a

eleration a,

kT = �ha=2�
:

The temperature tends to zero in the limit in whi
h Plan
k's 
onstant h tends to zero. Su
h a

radiation has non-zero entropy. Sin
e the use of a a

elerated frame seems to be unrelated to any

statisti
al average, the appearan
e of a non-vanishing entropy is rather puzzling.

The Unruh e�e
t shows, that at the quantum level there is deep relation between the theory of

relativity and the theory of 
u
tuations asso
iated with states of thermal equilibrium, two major

aspe
ts of Einstein's work: The distin
tion between quantum zero-point and thermal 
u
tuations

is not an invariant one, but depends on the motion of the observer.

The Unruh e�e
t was dis
overed in an attempt to gain more insight into the nature of the Hawking

radiation [5℄. Let us now 
onsider a one-parameter family of Lorentz boosts in the 1-dire
tion.

Sin
e x

2

and x

3

are not 
hanged by su
h boosts, we need only 
onsider the 
hange of the �rst two


oordinates x = (T;X)

t

:

x =

�


osh(au) sinh(au)

sinh(au) 
osh(au)

�

x(0) = e

!u

x(0); (!

�

�

) =

�

0 a

a 0

�

:

Sin
e _x(u) = !x(u), the orbits are tangential to the Killing �eld

� = !x = a

�

X

T

�

with (�; �) = �a

2

(x; x):

Some typi
al orbits are depi
ted in the �gure (3.1). The Killing �eld is timelike in the regions R;L

and spa
elike in the regions F; P . It is timelike future dire
ted in the Rindler wedge R, de�ned by

X � jT j � 0. Sin
e

(�x; �x) = a

4

(x; x) = �a

2

(�; �);

where dot is the derivative with respe
t to the variable u asso
iated to the Killing �eld �, the

observers following orbits of � all undergo uniform a

eleration, although this a

eleration varies

from orbit to orbit. Sin
e on the orbit with (�; �) = 1 or (x; x) = �1=a

2

is a, it is 
onventional

to view the orbits of � as 
orresponding to a family of observers naturally asso
iated with an

observer who a

elerates uniformly with a

eleration a. The notion of 'parti
les' obtained from
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Abbildung 3.1: A Rindler-observer sees only a quarter of Minkowski spa
e

this quantum �eld 
onstru
tion are referred to as the 'parti
les seen by an observer who undergoes

uniform a

eleration a'.

All inextendible 
ausal 
urves through any point in the Rindler wedge interse
t the hyperplane

�

R

(see �gure (3.2)) and this hyperplane is therefore a Cau
hy surfa
e for the globally hyperboli


Rindler wedge R.

The null plane h

A

in this �gure is a Killing horizon for R. Every parti
le whi
h has left the Rindler

wedge (through h

A

) 
annot return to it.

We 
oordinatize the wedge by the aÆne parameter u on the orbits and by the invariant 'distan
e'

(x; x) of the orbits from the origin. The latter is negative on the Rindler wedge and thus we set

(x; x) = �e

av

=a so that v 2 R and the a

eleration on the orbit with v = 0 is a. The transformation

from x to (u; v) reads

T =

1

a

e

av

sinh au , X =

1

a

e

av


oshau;

where we took u = 0 for T = 0. The inverse transformation is

u =

1

a

artanh

T

X

and v =

1

2a

log a

2

�

X

2

� T

2

�

:

The Rindler wedge is 
overed by (u; v) 2 R

2

and the future event horizon has u =1. To make the

problem simple, we begin with a free zero-mass s
alar �eld � in 2-dimensional Minkowski spa
e.

The Lagrangian L and Hamiltonian H are given by

L =

1

2

1

Z

�1

h

�

��

�T

)

2

�

�

��

�X

�

2

i

dX; H =

1

2

1

Z

�1

h

�

2

+

�

��

�X

)

2

i

dX;
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Abbildung 3.2: A Cau
hy surfa
e �

R

and the horizons.

where � = ��=�T is the momentum-�eld 
onjugate to �. At equal Minkowski time T , we have the

usual 
ommutation relation

[�(T;X); �(T;X

0

)℄ = iÆ(X �X

0

): (3.1)

The transition from Minkowski- to Rindler spa
e is a 
onformal transformation,

ds

2

= dx

�

dx

�

= e

2�

�

du

2

� dv

2

�

; where � = av;

and as a 
onsequen
e the Lagrangian and Hamiltonian in Rindler spa
e have the same form as in

Minkowski spa
etime

~

L =

1

2

1

Z

�1

h

�

��

�u

�

2

�

�

��

�v

�

2

i

dX

~

H =

1

2

1

Z

�1

h

~�

2

+

�

��

�v

�

2

i

dX;

where now ~� = ��=�u. The equal-time 
ommutation relation in Rindler spa
e is
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[�(u; v); ~�(u; v

0

)℄ = iÆ(v � v

0

): (3.2)

The �eld equations in both M and R take on the identi
al forms

�

2

�

�T

2

�

�

2

�

�X

2

= 0 and

�

2

�

�u

2

�

�

2

�

�v

2

= 0:

In the Heisenberg pi
ture, the expansions in terms of annihilation and 
reation operators are

�(T;X) =

Z

dk

p

2!

�

a

k

f

k

(t; x) + h:
:

�

; where f

k

=

1

p

2�

e

�i!t+ikx

; ! = jkj

and

�(u; v) =

Z

dp

p

2�

�

~a

p

~

f

p

(u; v) + h:
:

�

; where

~

f

p

=

1

p

2�

e

�i�u+ipv

; � = jpj:

From the equal time 
ommutators (3.1) and (3.2) one derives the following 
ommutation relation

for the annihilation and 
reation operators

[a

k

; a

y

k

0

℄ = Æ(k � k

0

); [a

p

; a

y

p

0

℄ = Æ(p� p

0

); [a

k

; a

k

0

℄ = [a

p

; a

p

0

℄ = 0:

The va
uum state in Minkowski spa
etime is 
hara
terized by

a

k




M

= 0 for all k

Assuming that this is the state of the system, the expe
tation value of the o

upation number as

de�ned by the Rindler observer, n

p

� a

y

p

a

p

, is found to be

�




M

; n

p




M

�

= volume�

1

e

2��=a

� 1

: (3.3)

Thus for an a

elerated observer the quantum �eld seems to be in an equilibrium state with

temperature proportional to a. This puzzling result is the Unruh e�e
t. We now give a proof of

this important result.

First we express the annihilation and 
reation operators in Rindler spa
e in terms of the �eld

operator and its u-derivative as

1

p

2�

�

~a

p

e

�i�u

+ ~a

y

�p

e

i�u

�

=

1

p

2�

1

Z

�1

dv �(u; v)e

�ipv

i

r

�

2

�

� ~a

p

e

�i�u

+ ~a

y

�p

e

i�u

�

=

1

p

2�

1

Z

�1

dv

��(u; v)

�u

e

�ipv

:

We insert the expansion of the �eld operator in terms of the 
reation and annihilation operators

in Minkowski spa
etime. Using, that at u = 0

T = 0; X =

1

a

e

av

;

�T

�u

= e

av

and

�X

�u

= 0

56



one arrives at the following Bogolubov transformation relating (a

k

; a

y

k

) with (~a

p

; ~a

y

p

):

~a

p

+ ~a

y

�p

=

1

Z

�1

dvdk

r

�

!

�

a

k

f(k; p; v) + a

y

k

f(�k; p; v)

�

~a

p

� ~a

y

�p

=

1

Z

�1

dvdk

r

!

�

�

a

k

f(k; p; v)� a

y

k

f(�k; p; v)

�

e

av

:

We have introdu
ed the fun
tion

f(k; p; v) =

1

2�

exp

�

i[

k

a

e

av

� pv℄

�

:

The Bogolubov transformation 
an be solved for the annihilation operators in Rindler spa
e:

~a

p

=

Z

dkdv

�

�

r

�

!

+

r

!

�

e

av

�

a

k

f(k; p; v) +

�

r

�

!

�

r

!

�

e

av

�

a

y

k

f(�k; p; v)

�

:

Setting y = exp(av) and using the formula

1

Z

0

dx x

��1

e

�(�+i�)x

= �(�)(�

2

+ �

2

)

��=2

e

�i� ar
tan(�=�)

valid for � � 0 and 0 < � < 1 we �nd for � ! 0

Y (k; p) =

Z

dvf(k; p; v) =

1

2�a

Z

dye

iky=a

y

�1�ip=a

=

(

1

2�a

�

!

a

�

ip=a

�(�

ip

a

)e

�p=2a

if k > 0

1

2�a

�

!

a

�

ip=a

�(�

ip

a

)e

��p=2a

if k < 0.

Analogously, one �nds

Z

dv e

av

f(k; p; v) =

p

k

Y (k; p):

A short 
al
ulation shows that

~a

p

= 2

1

Z

0

r

�

!

�

Y (k; p)a

k

+ Y (�k; p)a

y

k

�

; p > 0

~a

p

= 2

1

Z

0

r

�

!

�

Y (�k; p)a

�k

+ Y (k; p)a

y

�k

�

; p < 0:

Using the 
ommutator-relation for the a

k

and a

y

k

0

and that the a

k

annihilate the Minkowski va
uum

allows us to 
al
ulate the expe
tation value (


M

; n

p




M

). Using �nally that

j�(iy)j

2

= �(iy)�(�iy) =

�

y sinh(�y)
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one �nds the following expression for this expe
tation value

(


M

; n

p




M

) �

1

e

2��=a

� 1

: (3.4)

We will 
ome ba
k to the Unruh e�e
t and its physi
al interpretation later on.

3.1.1 Bogolubov Transformations

Using the Klein-Gordon �eld equation it is easily seen, that the inner produ
t

(u

1

; u

2

) � i

Z

�

�

�u

1

n

�

r

�

u

2

� (n

�

r

�

�u

1

)u

2

�

p

h d

3

x

is 
onserved for two (
omplex) solutions. Here � is some spa
elike Cau
hy hypersurfa
e in spa
e-

time, n

�

is the future dire
ted unit-ve
tor �eld normal to � and h

��

the indu
ed metri
 on the

hypersurfa
e. This inner produ
t will not be positive de�nite for boson �elds. Let us introdu
e a


omplete set of 
onjugate pairs of solutions (u

k

; u

y

k

) of the Klein-Gordon equation

1

satisfying the

following orthonormality 
onditions

(u

k

; u

k

0

) = Æ(k; k

0

)) (�u

k

; �u

k

0

) = �Æ(k; k

0

) (u

k

; �u

k

0

) = 0:

There will be an in�nity of su
h sets. Now we expand the �eld operator in terms of these modes:

� =

Z

d�(k)

�

a

k

u

k

+ a

y

k

�u

k

�

;

so that

(u

k

; �) = a

k

and (�u

k

; �) = �a

y

k

:

By using the 
anoni
al 
ommutation relations it is then easy to show that the operator 
oeÆ
ients

(a

k

; a

y

k

) satisfy the usual 
ommutation relations.

If (v

p

; �v

p

) is a se
ond set of basis fun
tions we may as well expand the �eld operator in terms of

this set

� =

Z

d�(p)

�

b

p

v

p

+ b

y

p

�v

p

�

:

The se
ond set will be linearly related to the �rst one by

v

p

=

Z

d�(k)

�

(u

k

; v

p

)u

k

� (�u

k

; v

p

)�u

k

�

=

Z

d�(k)

�

�(p; k)u

k

+ �(p; k)�u

k

�

�v

p

=

Z

d�(k)

�

(u

k

; �v

p

)u

k

� (�u

k

; �v

p

)�u

k

�

=

Z

d�(k)

�

�

�(p; k)u

k

+ ��(p; k)�u

k

�

:

1

the k are any labels, not ne
essarily the momentum
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The inverse transformation reads

u

k

=

Z

d�(p)

�

v

p

��(p; k)� �v

p

�(p; k)

�

�u

k

=

Z

d�(p)

�

� v

p

�

�(p; k) + �v

p

�(p; k)

�

:

If the �(k; p) vanish the 'va
uum' is left un
hanged, but if they do not vanish we have a nontrivial

Bogolubov transformations

( a a

y

) = ( b b

y

)

�

� �

�

� ��

�

and

�

b

b

y

�

=

�

�� �

�

�

�� �

��

a

a

y

�

:

(3.5)

whi
h mixes the annihilation and 
reations operators. If one de�nes a Fo
k spa
e and a 'va
uum'


orresponding to the �rst mode expansion,

a

k




u

= 0;

then the expe
tation of the number operator b

y

p

b

p

de�ned with respe
t to the se
ond mode expan-

sion is

�




u

; b

y

p

b

p




u

�

=

Z

d�(k)j�(p; k)j

2

:

That is, the old va
uum 
ontains new parti
les. It may even 
ontain an in�nite number of new

parti
les, in whi
h 
ase the two Fo
k spa
es 
annot be related by a unitary transformation.

3.1.2 Green fun
tions

The Green fun
tions of the Klein-Gordon operator, generi
ally denoted by G(x; x

0

), are solutions

of

(2+m

2

)G(x; x

0

) = Æ

4

(x� x

0

) (3.6)

and allow for a solution of the Klein-Gordon equation with sour
es:

(2+m

2

)�(x) = j(x) =) �(x) = �

(0)

(x) +

Z

d

4

x

0

G(x; x

0

)j(x

0

);

where �

(0)

obey the homogeneous equation and is 
hosen in su
h a way that � satis�es the boundary


onditions.

Making use of translation invarian
e, (3.6) is solved through a Fourier transformation. Setting

G(�) =

1

(4�)

2

Z

d

4

p e

�ip�

~

G(p)

we get

(�p

2

+m

2

)

~

G(p) = 1:
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In 
lassi
al �eld theory the retarded and advan
ed Green fun
tions

2

G

ret

adv

(x) = �

1

(2�)

4

Z

d

4

p

e

�ipx

(p

0

� i�)

2

� ~p

2

�m

2

play an important role. These distributions are Lorentz invariant. G

ret

vanishes outside the forward

light 
one and G

adv

outside of the ba
kward light 
one. Both Green fun
tions are real, with

G

adv

(x) = G

ret

(�x). For massless parti
les

G

ret

adv

(x) =

1

2�

�(�x

0

)Æ(x

2

):

The mass term is responsible for the fa
t that the support is not 
on
entrated on the light 
one,

but also involves signals propagating at a speed smaller than one.

These Green fun
tions 
an be gotten from the Pauli-Jordan (S
hwinger) fun
tion

iG(x; x

0

) =

�




M

; [�(x); �(x

0

)℄


M

�

as follows

G

ret

(x; x

0

) = ��(t� t

0

)G(x; x

0

) and G

adv

(x; x

0

) = �(t

0

� t)G(x; x

0

):

G is the di�eren
e of its positive and negative frequen
y parts,

iG = G

+

�G

�

;

and these parts are just the Wightman fun
tions

G

+

(x; x

0

) = (


M

; �(x)�(x

0

)


M

) and G

�

(x; x

0

) = (


M

; �(x

0

)�(x)


M

):

In the quantum theory one en
ounters another solution to the same equation, �rst introdu
ed by

Stue
kelberg and Feynman:

iG

F

(x; x

0

) =

�




M

; T

�

(�(x)�(x

0

)

�




M

�

=

i

(2�)

4

Z

d

4

p

e

�ipx

p

2

�m

2

+ i�

:

Contrary to the retarded and advan
ed Green fun
tions G

F

is 
omplex and has an exponential

tail for negative x

2

. In terms of the Wightman fun
tions it is

iG

F

= �(t� t

0

)G

+

(x; x

0

) + �(t

0

� t)G

�

(x; x

0

):

The Feynman propagator G

F

obeys the di�erential equation

(2+m

2

)G

F

(x; x

0

) = �Æ(x� x

0

):

For massless parti
les the Feynman propagator and Hadamard's elementary fun
tion G

(1)

= G

+

+

G

�

be
ome

2

better: distributions
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G

F

(x; x

0

) =

i

4�

2

1

�

2

� i�

and G

(1)

(x; x

0

) = �

1

2�

2

�

2

;

(3.7)

where � = x� x

0

. For massive �eld the Feynman propagator is given in term of Hankel fun
tions.

In 
urved spa
etime some, but not all, of these Green fun
tions are intrinsi
ally determined by the

manifold. The Pauli-Jordan 
ommutator fun
tion

iG(x; x

0

) =

�




M

; [�(x); �(x

0

)℄


M

�

is a 
-number 
al
ulable from �eld equation and the 
anoni
al 
ommutation relations. The retarded

and advan
ed Green fun
tions are uniquely de�ned by the purely geometri
al restri
tions on their

supports. However, the positive frequen
y part of G, i.e. the Wightman fun
tion, requires for its

de�nition either a distinguished va
uum ve
tor of a notion of positive frequen
y. These elements

are either absent (for time-dependent models) or ambiguous (as in Rindler spa
etime). Similar

remarks apply to the Feynman propagator.

3.2 The KMS 
ondition

Consider an arbitrary quantum me
hani
al system with time-independent Hamiltonian H . The

time evolution of an observable, represented by A, in the Heisenberg pi
ture is

A(z) = e

izH

Ae

�izH

;

where z = t+i� is a 
omplex time. If � = 0 then this is the time-evolution in a stati
 spa
etime with

Lorentzian signature, if t = 0 then it is the time-evolution in the 
orresponding stati
 spa
etime

with eu
lidean signature. If exp(��H); � > 0 is tra
e 
lass, one 
an de�ne the equilibrium state of

temperature T = 1=�:

hAi

�

=

1

Z

tr e

��H

A; Z = tr e

��H

:

(3.8)

For two observables A and B we de�ne the thermal expe
tation values

G

�

+

(z; A;B) = hA(z

2

)B(z

1

)i

�

=

1

Z

tr

�

e

��H

e

iz

2

H

Ae

�i(z

2

�z

1

)H

Be

�iz

1

H

�

=

1

Z

tr

�

e

i(z+i�)H

Ae

�izH

B

�
(3.9)

and

G

�

�

(z; A;B) = hB(z

1

)A(z

2

)i

�

=

1

Z

tr

�

e

��H

e

iz

1

H

Be

�i(z

1

�z

2

)H

Ae

�iz

2

H

�

=

1

Z

tr

�

Be

izH

Ae

�i(z�i�)H

�
(3.10)

where we have used the 
y
li
ity of the tra
e and introdu
ed z = z

2

� z

1

. Both exponents in (3.9)
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have negative real parts if �� < � < 0; for (3.10) the 
ondition is 0 < � < �. Therefore, these two

formulas de�ne holomorphi
 fun
tions in those respe
tive strips. G

�

�

(t; A;B) are their boundary

values. From (3.9,3.10) it follows immediately, that

G

�

�

(z; A;B) = G

�

+

(z � i�; A;B)

(3.11)

For z = t this reads

hBA(t)i

�

= hA(t� i�)Bi

�

:
(3.12)

Condition (3.11) is 
alled the KMS 
ondition after Kubo, Martin and S
hwinger [9℄. It 
an be

given a pre
ise sense in terms of C

�

algebras and their states for systems for whi
h exp(��H)

is not tra
e-
lass. The KMS-
ondition is now a

epted as a de�nition of 'thermal equilibrium at

temperature 1=�'.

So far the analyti
 fun
tions G

�

have been de�ned in disjoint, adja
ent trips in the 
omplex time

plane. The KMS-
ondition states that one of these is the translate of the other and this allows

us to de�ne a periodi
 fun
tion throughout the 
omplex plane, with the possible ex
eption of the

lines � = =(z) = n�. Suppose, that

[A(t); B℄ = 0 for t 2 I � R:

Then the boundary values of G

�

+

and G

�

�


oin
ide on I and we 
on
lude (by the edge-of-the-wedge

theorem) that G

�

�

are restri
tions of a single holomorphi
, periodi
 fun
tion, G

�

(z; A;B), de�ned

in a 
onne
ted region in the 
omplex time plane ex
ept parts of the lines � = n�.

3.3 Stati
 spa
etimes

In a stati
 spa
etime we may 
hoose 
oordinates, su
h that the metri
 has the form

(g

��

) =

�

g

00

0

0 g

ij

�

with time-independent entries. Su
h a metri
 is 
onformally equivalent to a ultra-stati
 metri
 ĝ

��

,

g

��

= g

00

ĝ

��

= g

00

�

1 0

0 �h

ij

�

:

Sin
e

2

g

+m

2

= g

�(d+2)=4

00

�

2

ĝ

+ g

00

m

2

+ 
urvature terms

�

g

(d�2)=4

00

the Klein-Gordon equation

(2

g

+m

2

)� = 0

is equivalent to
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�

2

�t

2

u = Ku; where K = �4

ĝ

+ V (~x) and � = (g

00

)

(2�d)=4

u:

(3.13)

The solutions of this equation have the form

u

�

(t; ~x) = e

�i!

�

t

 

�

(~x)

where the  

�

are normalized eigenfun
tions of the hermitian operator K:

K 

�

= !

2

�

 

�

:

The 
onserved Klein-Gordon inner produ
t

(�

�

1

; �

�

2

) � i

Z

�

�

�

y

�

1

n

�

r

�

�

�

2

� 
.
.

�

q

� det(g

ij

) d

3

x

is then proportional to the L

2

-s
alar produ
t on the hypersurfa
es t =
onstant:

(�

�

1

; �

�

2

) = 2!

�

Z

d

3

x

p

h  

y

�

1

 

�

2

= 2!

�

h 

�

1

;  

�

2

i:

The Green fun
tions of the �eld operator

�(x) =

X

1

p

!

�

�

 

�

e

�i!

�

t

a

�

+  

y

�

e

i!

�

t

a

d

�

agger

(3.14)

namely

G

1

+

(t; x; y) = h0j�(x)�(y)j0i =

X

 

�

(~x) 

y

�

(~y)e

�i!

�

t

G

1

�

(t; x; y) = h0j�(y)�(x)j0i =

X

 

�

(~y) 

y

�

(~x)e

i!

�

t

;

where t = x

0

� y

0

, are ea
h analyti
 fun
tion on a half plane. G

+

is analyti
 in z = t+ i� for � < 0

and G

�

for � > 0. The distributions G

1

�

are boundary values of these analyti
 fun
tions as the

real axis is approa
hed from their respe
tive dire
tions. If ~x 6= ~y then the x and y will be spa
elike

for suÆ
iently small t = x

0

� y

0

. Sin
e �(x) and �(y) must 
ommute for spa
elike separated x; y,

we have

G

1

+

(z; ~x; ~y) = G

1

�

(z; x; y)

for z on a 
ertain interval (�d; d) of the real axis. Therefore, ea
h of these fun
tions is an analyti



ontinuation of the other. That is, for �xed ~x 6= ~y there is a single holomorphi
 G

1

(z; ~x; ~y), de�ned

on a 
onne
ted region of the 
omplex time plane, su
h that

G

1

(z; ~x; ~y) =

�

G

1

+

(z; ~x; ~y) if =(z) < 0

G

1

�

(z; ~x; ~y) if =(z) > 0,

and both equalities hold on the interval on the real axis. In general there will be bran
h 
uts along

the real axis from z = �d to z = �1. On the imaginary axis

G

1

(�; ~x; ~y) = G

1

(i�; ~x; ~y) =

X

 

�

(~x) 

y

�

(~y) e

�!

�

j� j
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and this eu
lidean Green fun
tion (often 
alled two-point S
hwinger fun
tion) is the unique solution

of

�

�

2

��

2

+K)G

1

(x; y) = Æ(�)Æ(~x � ~y)

1

p




; � = x

0

� y

0

;

whi
h de
ays for j� j ! 1.

G_

G+ +

euclidean time

real time

τ

tG_

G

d-d

Abbildung 3.3: The various two-point fun
tions are boundary values of the analyti
 G

1

.

3.3.1 Flat spa
etime

For simpli
ity we 
onsider a massless �eld. Then

G

1

(�;

~

�) =

1

4�

2

1

�

2

+

~

�

2

;

~

� = ~x� ~y

from whi
h follows, that

G(z;

~

�) = �

1

4�

2

1

z

2

�

~

�

2

:

From this we read of, that

�4�

2

G

1

+

(x; y) =

(

�

(x � y)

2

� i�

�

�1

if x

0

> y

0

�

(x � y)

2

+ i�

�

�1

if x

0

< y

0

,
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and

�4�

2

G

1

�

(�;

~

�) =

(

�

(x � y)

2

+ i�

�

�1

if x

0

> y

0

�

(x � y)

2

� i�

�

�1

if x

0

< y

0

.

All other Green fun
tions are obtained similarly. For example, the Feynman-Greenfun
tion

i�

F

(x; y) = h0jT

�

�(x)�(y)

�

j0i

is

�

F

(x; y) =

i

4�

2

1

(x � y)

2

� i�

:

Appli
ation to the Rindler wedge Let p and p

0

be two events on the world line of an a

elerated

observer with �xed v. The event p happens at Rindler time u and the earlier event p

0

at Rindler

time u

0

. Expressed in Rindler 
oordinates, the invariant distan
e between p and p

0

is

(�T )

2

� (�X

1

)

2

=

4

a

2

e

2av

sinh

2

a

2

(u� u

0

)

and the free massless Feynman propagator, used by an inertial observer, is

G

F

(p; p

0

) =

i

16�

2

a

2

e

�2av

1

sinh

2

a

2

(u� u

0

)� i�

:

(3.15)

Now let us rewrite the right hand side. First, spe
ializing the results for the massless Feynman

propagator to points on the world line of an a

elerated observer, we immediately obtain

Z

d

4

p e

�iE(u�u

0

)

i

p

2

+ i�

= �

4�

2

(u� u

0

)

2

� i�

:

Now we integrate in

Z

d

4

p e

�iE(u�u

0

)

2�Æ(p

2

)

e

�jEj

� 1

over p

0

= E, introdu
e polar 
oordinates, and expand the resulting denominator in powers of e

��p

.

This way the integral be
omes

4�

2

1

Z

0

dp

p

e

�p

� 1

�

e

ip(u�u

0

)

+ e

�ip(u�u

0

)

�

= �4�

2

X

n6=0

1

(u� u

0

+ in�)

2

:

With

a

2

4

1

sinh

2

a

2

(u� u

0

)� i�

=

1

(u� u

0

)

2

� i�

+

1

X

n6=1

1

(u� u

0

+ in�)

2

;

where � = 2�=a, we �nally end up with the following spe
tral representation of the Feynman-

propagator as seen by the Rindler observer

65



G

F

(p; p

0

) =

e

�2av

(2�)

4

Z

d

4

p e

�iE(u�u

0

)

�

1

p

2

+ i�

� 2�i

Æ(p

2

)

e

�jEj

� 1

�

:

(3.16)

This is the �nite temperature propagator. It follows, that, in equilibrium, atoms dragged along the

world line �nd their ex
ited levels populated as predi
ted by temperature �

�1

= a=2�.

The propagator is a sum of amplitudes for the path 
onne
ting p with p

0

. We shall 
ontinue to

Eu
lidean spa
etime, in whi
h

G

E

(p; p

0

) = hX j

1

�4

jX

0

i =

1

Z

0

ds hX je

s4

jX

0

i =

1

Z

0

ds

Z

DX

�

exp

�

�

1

4

s

Z

0

_

X

2

�

;

where the paths start at p

0

and end at p. The path integral splits into pie
es, ea
h pie
e 
orrespon-

ding to an integration over paths whose proje
tion on the X

0

; X

1

plane winds n times around the

origin. If p; p

0

lie in the X

0

; X

1

plane, then

p

p 

F

P

RL

Abbildung 3.4: Path 
orresponding to winding number +2 and 0

Z

DX

�

e

�

1

4

R

_

X

�

_

X

�

=

1

4�s

X

n

Z

DX Æ(n(X)�n��) exp

�

�

1

4

s

Z

0

_

X

2

�

;

where the last path integral is only over path in the (X

0

; X

1

) plane,

n(X) =

Z

s

0

X

0

_

X

1

�X

1

_

X

0

X

2

0

+X

2

1

is the winding number of the path X(s) and � the angle between its endpoints. The path integral

for path with �xed windings 
an be 
al
ulated and then 
ontinued ba
k to Minkowski spa
etime.

66



The result is

G

n

[(u; v; 0; 0); (u

0

; v

0

; 0; 0)℄ = �

1

4�

2

1

e

2av

� e

2av

0

1

(u� u

0

� in�)

2

:

Spe
ializing to the two events on the world line of an observer with v = 0, one has the result

G

n

[(u; 0; 0; 0); (u

0

; 0; 0; 0)℄ = �

1

4�

2

1

(u� u

0

� in�)

2

:

whi
h is what we wanted to show. Let us interpret the result for winding number 2 in �gure (3.4).

Limiting ourselves to the Rindler wedge, we see a line being absorbed at p

0


oming from u = �1,

one being emitted at p going to u = 1 and an extra spe
tator going from u = �1 to u = 1.

This 
an be extended to general values of n.

Earlier on we have already argued, that the Feynman propagator requires for its de�nition either

a distinguished va
uum or a notion of positive frequen
y. Hen
e, the diÆ
ulty with the Unruh-

e�e
t 
annot be resolved merely by shifting attention from annihilation-
reation operators to Green

fun
tions. Indeed, we have just seen that the two methods yield the same result: an a

elerated

observer will 'see' thermal radiation, even though the �eld � is in the va
uum state 


M

and an

inertial observer dete
ts no parti
les. Sin
e both the a

elerated and una

elerated observer agree

that the stress-energy-momentum of � vanishes this has led to the des
ription 'quasi' or '�
tious'

parti
les for the quanta that ex
ite the a

elerated dete
tor. Later we shall re
onsider the Unruh

e�e
t and will have to say more about interpretational issues.

3.4 Quantum Fields in Curved Spa
etime

Sin
e no analog of either a plane wave basis or a 
hoi
e of a 'positive frequen
y subspa
e' is available

in a general 
urved spa
etime, we reformulate quantum �eld theory without using a plane wave

expansion. A parti
le interpretation 
an be given in a stationary, 
urved spa
etime. But in a general,

non-stationary spa
etime, the states of the quantum �eld will not possess a physi
ally meaningful

parti
le interpretation. It is ne
essary, that the 
ausal stru
ture of spa
etime is well behaved so

that the spa
e of 
lassi
al solutions have the same basi
 stru
ture as in Minkowski spa
etime. The


onditions of global hyperboli
ity ensures that this is the 
ase.

In an arbitrary 
urved spa
etime, the properties of the 
lassi
al solutions 
an be very di�erent

form those in Minkowski spa
etime. Let us have a look at two examples:

1. LetM be a 
at 4-torus, with spatial periodi
ity L and time periodi
ity T . Then exp(�i!t+

i

~

k~x) is a periodi
 solution of the Klein-Gordon equation with m = 0 only if

! =

2�m

0

T

;

~

k =

2�~m

L

and

m

2

0

T

2

=

~m

2

L

2

; where m

�

2 Z:

Thus, for irrational T

2

=L

2

only the solution � =
onstant is admitted.

2. Consider any spa
etime with a 'timelike singularity'. Sin
e anything 
an emerge from su
h

a singularity, uniqueness for solutions of the �eld equation with given initial 
onditions on a

spa
elike hypersurfa
e 
annot hold.
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Fortunately, there is a simple 
ondition on (M; g

��

) whi
h guarantees that the �eld equations have

a well posed initial value formulation. First, we assume that spa
etime is time orientable, su
h that

a 
ontinuous 
hoi
e 
an be made throughout spa
etime of whi
h half of ea
h light 
one 
onstitutes

the 'future' dire
tion and whi
h half the 'past'. Let � �M be a
hronal hypersurfa
e

3

. We de�ne

the domain of dependen
e of � by

D(�) = fp 2 Mjevery inextendible 
ausal 
urve through p interse
ts �g:

Re
all, that a 
urve is 
ausal if its tangent is everywhere either timelike or null. If D(�) =M, then

� is 
alled a Cau
hy surfa
e for the spa
etime (whi
h is automati
ally C

0

.) IfM admits a Cau
hy

surfa
e, then it is said to be globally hyperboli
. Then the following theorem, due to Gero
h (1970),

holds:

Theorem If (M; g

��

) is globally hyperboli
 with Cau
hy surfa
e �, thenM has topology R��.

Furthermore, M 
an be foliated by a one-parameter family of smooth Cau
hy surfa
es �

t

, i.e. a

smooth 'time 
oordinate' t 
an be 
hosen on M su
h that ea
h surfa
e of 
onstant t is a Cau
hy

surfa
e.

In a globally hyperboli
 spa
etime with smooth, spa
elike Cau
hy surfa
e � there is a well posed

initial value problem for the Klein-Gordon equation (Hawking and Ellis 1973): Given smooth initial

data �

0

;

_

�

0

2 C

1

(�), then there exists a unique solution � of (3.17), de�ned on all of M, su
h

that on � we have

� = �

0

and n

�

r

�

� =

_

�

0

;

where n

�

is the unit future-dire
ted normal to �. In addition, � is smooth and varies 
ontinuously

with the initial data.

The 
lassi
al a
tion of a minimally 
oupled s
alar �eld without self-intera
tion is is

S

�

=

1

2

Z

�

�

g

��

�

�

��

�

��m

2

�

2

�

; � =

p

�gd

4

x

and the 
urved spa
etime version of the Klein-Gordon equation reads

r

�

r

�

�+m

2

� = 0:
(3.17)

For the phase-spa
e formulation of the Klein-Gordon �eld we introdu
e a 'sli
ing' ofM by spa
elike

Cau
hy surfa
es �

t

. Let n

�

be the unit normal ve
tor �eld to the hypersurfa
es �

t

. The spa
etime

metri
 g

��

indu
es a spatial (three-dimensional Riemannian) metri
 (�h

��

) on ea
h �

t

by the

formula

h

��

= n

�

n

�

� g

��

:

Let t

�

be a 'time evolution' ve
tor �eld onM satisfying t

�

r

�

t = 1. We de
ompose it into its parts

normal and tangential to �

t

,

t

�

= g

��

t

�

= n

�

(n; t)� h

��

t

�

� Nn

�

�N

�

;

3

No pair of points p; q 2 � 
an be joined by a timelike 
urve.
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Σ t 2
n

n
µ

µ
0 0

.

Σ t 1

tµ

N µ

µ
Nn

(Φ  , Φ  )

µν(M , g )
Φ (x)

Abbildung 3.5: A globally hyperboli
 spa
etime with Cau
hy hypersurfa
e has a

well-posed initial value problem. 3+1 split.

where we have de�ned the lapse fun
tion N = (n; t) and the shift ve
tor N

�

= h

��

t

�

tangential

to the �

t

. Now we introdu
e lo
al 
oordinates x

�

= (t; x

i

); i = 1; 2; 3 with t

�

r

�

x

i

= 0, so that

t

�

r

�

= �

t

and N

�

�

�

= N

i

�

i

. The metri
 
oeÆ
ients in this 
oordinate system are

g

00

= g(�

t

; �

t

) = t

�

t

�

g(�

�

; �

�

) = N

2

+N

i

N

i

g

0i

= g(�

t

; �

i

) = N(n

�

�

�

; �

i

)�N

�

(�

�

; �

i

) = N

j

h

ji

� N

i

;

so that

(g

��

) =

�

N

2

+N

i

N

i

N

i

N

i

�h

ij

�

and (g

��

) =

1

N

2

�

1 �N

i

�N

i

N

i

N

j

�N

2

h

ij

�

:

The determinant of the metri
 is det(g

��

) = N

2

det(�h

ij

). Inserting these de
ompositions into the

Klein-Gordon a
tion one obtains

S =

Z

Ldt

with

L =

1

2

Z

�

t

n

1

N

2

�

_

��N

i

�

i

�

�

2

+ h

ij

�

i

��

j

��m

2

�

2

�o

N

p

hd

3

x:

We �nd that the momentum density, �, 
onjugate to the 
on�guration variable � on �

t

is given

by

� =

ÆS

Æ

_

�

=

p

h

N

�

_

��N

i

�

i

�

�

=

p

h

�

n

�

�

�

�

�

:
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A point in 
lassi
al phase spa
e P of the Klein-Gordon theory 
onsists of the spe
i�
ation of

fun
tions (�(x); �(x)) on a Cau
hy surfa
e �

0

. If we spe
ify P pre
isely by requiring that (�; �) 2

C

1

0

(smooth and of 
ompa
t support) then, by the result of Hawking and Ellis above, they give

rise to a unique solution to (3.17). The spa
e of solutions S is independent on the 
hoi
e of the

Cau
hy surfa
e.

3.4.1 Stationary Spa
etimes

At least te
hni
ally one may generalize the well-known 
at spa
etime 
onstru
tion of a Fo
k spa
e

if spa
etime is stationary, i.e. possesses a global timelike Killing ve
tor �eld K whi
h generates a


ow of isometries. Then we may 
hoose basi
 fun
tions u

k

that satisfy

iL

K

u

k

= !(k)u

k

and iL

K

u

y

k

= �!(k)uy

k

;

where the !(k) > 0 are 
onstant. If K

�

is globally timelike, then one may introdu
e a 
oordinate

t upon whi
h the metri
 does not depend and with respe
t to whi
h K

�

takes the form K = �

t

.

The 
ovariant 
omponents of K are K

�

= g

�0

. Sin
e ds

2

= g

00

dt

2

+ : : : = (K;K)dt

2

+ : : :, the


oordinate t is in general not the proper time of observers moving with the 
ow of K. However,

sin
e

r

K

(K;K) = 2K

�

K

�

r

�

K

�

= K

�

K

�

L

K

g

��

= 0;

the norm ofK is 
onstant along the orbits ofK. Therefore we may s
aleK su
h that t gives dire
tly

the proper time measured by at least one 
o-moving 
lo
k. The !(k) are the frequen
ies relative

to that 
lo
k. and the u

k

and u

y

k

are the positive and negative frequen
y solutions, or positive and

negative energy solutions, respe
tively. Now the 
onstru
tion of the va
uum, one-parti
le spa
e

and Fo
k spa
e is done in the usual way:

Gibbons

4

has given the following 
ovariant 
onstru
tions: The quantity

T

K

=

Z

�

T

��

K

�

d�

�

is 
onserved on a

ount of the Killing equation and 
ovariant 
onservation of the energy-momentum

tensor. Although it is an ill-de�ned operator, it possesses well de�ned 
ommutation relations with

the 
omponents of the �eld

[T

K

; �℄ = iL

K

�:

One 
an make T

K

well de�ned, by normal ordering it with respe
t to the above 
hosen a and a

y

,

E =

Z

�

: T

��

: K

�

d�

�

:

The va
uum will then be the zero referen
e point for energy

E
 = 0:

4

G.W. Gibbons, 1974
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The a and a

y

will be energy-raising and lowering operators

[E; a

k

℄ = �!(k)a

k

:

If there is another Killing ve
tor L that 
ommutes with K,

[K;L℄ = 0() [L

K

; L

L

℄ = 0;

then the basis fun
tions may be 
hosen so as to satisfy also

iL

L

u

k

= �(k)u

k

;

where the �(k) are 
onstants. The a

k

and a

y

k

then be
ome raising and lowering operators for the

asso
iated quantity

T

L

=

Z

�

: T

��

: L

�

d�

�

;

i.e.

[T

L

; a

k

℄ = �(k)a

k

:

More generally, if there is a set of independent Killing ve
tors generating a Lie algebra, the u

k

may

be sele
ted to yield a irredu
ible representation of that algebra.

Problems with this pro
edure:

1. There may be no Killing ve
tor at all. One probably has to give up the parti
le pi
ture in

this generi
 situation.

2. There may be a global Killing ve
tor, but it may not be everywhere timelike. Then one

may ex
lude the non-timelike region from spa
e time. This 
orresponds to the imposition

of boundary 
onditions. One may also try to retain the non-timelike region but attempt to

de�ne a meaningful va
uum by invoking physi
al argument.

3. Spa
etime may be stationary only in limited regions. If ea
h region possesses a 
omplete

Cau
hy hypersurfa
e, then a lo
al timelike Killing �eld may be set up in ea
h and a va
uum

de�ned for ea
h. With respe
t to the basis fun
tion of whi
h region should the stress tensor

be normal ordered? It is not possible to de�ne the stress tensor so that (a) it is normal

ordered in both regions (b) its matrix elements are smooth fun
tions, and (
) it satis�es the

divergen
e equation

T

��

;�

= 0

everywhere.
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3.4.2 The energy inner produ
t

The following 
onstru
tion is do to Ashtekar and Magnon and to Kay

5

. Let

S =

Z

d�

�

1

2

g

��

�

�

��

�

�� V (�)

�

=

Z

d�L; d� =

p

jgjd

d

x

be the a
tion of a s
alar �eld. Using

Æ

p

jgj =

1

2

p

jgjg

��

Æg

��

= �

1

2

p

jgj Æg

��

g

��

;

one easily �nds for the variation of the a
tion

ÆS =

Z

d�

�

1

2

�

�

��

�

��

1

2

g

��

L

�

Æg

��

;

and the metri
 stress-energy tensor

T

��

=

2

p

jgj

ÆS

Æg

��

has the simple form

T

��

= �

�

��

�

�� g

��

L:

Being the variation of the a
tion with respe
t to the symmetri
 metri
 it is symmetri
. Under a

in�nitesimal one-parameter group of di�eomorphism, the orbits of whi
h are tangential to the ve
tor

�eld X(x), the metri
 and �eld transform as Æg

��

= L

X

g

��

and Æ� = L

X

�. A di�eomorphism-

invariant a
tion does not 
hange under su
h variations, so that

0 = Æ

X

S =

Z

d

d

x

ÆS

Æg

��

(x)

L

X

g

��

(x) +

Z

d

d

x

ÆS

Æ�(x)

L

X

�(x)

=

1

2

Z

d�T

��

�

r

�

X

�

+r

�

X

�

�

�

Z

d�

�

2�+ V

0

(�)

�

L

X

�

= �

Z

d�T

;�

��

X

�

�

Z

d�

�

2�+ V

0

(�)

�

L

X

�:

If the s
alar �eld ful�lls the �eld equation (is on shell) then the metri
 energy momentum ten-

sor is automati
ally 
onserved on a

ount of the di�eomorphism invarian
e of the a
tion. The


onservation of T

��


an also dire
tly be proved by using the Klein-Gordon equation.

Let S be the spa
e of solutions of the free Klein-Gordon equation. We 
omplexify S to S

C

and

de�ne an 'energy inner produ
t' as above

(�

1

; �

2

) =

Z

�

T

��

(�

1

; �

2

)K

�

n

�

p

hd

3

x

5

Ashtekar, A. (1975), Pro
. Roy. So
. London A346, 375; Kay, B. (1978), Commun. Math. Phys. 62, 55.
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where the bilinear-form de�ned by the 'stress tensor' is extended to S

C

as

T

��

(�

1

; �

2

) =

1

2

�

�

y

1

;

�

�

2

;

�

+�

y

1

;

�

�

2

;

�

�g

��

�

r�

y

1

r�

2

�m

2

�

y

1

�

2

�

�

:

We assume that m

2

> 0 so that (:; :) is positive for 
ompa
t �. Sin
e the �

i

are solutions of the free

Klein-Gordon equation, the stress tensor is 
onserved and sin
eK is a Killing �eldr

�

(T

��

K

�

) = 0.

Hen
e, using Gauss's law, we see that (:; :) is independent of the 
hoi
e of Cau
hy surfa
e �. In

parti
ular, let

�

t

:M�!M

be the one-parameter group of isometries generated by the timelike Killing �eld K. Then (:; :) is

invariant under the time translation map �

�

t

: S

C

! S

C

de�ned by

�

�

t

(�) = � Æ �

t

or

�

�

�

t

(�)

�

(x) = �

�

�

t

(x)

�

;

sin
e applying �

�

t

to solutions is equivalent to applying �

t

to �. Next we 
omplete S

C

in the

'energy-norm' to get a 
omplex Hilbert spa
e

~

H (this is not yet the Hilbert spa
e we seek). The

time translation map �

�

t

extends to

~

H and de�nes a strongly 
ontinuous, one-parameter, unitary

group, also denoted by �

�

t

. By Stone's theorem

�

�

t

= e

i

~

ht

;

~

h selfadjoint.

Note, that from the de�nition of the Lie derivative,

d

dt

�

�

�

t

�

�

j

t=0

= �L

X

�

we have for all � 2 S

C

~

h� = iL

K

�:

Now we re
all, that




�

[�

1

; �

1

℄; [�

2

; �

2

℄

�

=

Z

�

0

�

�

1

�

2

� �

2

�

1

�

d

3

x; � =

p

hn

�

r

�

�;

is 
onserved on solutions and hen
e may be viewed as bilinear map on S

C

, if we extend 
 by

(
omplex) linearity in ea
h variable. Now one 
an prove, that

j
(�

y

1

; �

2

)j � Ck�

1

kk�

2

k

from whi
h follows, that 
(�

y

1

; �

2

) extends 
ontinuously to a quadrati
 form on

~

H. It 
an also be

shown, that


(�

y

1

;

~

h�

2

) = 2i(�

1

; �

2

);

and that

~

h is bounded away from zero. Now, let

~

H

+

be the positive spe
tral subspa
e of

~

H and let

K be the proje
tion map K :

~

H !

~

H

+

. For all real solutions we may now de�ne the s
alar produ
t

�(�

1

; �

2

) = =
(K�

1

;K�

2

) = 2<(K�

1

;

~

h

�1

K�

2

):
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 is 
onserved for solutions of the Klein-Gordon equation, so we may view it as a bilinear map on

S, i.e. 
 : S � S ! R.

The one-parti
le Hilbert spa
e H is just the 
ompletion of the spa
e

~

H

+

, of 'positive frequen
y

solutions' in the Klein-Gordon inner produ
t. This 
onstru
tion avoids any dire
t attempt to take

the 'time Fourier transform' of solutions along the orbits of the Killing �eld. Su
h Fourier transform

may exist only in a distributional sense.

3.5 The Stress-Energy Tensor

Beside the (smeared) �elds there are many additional operators in whi
h one is interested in

quantum theory. Primary among these is the stress-energy tensor. It is of interest sin
e it des
ribes

the lo
al energy, momentum and stress properties of the �eld. It is relevant for des
ribing the

ba
k-rea
tion of the quantum �eld on the spa
etime geometry. Semi
lassi
ally one would expe
t

that ba
k-rea
tion is des
ribed by the 'semi
lassi
al Einstein equation'

G

��

= 8�GhT

��

i

!

:

Thus, it is of 
onsiderable interest to determine the expe
tation value of the stress-energy tensor in

physi
ally relevant states !. Some restri
tions should be expe
ted on the 
lass of states on whi
h

hT

��

i 
an be de�ned. We shall see that the Hadamard 
ondition provides a restri
tion of exa
tly

this sort of states.

3.5.1 Hadamard states

In the following we shall assume, that (M; g

��

) is globally hyperboli
. Then the Cau
hy problem

for the Klein-Gordon equation for any Cau
hy surfa
e � has a unique solution. It follows, that

there are unique retarded and advan
ed Green fun
tions

�

ret

(x; y) , �

adv

(x; y) with supp(�

ret

) = f(x; y);x 2 J

+

(y)g:

Hadamard states are states, for whi
h the two-point fun
tion has the following singularity stru
ture

!

�

�(x)�(y)

�

� !

2

(x; y) =

u

�

+ v log� + w; where

(3.18)

�(x; y) is the square of the geodesi
 distan
e of x and y and u; v; w are smooth fun
tions onM. It

has been shown that if !

2

has the Hadamard singularity stru
ture in a neighborhood of a Cau
hy-

surfa
e, then it has his form everywhere [6℄. To show that, one observes, that !

2

satis�es the wave

equation. This result 
an then be used to show, that on a globally hyperboli
 spa
etime there is

a 
lass of states, forming a dense subspa
e of a Hilbert spa
e, whose two-point fun
tions have the

Hadamard singularity stru
ture.

The two-point fun
tion must be positive,

!

�

�(f)

y

�(f)

�

=

Z

d�(x)d�(y)!

�

�(x)!(y)

�

�

f(x)f(y) � 0;

74



and must obey the Klein-Gordon equation. These requirements determine u and v uniquely and

puts stringent 
onditions on the form of w

2

. The Feynman Greenfun
tion is related to !

2

and the

retarded Greenfun
tion as

i�

F

(x; y) = !

2

(x; y) + �

ret

(y; x):

Sin
e �

ret

is unique, the ambiguities of �

F

are the same as those of !

2

. The propagator fun
tion

i�(x; y) = [�(x); �(y)℄ = i�

ret

(x; y)� i�

adv

(x; y)

determines the antisymmetri
 part of !

2

,

!

2

(x; y)� !

2

(y; x) = i�(x; y);

so that this part is without ambiguities. For a s
alar �eld without self-intera
tion we expe
t, that

!

�

�(x

1

) : : : �(x

n

)

�

= 0 for odd n

!

�

�(x

1

) : : : �(x

2n

)

�

=

X

i

1

<i

2

:::<i

n

j

1

<j

2

:::j

n

n

Y

k=1

!

�

�(x

i

k

)�(x

j

k

)

�

:

A state ful�lling these 
onditions is 
alled quasifree. Now one 
an show, that any 
hoi
e of !

2

(x; y)

ful�lling the properties listed above give rise to a well-de�ned Hilbert spa
e, i.e. a Fo
k spa
e over

a quasifree va
uum state. The Hilbert spa
e is

H =

1

M

n=0

H

n

;

(3.19)

where the s
alar-produ
ts on the 'n-parti
le subspa
e' H

n

in

H

n

= f 2 D(M

n

)

symm

=Ng


ompleteon

(3.20)

is just

( 

1

;  

2

) =

Z

d�(x

1

; ::; x

n

; y

1

; ::; y

n

)

n

Y

i=1

!

2

(x

i

; y

i

)

�

 

1

(x

1

; ::; x

n

) 

2

(y

1

; ::; y

n

);

where we introdu
ed the abbreviation d�(x

1

; x

2

; ::) = d�(x

1

)d�(x

2

) : : :. Sin
e

(2+m

2

)!

2

(x; y) = 0;

the fun
tions in the image of 2 + m

2

have zero norm. The set N of zero-norm states has been

divided out in (3.20) in order to end up with a positive de�nite Hilbert spa
e.

The smeared �eld operator is now de�ned in the usual way:

�(f) = a(f)

y

+ a(

�

f);
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where

�

a(

�

f) 

�

n

(x

1

; ::; x

n

) =

p

n+ 1

Z

d�(x; y)!

2

(x; y)f(x) 

n+1

(y; x

1

; ::; x

n

)

�

a(f)

y

 

�

n

(x

1

; ::; x

n

) =

1

p

n

n

X

k=1

f(x

k

) 

n�1

(x

1

; ::; �x

k

; ::; x

n

); n > 0

and (a(f)

y

 )

0

= 0. It is now easy to see, that !

2

is just the Wightman fun
tion of � in the va
uum

state  

0

:

!

2

(x; y) =

�

 

0

; �(x)�(y) 

0

�

:

3.5.2 The Wald axioms for the stress-energy tensor

The diÆ
ulties with de�ning

hT

��

i

are present already in Minkowski spa
etime. The divergen
es are due to the zero-point energies of

the in�nite 
olle
tion of harmoni
 os
illators whi
h 
omprise the quantum �eld. A simple 
ure for

this diÆ
ulty is the normal ordering pres
ription:

!

�

: T

��

:

�

= !

�

T

��

�

� (


M

; T

��




M

):

The so de�ned va
uum expe
tation value of the stress-energy tensor vanishes. On 
urved spa
etime

there is no satisfa
tory generalization of this pres
ription sin
e there is

1. No preferred va
uum state

2. Due to va
uum polarization e�e
ts we do not expe
t that the stress-energy of the va
uum

(assuming there is a natural one) vanishes.

To make progress let us look at an alternative formulation of the normal ordering pres
ription

without doing the Fourier transformation. We �rst 
onsider the ill-de�ned obje
t �

2

(x), whi
h is

part of the stress-energy tensor. We may split the points and 
onsider �rst the obje
t !(�(x)�(y))

whi
h solves the Klein-Gordon equation. This bi-distribution makes perfe
tly good sense. For

physi
ally reasonable states  in the Fo
k spa
e (e.g. states with a �nite number of parti
les)

the singular behavior of this bi-distribution is the same as that belonging to the va
uum state,

!

0

�

�(x)�(y)

�

: For su
h states the di�eren
e

F (x; y) = !

�

�(x)�(y)

�

� !

0

�

�(x)�(y)

�

is a smooth fun
tion of its arguments. Hen
e, after performing this 'va
uum subtra
tion' the


oin
iden
e limit may be taken. We then de�ne

!

�

�

2

(x)

�

= lim

x!y

F (x; y):
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The same pres
ription 
an be used for the stress-energy tensor instead of �

2

. We de�ne

!

�

T

��

(x)

�

= lim

x!x

0

�

�

�

�

�

0

�

1

2

g

��

�

�

�

�

�

0

�m

2

�

�

F (x; x

0

):

After what has been said above, we do not believe that this is a physi
al de�nition of expe
tation

values of the stress-energy tensor. However, note that the point-splitting pres
ription sensibly

de�nes the di�eren
es of the expe
ted stress energy between two states,

!

1

�

T

��

�

� !

2

�

T

��

�

:

In the absen
e of an obvious pres
ription to de�ne the expe
tation values, it is useful to take an

axiomati
 approa
h. Wald showed that a renormalized stress tensor satisfying 
ertain reasonable

physi
al requirements is essentially unique [7℄. Its ambiguity 
an be absorbed into rede�nitions

of the 
oupling 
onstants in the gravitational �eld equation. Wald argues that one expe
ts this

operator to have the following properties:

1. Consisten
y:Whenever !

1

(�(x)�(y))�!

2

(�(x)�(y)) is a smooth fun
tion, then !

1

(T

��

)�

!

2

(T

��

) is well-de�ned and should be given by the above 'point-splitting' pres
ription.

2. Conservation: In the 
lassi
al theory the stress-energy tensor is 
onserved. If the regulari-

zation needed to de�ne a stress-energy tensor respe
ts the di�eomorphism invarian
e, then

r

�

T

��

= 0

must also hold in the quantized theory. This property is needed for 
onsisten
y of Einstein's

gravitational �eld equation.

3. In Minkowski spa
etime, we have (


M

; T

��




M

) = 0:

4. Causality:We assume, that spa
etime is asymptoti
ally stati
. For a �xed in-state, !

in

�

T

��

(x)

�

is independent of variations of g

��

outside the past light 
one of x. For a �xed out-state,

!

out

�

T

��

�

is independent of metri
 variations outside the future light 
one of x.

The �rst and last properties are the key ones, sin
e they uniquely determine the expe
ted stress-

energy tensor up to the addition of lo
al 
urvature terms. This fa
t is 
ontained in the

Uniqueness theorem (Wald): Let T

��

and

~

T

��

be operators on globally hyperboli
 spa
etime

satisfying the axioms of Wald. Then the di�eren
e

U

��

= T

��

�

~

T

��

has the following properties.

1. U

��

is a multiple of the identity operator.

2. It is 
onserved, r

�

U

��

= 0.

3. It is a lo
al tensor of the metri
. That is, it depends only on the metri
 and its derivatives,

via the 
urvature tensor, at the same point x.
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fixed initial geometry and state

µν (x) = 0

µνgδ

Tδ

Abbildung 3.6: Changes outside the past light 
one do not a�e
t hT

��

(x)i.

As a 
onsequen
e of the properties,

!(T

��

)� !(

~

T

��

)

is independent on the state ! and depends only lo
ally on 
urvature invariants. The Causality

axiom 
an be repla
ed by a lo
ality property, whi
h does not assume an asymptoti
ally stati


spa
etime. The proofs of these properties are rather simple and 
an be found in the standard

textbooks.

3.5.3 Cal
ulating the stress-energy tensor

A 'point-splitting' pres
ription where one subtra
ts from !(�(x)�(y)) the expe
tation value !

0

(�(x)�(y))

in some �xed state !

0

will ful�lls the 
onsisten
y requirement, but 
annot ful�ll the �rst and

third axiom at the same time. However, if one subtra
ts a lo
ally 
onstru
ted bi-distribution

H(x; y) whi
h satis�es the wave equation, has a suitable singularity stru
ture and is equals to

(


M

; �(x)�(y)


M

) in Minkowski spa
etime, then all four properties will be satis�ed.

To �nd a suitable bi-distribution one re
alls the singularity stru
ture (3.18) of !

2

(x; y). In Min-

kowski spa
etime and for massless �elds w = 0 and this suggests that we take the bi-distribution

H(x; y) =

U(x; y)

�

+ V (x; y) log�

The resulting stress-energy obeys almost all properties, besides that for massive �elds on Minkowski

spa
etime we still �nd a non-vanishing va
uum expe
tation value, and that

r

�

!

�

T

��

�

= r

�

Q;

where Q is a s
alar density, lo
ally dependent on the metri
. Hen
e we may modify our pres
ription

by simply subtra
ting (Q + 
)g

��

from T

��

. The 
onstant 
 is 
hosen, su
h that on Minkowski

spa
etime the va
uum expe
tation value vanishes.

78



3.5.4 E�e
tive a
tion

We have seen, that the 
lassi
al metri
 energy momentum tensor is automati
ally 
onserved if

it is gotten by variation of a di�eomorphism-invariant 
lassi
al a
tion. If we 
ould 
onstru
t a

di�eomorphism-invariant quantum a
tion �(g

��

; �), whose variation with respe
t to the metri


yields an expe
tation value of the energy momentum tensor,

hT

��

(x)i =

2

p

jgj

Æ�

Æg

��

;

then hT

��

i would be 
onserved by 
onstru
tion. Let us look at a parti
ular example.

Conformally 
at spa
etimes

A 
onformally 
oupled s
alar �eld propagating on a spa
etime M has 
lassi
al a
tion

S[�℄ =

Z

M

p

g

�

�

1

2

�4




�

�

; where 4




=4�

d� 2

4(d� 1)

R

is the Weyl-
ovariant wave operator. Note, that for a va
uum solution of the Einstein equation

the Ri

i s
alar vanishes and there is no distin
tion between 
onformal and minimal 
oupling.

Formally, the expe
tation value (whi
h one?) of the stress-energy tensor is

hT

��

(x)i = �

1

Z[g℄

Z

D�

2

p

g

Æ

Æg

��

e

�S[�℄

=

2

p

g

Æ

Æg

��

�[�℄;

where we have introdu
ed the e�e
tive a
tion

�[g℄ = � logZ[g℄ = � log

Z

D� e

�S[�℄

=

1

2

log det(�4




):

For arbitrary spa
etimes the spe
trum of4




is not known. However, the variation of � with respe
t

to � in

g

��

= e

2�

ĝ

��

;

whi
h is proportional to the expe
tation value of the tra
e of the stress-energy tensor,

Æ�

Æ�(x)

= �2g

��

Æ�

Æg

��

= �

p

ghT

�

�

i


an be 
al
ulated. The non-vanishing of this tra
e in the quantized theory is the so-
alled tra
e-

anomaly and this anomaly is known. It follows, that the di�eren
e �[g℄ � �[ĝ℄ 
an be 
al
ulated

by integrating the tra
e anomaly To do that expli
itly, we re
all (see our dis
ussion of the Weyl-

transformation) that

4




= e

�

1

2

(d+2)�

^

4




e

1

2

(d�2)�

:

Now we interpolate between the referen
e metri
 ĝ and g by the one-parametri
 family of metri
s

g

(�)

��

= e

2��

ĝ

��

:
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Using the manifestly 
ovariant �-fun
tion te
hniques, the � -variation of

�[g

(�)

℄ =

1

2

log det(�4

(�)




); 4

(�)




= e

1

2

(d+2)��

^

4




e

1

2

(d�2)��


an easily be 
al
ulated

6

. Integrating from � = 0 to � = 1 yields

�[g℄� �[ĝ℄ =

2

(4�)

d=2

1

Z

0

d�

Z

M

p

g

(�)

a

(�)

d=2

(x)�(x);

(3.21)

where a

(�)

d=2

is the 
oeÆ
ient of dimension L

�d

in the asymptoti
 small t-expansion of the heat

kernel,

hxj exp

�

t4

g

(�)

�

jxi �

1

(4�t)

d

2

X

n=0

t

n

a

(�)

n

(x):

The Seeley-deWitt 
oeÆ
ients a

n

are lo
al s
alar fun
tions of the metri
, have length-dimension

�2n and have been 
al
ulated up to a

5

.

2 dimensions

Every 2-dimensional spa
etime is 
onformally 
at and we may assume that

g

��

= e

2�

Æ

��

or ĝ

��

= Æ

��

:

It follows, that, up to the metri
-independent e�e
tive a
tion �[Æ℄ the e�e
tive a
tion 
an be


al
ulated. The result is the Polyakov e�e
tive a
tion

�[g℄� �[Æ℄ =




96�

Z

p

gR

1

4

R;

where 
 is the 
entral 
harge whi
h is 1 for un
harged s
alars. The expe
tation value of T

��

is

gotten by di�erentiation with respe
t to the metri
. The result is

hT

��

i =




24�

�

g

��

R�r

�

r

�

1

4

R

�

+




48�

�

r

�

1

4

R � r

�

1

4

R�

1

2

g

��

r

�

1

4

R � r

�

1

4

R

�

:

(3.22)

This is indeed 
onserved and has tra
e 
R=24�. In isothermal 
oordinates

R = �24� = �2e

�2�

4

0

�; �

�

��

= Æ

�

�

�

;�

+ Æ

�

�

�

;�

� Æ

��

�

;�

and hen
e

T

��

=




24�

�

Æ

��

�

(r�)

2

� 24

0

�

�

+ 2

�

�

�

�

�

� � �

�

��

�

�

�

�

:

6

We assume, that the Eu
lidean wave operator possesses no zero-modes
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Or, if we introdu
e 
omplex 
oordinates z =

1

2

(x

0

+ ix

1

) we obtain

hT

zz

i = �




12�

e

�

�

2

z

e

��

and hT

z�z

i = �




12�

4

0

�:

Note, that � is not determined by R. We may always add a harmoni
 pie
e to �, without a�e
ting

R. In a Lorentzian spa
etime, the 
orresponding result is

hT

uu;vv

i = �




12�

e

�

�

2

u;v

e

��

+ t

u;v

; hT

uv

i = �




12�

2

0

�; (3.23)

where we introdu
ed the light 
one variables u =

1

2

(x

0

�x

1

) and v =

1

2

(x

0

+x

1

). The pres
ription to

invert the wave operator in 2 (3.22) shows up in the free fun
tion t

u;v

. A 
hoi
e of these fun
tions

is equivalent to the 
hoi
e of the quantum state whose stress-energy is 
al
ulated. Let us now apply

these results to a toy bla
k hole in 2 dimensional spa
etime with metri


ds

2

=

�

1� 2M=r

�

dt

2

�

1

1� 2M=r

dr

2

:

This is just the (t; r)-part of the S
hwarzs
hild metri
 in 4 spa
etime dimensions. To �nd isothermal


oordinates in whi
h light rays travel on 45

0

lines, we note, that null geodesi
s satisfy

ds

2

= 0 =)

�

dt

dr

�

2

=

1

�

2

:

Thus, on null geodesi
s

t = �r

�

+ 
onstant;

where the 'Regge-Wheeler tortoise 
oordinate' r

�

is de�ned by

r

�

= r + 2M log

�

r

M

� 2

�

:

(3.24)

Note, that the event horizon at r = 2M has tortoise 
oordinate r

�

= �1. In the 
oordinate system

(t; r

�

) the metri
 be
omes 
onformally 
at by 
onstru
tion,

ds

2

=

�

1� 2M=r

��

dt

2

� dr

2

�

�

� �

�

dt

2

� dr

2

�

�

:

(3.25)

As above we introdu
e null-
oordinates

u =

1

2

(t� r

�

) and v =

1

2

(t+ r

�

):

Using that �

v

= �

t

+ �

r

�

and that pa

r

�

= ��

r

we obtain

2

0

� =

2M

r

3

�; e

�

�

2

u;v

e

��

=

2M

r

3

�+

M

2

r

4

and the light-
one 
omponents (3.23) of the energy momentum tensor read

hT

uu;vv

i = �




12�

�

2M�

r

3

+

M

2

r

4

�

+ t

u;v

; hT

uv

i = �




12�

2M�

r

3

:
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With

T

uu(vv)

= T

00

+ T

11

� (+)2T

01

and T

uv

= T

00

� T

11

we �nd for hT

��

i in the x

�

= (t; r

�

) 
oordinate system

7

hT

�

�

i = �


M

24�r

4

�

4r +M=� 0

0 �M=�

�

+

1

4�

�

t

v

+ t

u

t

v

� t

u

�t

v

+ t

u

�t

v

� t

u

�

(3.26)

The Boulware state is the state appropriate to a va
uum around a stati
 star and 
ontains no

radiation at spatial in�nity J

�

. Hen
e the terms t

v

(v) and t

u

(u) must vanish and the tensor

simpli�es to

hO

s

jT

�

�

jO

s

i = �


M

24�r

4

�

4r +M=� 0

0 �M=�

�

:

(3.27)

However, this state is singular at the horizon. To see that more expli
itly, let us re
all, how to

introdu
e Kruskal 
oordinates whi
h 
over the whole spa
etime and are regular at the event horizon

r = 2M . The metri
 (3.25)

ds

2

=

8M

r

e

�r=2M

e

(v�u)=2M

dudv where we used � =

2M

r

e

(r

�

�r)=2M

suggests, that we introdu
e

U = �e

�u=2M

and V = e

v=2M

so that the metri
 is regular on the horizons:

ds

2

=

32M

3

r

e

�r=2M

dUdV:

With respe
t to these regular 
oordinates the energy momentum takes the form

hT

UU

i =

�

M

U

�

2

�

4t

u

�




3�

�

2M�

r

3

+

M

2

r

4

�

�

hT

V V

i =

�

M

V

�

2

�

4t

v

�




3�

�

2M�

r

3

+

M

2

r

4

�

�

hT

UV

i =

M

2

UV




3�

2M�

r

3

:

The 
omponent hT

UU

i is regular at the horizon U = 0 if M

2

t

u

= 
=192� and hT

V V

i is regular at

the horizon V = 0, if M

2

t

v

= 
=192� holds. The 
orresponding state is 
alled the Israel-Hartle-

Hawking state. In this state the asymptoti
 form of the energy-momentum tensor is

h0

HH

jT

�

�

j0

HH

i =




384�M

2

�

1 0

0 �1

�

=


�

6

(kT )

2

�

1 0

0 �1

�

(3.28)

with T = 1=8�kM = �=2�k. This is the stress-tensor of a bath of thermal radiation at temperature

7


omparison with Birrell and Davies, p. 283: M

2

t

v

= 1=192 + 4K � 2Q and M

2

t

u

= 1=192 � 2Q
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r = constant

t = constant

t =

r = 2M

IIV

II

III

T

X
r = 2M

8
t = - 8r = 0

r = 0 Killing horihon

VU

Abbildung 3.7: The Kruskal extension of S
hwarzs
hild spa
etime

T . Finally, demanding that energy-momentum is regular at the future horizon and that there is no

in
oming radiation, i.e.

t

u

=




192�M

2

and t

v

= 0

results in

h0

U

jT

�

�

j0

U

i =




768�M

2

�

1 �1

1 �1

�

=


�

12

(kT )

2

�

1 �1

1 �1

�

(3.29)

The Unruh state is regular on the future horizon and singular at the past horizon. It des
ribes the

Hawking evaporation pro
ess with only outward 
ux of thermal radiation.

3.6 Hawking radiation

and hen
e The most dramati
 result arising from investigation of parti
le 
reation near bla
k holes

was Hawking's dis
overy that parti
le 
reation also o

urs near a S
hwarzs
hild bla
k hole, resulting

in 'emission' of a thermal spe
trum of parti
les [2℄. We give the main steps of the derivation and

the dis
ussion of this result. Before doing that, we re
all some fa
ts about spheri
ally symmetri
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spa
etimes and the S
hwarzs
hild metri
.

3.6.1 Spheri
ally symmetri
 spa
etimes

A spa
etime is spheri
ally symmetri
 if its isometry group 
ontains a subgroup isomorphi
 of

the rotation group SO(3), and if the orbits of this subgroup are two-dimensional spheres. The

indu
ed metri
 on ea
h orbit must be a multiple of the metri
 on a unit 2-sphere, and thus 
an

be 
hara
terized by the total area A, of the sphere. It is 
onvenient to introdu
e the fun
tion r,

referred to as 'radial 
oordinate', de�ned by r = (A=4�)

1=2

. Thus in spheri
al 
oordinates (�; ')

the metri
 on ea
h orbit takes the form

ds

2

= r

2

d


2

= r

2

�

d�

2

+ sin

2

�d'

2

�

:

The three linearly independent spa
elike Killing ve
tor �elds with 
losed orbits and whi
h satisfy

the so(3) 
ommutation relations are

� sin'

�

��

� 
os' 
ot �

�

�'

; 
os'

�

��

� sin' 
ot �

�

�'

;

�

�'

:

In adapted 
oordinates the line element of a spheri
ally symmetri
 spa
etime has the 
anoni
al

form

ds

2

= e

�

dt

2

� e

�

dr

2

� r

2

d


2

; � = �(t; r); � = �(t; r): (3.30)

The most general va
uum solution of Einsteins �eld equation is given by the well-known S
hwarz-

s
hild line element

ds

2

= �dt

2

�

1

�

dr

2

� r

2

d


2

; � = 1� 2M=r:

(3.31)

This solution is stationary with timelike Killing �eld �

t

whi
h is orthogonal to the Hypersurfa
es

t = 
onst: Hen
e every spheri
ally symmetri
 va
uum solution is automati
ally stati
. The advan
e

of the perihelion of mer
ury, the bending of light by the sun, the time delay of light and the gravi-

tational redshift have been used to test this line element. These and some more re
ent observations

are in good agreement with the theoreti
al predi
tions of Einsteins theory of relativity.

In the following spa
elike, timelike and null-hypersurfa
es will be important. A hyperplane � with

normal ve
tor �eld n at a point p is spa
elike, null or timelike at this point if (n; n) is negative, zero

or positive at p. For example, the ve
tor �eld normal to the hypersurfa
es x

0

= 
onstant obeys

(n; �

i

) = n

�

g

�i

= n

i

= 0; i = 1; 2; 3:

If we set n

0

= 1, then

(n; n) = g

00

:

A 
oordinate hypersurfa
e x

�

=
onst. is spa
elike, null or timelike if g

��

is negative, zero or positive.

We see that the hypersurfa
es with 
onstant ' or 
onstant � are spa
e like at all points. Sin
e

g

rr

= ��(r);
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the surfa
e of 
onstant r is spa
elike outside the event horizon at r = 2M , timelike inside and null

on the horizon.

3.6.2 The Kruskal Extension

The singularity of the S
hwarzs
hild metri
 at the S
hwarzs
hild radius r = 2M is a 
oordinate

singularity, whereas the singularity at r = 0 is a true singularity. The 
oordinate singularity is

very similar to the 
oordinate singularity if one uses Rindler 
oordinates on the Rindler wedge.

Introdu
ing the tortoise 
oordinate as above, the line element reads

ds

2

= �(r)

�

dt

2

� dr

2

�

)� r

2

d


2

;

where r = r(r

�

) is given in (3.24). As above, we introdu
e the null-
oordinates u; v so that

ds

2

=

8M

r

e

�r=2M

e

(n�u)=2M

dudv � r

2

d


2

:

If one introdu
es the Kruskal 
oordinates U; V the metri
 be
omes

ds

2

=

32M

3

r

e

�r=2M

dUdV � r

2

d


2

and is regular at the horizon. If we �nally set

U = T �X and V = T +X

then the S
hwarzs
hild metri
 takes the �nal form given by Kruskal (1960)

ds

2

=

32M

3

r

e

�r=2M

�

dT

2

� dX

2

�

� r

2

d


2

:

(3.32)

The transformation from the Kruskal 
oordinates (T;X) to the S
hwarzs
hild 
oordinates (t; r) is

expli
itly given by

X

2

� T

2

= �UV = e

(v�u)=2M

= e

r

�

=2M

= e

r=2M

�

r

2M

� 1

�

log

T +X

X � T

= log

�

�

V

U

�

= log e

(u+v)=2M

=

t

2M

:

It follows, that

XdT � TdX

X

2

� T

2

=

dt

4M

and XdX � TdT =

r

8M

2

e

r=2M

dr:

The allowed range of the Kruskal 
oordinates is given by the 
ondition r > 0, whi
h yields T

2

�X

2

<

1. The spa
etime diagram for the Kruskal extension is shown in �gure (3.7). By 
onstru
tion all

radial null geodesi
s are 45

0

lines. There are spa
elike physi
al singularities in the extended region

at T = �

p

1 +X

2

. The wedge I in with positive X and jT j � X 
orresponds to the exterior

S
hwarzs
hild solution.
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3.6.3 Wave equation in S
hwarzs
hild spa
etime

A

ording to the general dis
ussion we need to study the 
lassi
al wave propagation of a Klein-

Gordon s
alar �eld in region I of the extended S
hwarzs
hild spa
etime (3.8). One might expe
t,

IV I

II

III

i 0

J

J

+

-

ev
en

t h
or

izo
n

singularity
i +

Abbildung 3.8: Conformal diagram of the extended S
hwarzs
hild spa
etime.

that any solution in this region must have started from in�nity or must have entered region I from

the white hole region III . At late times, one expe
ts that every solution will propagate into the

bla
k hole region II and/or propagate ba
k to in�nity. For the investigation we use, that in in

S
hwarzs
hild 
oordinates the Lapla
ian reads

2 =

1

�

�

2

�t

2

�

�

�

1

r

�

2

�r

2

r + �

0

�

�r

�

+

~

L

2

r

2

:

(3.33)

Sin
e spa
etime is spheri
ally symmetri
 we 
an expand the �eld in spheri
al harmoni
s and write

the wave equation (2+m

2

)� for ea
h mode of the form Setting

� =

f(t; r)

r

Y

lm

e

�i!t

:

We obtain

�

2

f

�t

2

�

�

2

f

�r

2

�

�

�

1�

2M

r

��

2M

r

3

+

l(l+ 1)

r

2

+m

2

�

f = 0;

(3.34)

where the tortoise 
oordinate r

�

has been de�ned above, M is the mass of the bla
k hole and m is

the mass of the Klein-Gordon �eld. This equation 
an be identi�ed with the wave equation for a

massless s
alar �eld in 2-dimensional 
at spa
etime with s
alar potential

V (r

�

) =

�

1�

2M

r

��

2M

r

3

+

l(l+ 1)

r

2

+m

2

�

:

As r

�

! �1 (i.e. r ! 2M) the potential falls o� exponentially, V � exp(r

�

=2M), and as r

�

!1

the potential behaves as � m

2

� 2Mm

2

=r

�

in the massive 
ase and � l(l + 1)=r

2

in the massless

86




ase. In the asymptoti
 region r !1 this equation possesses outgoing solution � e

i!r

�

and ingoing

solutions � e

�i!r

�

. In terms of the null-
oordinates the asymptoti
 solutions look like

outgoing:

1

r

e

�i!u

; ingoing:

1

r

e

�i!v

:

(3.35)

Be
ause of the potential term in (3.34) the in
oming waves will partially s
atter o� the gravitational

�eld to be
ome a superposition of in
oming and outgoing waves.

We de
ompose � into a 
omplete set of positive frequen
y modeled denoted by u

!lm

:

� =

X

l;m

Z

d!

�

a

!lm

u

!lm

+ a

y

!lm

u

y

!lm

�

;

whi
h are normalized a

ording to

�

u

!

1

l

1

m

1

; u

!

2

l

2

m

2

�

= Æ(!

1

� !

2

)Æ

l

1

l

2

Æ

m

1

m

2

;

where we used the 
onserved 'norm' introdu
ed earlier,

(u

1

; u

2

) = i

Z

�

�

u

y

1

n

�

r

�

u

2

� (n

�

r

�

u

y

1

)u

2

�

p

hd

3

x;

and are 
hosen to redu
e to the in
oming spheri
al modes (3.35) in the remote past. The state

should 
orrespond to the absen
e of in
oming radiation,

a

!lm

 

0

= 0:

(3.36)
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