Kapitel 3

Quantum Fields near Black Holes

In the theory of quantum fields in curved spacetimes one treats the gravitational field classically.
The structure of spacetime is described by a manifold M on which a metric g,, with Lorentz
signature is defined. The matter fields propagating in classical spacetime are treated as quantum
fields. For linear fields a satisfactory theory can be constructed.

The approximation in which gravity is treated classically should break down when the spacetime
curvature approaches Planck scales. But it should hold for a wide variety of phenomena, including
the particle creation near a black hole with Schwarzschild radius much greater than the Planck
length.

The difficulties in the transition from flat to curved spacetime lies in the absence of the notion of
global inertial observers or of Poincare transformations which underlie the notion of particles in
Minkowski spacetime. If one accepts that quantum field theory in general curved spacetime is a
quantum theory of fields, not particles, then one soon realizes that the the notion of global inertial
observers is irrelevant for the formulation of the theory.

For a field theory the Stone-von Neumann theorem does not hold and infinitely many inequivalent
irreducible representation of the canonical commutation relations exist. In flat spacetime, Poincare
symmetry is used to pick out a preferred representation. This is achieved by selecting a invariant
vacuum state which is equivalent to a selection of a particle notion. In a general curved spacetime
there does not appear to be any preferred notion of particles. Actually, in spacetimes which are
flat in the asymptotic past and the asymptotic future and for which a natural notion of particles
is available in both asymptotic regions, the corresponding two representations are, in general,
inequivalent.

A way out of these difficulties in picking a particular representation is to formulate the theory
via the algebraic approach. No particular representation of the commutation relations need to be
chosen and one needs not define a preferred notion of particles.

The framework and structure of Quantum field theory in curved spacetimes emerged from Parkers
analysis of particle creation in the very early universe [1]. The theory received enormous impetus
from Hawking’s discovery, that black holes radiate as blackbodies due to particle creation [2]. A

92



comprehensive summary of the work in the 1970’s can be found in the book of Birrell and Davies
[3] and a more up-to-date review can be found in Fulling [4].

3.1 The Unruh Effect

Any one-parameter group of Lorentz boost isometries in Minkowski spacetime has orbits which are
timelike in a globally hyperbolic region. Such a region may be viewed as spacetime in its own right
and we may construct a quantum field theory on it. When we do that, we obtain a remarkable
conclusion, namely that the standard Minkowski vacuum j; corresponds to a thermal state in
the new construction. This means, that an accelerated observer will feel himself to be immersed in
a thermal bath of particles with temperature proportional to his acceleration a,

kT = ha/2me.

The temperature tends to zero in the limit in which Planck’s constant h tends to zero. Such a
radiation has non-zero entropy. Since the use of a accelerated frame seems to be unrelated to any
statistical average, the appearance of a non-vanishing entropy is rather puzzling.

The Unruh effect shows, that at the quantum level there is deep relation between the theory of
relativity and the theory of fluctuations associated with states of thermal equilibrium, two major
aspects of Einstein’s work: The distinction between quantum zero-point and thermal fluctuations
is not an invariant one, but depends on the motion of the observer.

The Unruh effect was discovered in an attempt to gain more insight into the nature of the Hawking
radiation [5]. Let us now consider a one-parameter family of Lorentz boosts in the 1-direction.
Since 22 and 2® are not changed by such boosts, we need only consider the change of the first two
coordinates z = (T, X )*:

o (cosh(au) sinh(au))w(o) ), () — (2 8)-

sinh(au) cosh(au)

Since #(u) = wx(u), the orbits are tangential to the Killing field

E=wzx=a <)1{> with  (£,€) = —d®(z, ).

Some typical orbits are depicted in the figure (3.1). The Killing field is timelike in the regions R, L
and spacelike in the regions F, P. It is timelike future directed in the Rindler wedge R, defined by
X > |T| > 0. Since

(1‘,1‘) = a4(x,x) = _G’Q(fag)a

where dot is the derivative with respect to the variable u associated to the Killing field &, the
observers following orbits of £ all undergo uniform acceleration, although this acceleration varies
from orbit to orbit. Since on the orbit with (£,€) = 1 or (z,2) = —1/a? is a, it is conventional
to view the orbits of £ as corresponding to a family of observers naturally associated with an
observer who accelerates uniformly with acceleration a. The notion of ’particles’ obtained from
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Abbildung 3.1: A Rindler-observer sees only a quarter of Minkowski space

this quantum field construction are referred to as the ’particles seen by an observer who undergoes
uniform acceleration a’.

All inextendible causal curves through any point in the Rindler wedge intersect the hyperplane
YR (see figure (3.2)) and this hyperplane is therefore a Cauchy surface for the globally hyperbolic
Rindler wedge R.

The null plane h 4 in this figure is a Killing horizon for R. Every particle which has left the Rindler
wedge (through h,4) cannot return to it.

We coordinatize the wedge by the affine parameter v on the orbits and by the invariant ’distance’
(z,z) of the orbits from the origin. The latter is negative on the Rindler wedge and thus we set
(z,2) = —e®/a so that v € R and the acceleration on the orbit with v = 0 is a. The transformation
from z to (u,v) reads

1 1
T==-e"sinhau , X = —e" coshau,
a a

where we took u = 0 for T" = 0. The inverse transformation is

1 T 1
u= Eartanhf and v = 5 loga® [ X? — T?].
The Rindler wedge is covered by (u,v) € R? and the future event horizon has u = co. To make the
problem simple, we begin with a free zero-mass scalar field ¢ in 2-dimensional Minkowski space.
The Lagrangian £ and Hamiltonian H are given by

c=5 [ ligp? - Golax w=g [ [+ (gpr]ax

— 00 — 00
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Abbildung 3.2: A Cauchy surface ¥ g and the horizons.

where 7 = 9¢/IT is the momentum-field conjugate to ¢. At equal Minkowski time T', we have the
usual commutation relation

The transition from Minkowski- to Rindler space is a conformal transformation,
ds® = datdz, = e (du2 — dv2), where o = av,

and as a consequence the Lagrangian and Hamiltonian in Rindler space have the same form as in
Minkowski spacetime

£ =5 [ 1G-Gex
= PG

where now © = d¢/0u. The equal-time commutation relation in Rindler space is
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[¢(u7 U)a 7?(“7 UI)] = Z6(1} - UI)' (32)
The field equations in both M and R take on the identical forms

0? 0? 0? 0?
—¢ — 9 =0 and —¢ — —¢ =0
oT? 0X? ou?  ov?
In the Heisenberg picture, the expansions in terms of annihilation and creation operators are

dk 1 .
o(T,X) = / m(akfk(t,x) + h.c.), where fi, = \/—2_71_@7“””“”, w = |k|

and

1 67i€u+ipv

d . .
Qﬁ(u,v)=/\/—%(dpfp(u,v)+h.c.), where f, = N , €=|p|

From the equal time commutators (3.1) and (3.2) one derives the following commutation relation
for the annihilation and creation operators

[ak’a;rc’] =0(k - kl)a [aP’ a’;r)’] =d(p— pl)v [ak, ar] = [apv a’p’] =0.
The vacuum state in Minkowski spacetime is characterized by
arQy =0 forall k

Assuming that this is the state of the system, the expectation value of the occupation number as

defined by the Rindler observer, n, = afay, is found to be

(QM, anM) = volume x (33)

e2mefa _ 1"

Thus for an accelerated observer the quantum field seems to be in an equilibrium state with
temperature proportional to a. This puzzling result is the Unruh effect. We now give a proof of
this important result.

First we express the annihilation and creation operators in Rindler space in terms of the field
operator and its u-derivative as

1 ~ —deu | ~T _ieu _ 1 r —ipv
NGr: (ape +a' e ) = T dv ¢(u,v)e
—00
. € ~  _jeu ~ ieu 1 r a¢(uav) —ipv
i 5(—%6 +af_pe ) = \/ﬂ/dv 5y © L
—00

We insert the expansion of the field operator in terms of the creation and annihilation operators
in Minkowski spacetime. Using, that at u =0

1 oT
T = X = —e™ — =% d —_— =
0, ae , 0 e an 90 0

96



one arrives at the following Bogolubov transformation relating (ay, az) with (G, &;f,):

. - €
ap +aT_p = / dvdk\/;(akf(k,p,v) +a£f(—k,p,v))

o0

ap — dT_p = / dvdk\/g(akf(k,p,v) - azf(—k,p,v))e‘“’.

We have introduced the function

f(kvpa U) = % exp (i[geav —pv]).

The Bogolubov transformation can be solved for the annihilation operators in Rindler space:

i, = /dkdv([\/§+ \/ge‘“’]akf(k,p, \/j - \/7 ~k,p,0)).

Setting y = exp(av) and using the formula
/diL” mu—le—(a—i-iﬁ)x — F(V)(aQ + 62)—1//26—1'1/ arctan(3/a)

validforaZOand0<l/<1weﬁndf0ru—>0

/dyezky/a —1—ip/a
2ra

{ S (2)Pr(—i)emr/2e if k>0

Y (k,p) = / dvf (k, p,v)

2ma

S (2)P (= 2)emmr/20 i < 0.

2ma \ a

Analogously, one finds
av _ b
/dve f(kapav) - EY(kap)

A short calculation shows that

ap 2/ \/E(Y(k,p)ak +Y(—k,p)a£), p>0
a, = /\/7 (=k,p)a_ k+Y(kp)a k) p < 0.

Using the commutator-relation for the aj and az, and that the a; annihilate the Minkowski vacuum
allows us to calculate the expectation value (Qar,n,Qs). Using finally that

™

Pyl =TT (=iy) = s
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one finds the following expression for this expectation value

1

(o, npQar) ~ -

(3.4)

We will come back to the Unruh effect and its physical interpretation later on.

3.1.1 Bogolubov Transformations

Using the Klein-Gordon field equation it is easily seen, that the inner product
(ug,uz) = z/ (ﬂln“vuw - (n“Vuﬂl)w)\/Ede
b

is conserved for two (complex) solutions. Here ¥ is some spacelike Cauchy hypersurface in space-
time, n* is the future directed unit-vector field normal to ¥ and h,, the induced metric on the
hypersurface. This inner product will not be positive definite for boson fields. Let us introduce a
complete set of conjugate pairs of solutions (uy, “L) of the Klein-Gordon equation® satisfying the
following orthonormality conditions

(ug,up) = (5(]9',](},) = (U, up ) = —(5(/@',](},) (ug,ap) = 0.

There will be an infinity of such sets. Now we expand the field operator in terms of these modes:

¢ = /dﬂ(k) (akuk + U/L'Ek)a

so that

(ug,®) =ar and (ug,d) = —az.

By using the canonical commutation relations it is then easy to show that the operator coefficients
(ak, az) satisfy the usual commutation relations.

If (vp, ) is a second set of basis functions we may as well expand the field operator in terms of
this set

¢ = /dﬂ(p) (bpvp + b;rﬂ_}p)-

The second set will be linearly related to the first one by

[ aut (s = (@) = [ aduti) (ato by + 500,y
v, = / du(k)((uk,ﬁp)uk—(ﬂk,@p)ﬂk) = / du(k) (B(p, k)uk + a(p, k)ﬂk)-

Up

Ithe k are any labels, not necessarily the momentum
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The inverse transformation reads

Uk

/ du(p) (vpd(p, k) — v,8(p, k))
iy = /du(p)( — v B(p, k) + Tpa(p, k))-

If the B(k,p) vanish the 'vacuum’ is left unchanged, but if they do not vanish we have a nontrivial
Bogolubov transformations

comon(E m (B3 DE e

which mixes the annihilation and creations operators. If one defines a Fock space and a ’vacuum’
corresponding to the first mode expansion,

akQu = 0,

then the expectation of the number operator b;f,bp defined with respect to the second mode expan-
sion is

(B0, 2) = / du(k)B(p, k).

That is, the old vacuum contains new particles. It may even contain an infinite number of new
particles, in which case the two Fock spaces cannot be related by a unitary transformation.

3.1.2 Green functions

The Green functions of the Klein-Gordon operator, generically denoted by G(x,z'), are solutions
of

(O 4+ m?)G(z,z") = 6*(z — 2') (3.6)

and allow for a solution of the Klein-Gordon equation with sources:
(@4 m2)ie) = j(a) = 6(2) = 600) + [ d'e'Gla, )i

where ¢(®) obey the homogeneous equation and is chosen in such a way that ¢ satisfies the boundary
conditions.

Making use of translation invariance, (3.6) is solved through a Fourier transformation. Setting

1 4. —ip€ A
G6) = oz [ d'pe " G)
we get

(—p* + m*)G(p) = 1.
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In classical field theory the retarded and advanced Green functions®

1 efipz
G ret (2) = — d*
20 =Gyt | 0 G

play an important role. These distributions are Lorentz invariant. GG,..; vanishes outside the forward
light cone and G,4, outside of the backward light cone. Both Green functions are real, with
Godv(z) = Gret(—z). For massless particles

G ret (z) = LG(igvo)é(ac2).

adv 2

The mass term is responsible for the fact that the support is not concentrated on the light cone,
but also involves signals propagating at a speed smaller than one.

These Green functions can be gotten from the Pauli-Jordan (Schwinger) function
iG(z,2') = (U, [B(a), B ))2nr)

as follows

Gret(z,2') = —0(t —t')G(z,2") and Guap(z,2') =0t — t)G(x,2").
G is the difference of its positive and negative frequency parts,

iG=G" -G,
and these parts are just the Wightman functions
G*(z,2") = (U, p(2)p(z")r) and G~ (z,2") = (U, $(a")d(2) ).

In the quantum theory one encounters another solution to the same equation, first introduced by
Stueckelberg and Feynman:

iGp(z,a') = (QM,T((d)(l‘)gf)(m'))QM) — L/dzlp#

(2m)4 —m? +ie

Contrary to the retarded and advanced Green functions G'r is complex and has an exponential
tail for negative z2. In terms of the Wightman functions it is

iGr =0(t —t"GT (z,2') +0(t' — )G~ (z,2").
The Feynman propagator Gy obeys the differential equation
(04 m?)Gr(z,2') = —6(x — 2).

For massless particles the Feynman propagator and Hadamard’s elementary function G(") = G+ +
G~ become

2better: distributions
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1
ma (3.7)

i

Orle) = pra—p

and GW(z,2') = —

where £ = x — z’. For massive field the Feynman propagator is given in term of Hankel functions.

In curved spacetime some, but not all, of these Green functions are intrinsically determined by the
manifold. The Pauli-Jordan commutator function

iG(z,2") = (Qr, [(2), ¢(2")]r)

is a ec-number calculable from field equation and the canonical commutation relations. The retarded
and advanced Green functions are uniquely defined by the purely geometrical restrictions on their
supports. However, the positive frequency part of G, i.e. the Wightman function, requires for its
definition either a distinguished vacuum vector of a notion of positive frequency. These elements
are either absent (for time-dependent models) or ambiguous (as in Rindler spacetime). Similar
remarks apply to the Feynman propagator.

3.2 The KMS condition

Consider an arbitrary quantum mechanical system with time-independent Hamiltonian H. The
time evolution of an observable, represented by A, in the Heisenberg picture is

A(Z) — eiZHAe_iZH,

where z = t+i7 is a complex time. If 7 = 0 then this is the time-evolution in a static spacetime with
Lorentzian signature, if ¢ = 0 then it is the time-evolution in the corresponding static spacetime
with euclidean signature. If exp(—8H), 8 > 0 is trace class, one can define the equilibrium state of
temperature 7' = 1/4:

1
(A)g = Stre™?TA, 7 =tre”". (3.8)

For two observables A and B we define the thermal expectation values

GL(2,4,B) = (A(z)B(21))s = %tr (efﬁHemHAe’i(ZZ’Zl)HBe’ile)
1 I ) (3.9)
_ = i(z+iB)H A ,—izH
= Ztr (e Ae B)
and
1 . ) .
e (2,A,B) = (B(z1)A(22))p = tr (e_BHe”leBe_’(’zl_Zz)HAe_’ZQH)
Z (3.10)

1 . . .
- —t (B zzHA 72(277,6)H)
7t (Be e
where we have used the cyclicity of the trace and introduced z = 2o — 21. Both exponents in (3.9)

61



have negative real parts if —3 < 7 < 0; for (3.10) the condition is 0 < 7 < . Therefore, these two
formulas define holomorphic functions in those respective strips. Gi (t, A, B) are their boundary
values. From (3.9,3.10) it follows immediately, that

G®(2,A,B) = G% (2 — iB, A, B) (3.11)

For z = t this reads

(BA(t)s = (A(t - i8)B)s. (3.12)

Condition (3.11) is called the KMS condition after Kubo, Martin and Schwinger [9]. It can be
given a precise sense in terms of C* algebras and their states for systems for which exp(—8H)
is not trace-class. The KMS-condition is now accepted as a definition of ’thermal equilibrium at
temperature 1/3’.

So far the analytic functions GG+ have been defined in disjoint, adjacent trips in the complex time
plane. The KMS-condition states that one of these is the translate of the other and this allows
us to define a periodic function throughout the complex plane, with the possible exception of the
lines 7 = (2) = nf. Suppose, that

[A(t),B]=0 for teICR.

Then the boundary values of Gi and G° coincide on I and we conclude (by the edge-of-the-wedge

theorem) that Gi are restrictions of a single holomorphic, periodic function, G%(z, A, B), defined
in a connected region in the complex time plane except parts of the lines 7 = ng.

3.3 Static spacetimes

In a static spacetime we may choose coordinates, such that the metric has the form

o) = (% )

with time-independent entries. Such a metric is conformally equivalent to a ultra-static metric g, ,

N 1 0
Guv = goo9uv = goo <0 _hij> .
Since
O, +m? = g()_()(d+2)/4 (Dg + goom? + curvature terms) g(()g_Q)M
the Klein-Gordon equation
(Og + m*)¢ =0

is equivalent to
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el = Ku, where K =-A;+V(#) and ¢ = (goo)* ¥V *u. (3.13)

The solutions of this equation have the form
u, (t, %) = e~ “riip, (F)
where the 1, are normalized eigenfunctions of the hermitian operator K:

Ky, = w?,zﬁ,,.

The conserved Klein-Gordon inner product

(G 00) 21 [ (009, = ) /= detlg) &

b

is then proportional to the Ls-scalar product on the hypersurfaces t =constant:

(¢V1 ) ¢V2) = 20‘]1/ / de\/E %tl wVZ = 2wl/ <¢V1 ) wl@)'

The Green functions of the field operator

= Z % (¢ —vty, + oyl ertalagger (3.14)
namely
GX(t,zy) = (0]4(z) = (@)l (e
GX(t,zy) = (0|6(y) = (@l (@)t

where t = 2 — 0, are each analytic function on a half plane. G is analytic in z =t +i7 for 7 < 0
and G_ for 7 > 0. The distributions G are boundary values of these analytic functions as the
real axis is approached from their respective directions. If # # ¢ then the z and y will be spacelike
for sufficiently small ¢t = 2% — y°. Since ¢(z) and ¢(y) must commute for spacelike separated z,y,
we have

G¥(2,2,9) = G2 (z,2,y)

for z on a certain interval (—d, d) of the real axis. Therefore, each of these functions is an analytic
continuation of the other. That is, for fixed # # ¢ there is a single holomorphic G*(z, ¥, §), defined
on a connected region of the complex time plane, such that

o = = Gz, 2,7) if3(2) <0
7N ={GEED wa S

and both equalities hold on the interval on the real axis. In general there will be branch cuts along
the real axis from z = +d to z = +o00. On the imaginary axis

G(r,2,§) = G°Gr,Z,5) = Y v (@)} () eI
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and this euclidean Green function (often called two-point Schwinger function) is the unique solution
of

s ° = 2o 1 _ .0 0
(5 +K)G (@) = 000~z 7=a" =

which decays for |7| — co.

T
9uc| idean time
= rea time
G_ -d d ; Gt
f f
G+ G,

Abbildung 3.3: The various two-point functions are boundary values of the analytic G*.

3.3.1 Flat spacetime

For simplicity we consider a massless field. Then

0o 1 1 S
G (T,f)—rﬁm, §=7—-9
from which follows, that
= 1 1
G(z,6) = TR
From this we read of, that
N2 a7l e 0 0
ARG (,y) = [(z —y) ze]_ ifz" >y
[(z —y)? + i€] if 20 < 90,
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and
T
T LY
Y [(w—y)Q—ie]_l if 20 < 0.
All other Green functions are obtained similarly. For example, the Feynman-Greenfunction

iAp(z,y) = OT (6(z)b(y))|0)
is
Ap(z,y) = ﬁm

Application to the Rindler wedge Let p and p’ be two events on the world line of an accelerated
observer with fixed v. The event p happens at Rindler time v and the earlier event p’ at Rindler
time u'. Expressed in Rindler coordinates, the invariant distance between p and p' is

(AT)? — (AX")? = ai? Vsinh? 2(u —u')

and the free massless Feynman propagator, used by an inertial observer, is

) 1
G 1 — 2 _—2av .
F(pap ) 1677'2 a-e sinh2 %(U . Ul) — e (315)

Now let us rewrite the right hand side. First, specializing the results for the massless Feynman
propagator to points on the world line of an accelerated observer, we immediately obtain

/d4pe—iE(u—u’) i = 4r
p2 + i€ (u—u')2

— i€

Now we integrate in

_ 271'5( 2)
4 iE(u—u'
/d pe eBIEI 1

over p° = E, introduce polar coordinates, and expand the resulting denominator in powers of e7?.
This way the integral becomes

o0
p ip(u—u') | ,—ip(u—u’ L
4 2 (zp(u u') ip(u “)) = _4 2 _—
ﬂ-/dpeﬁp_l e +e W;(u—u’+inﬁ)2
0 n

With

a? 1
il — _|_ - -
4 ginh? S(u—u') —ie (u—u")? — Z —u' + mﬂ)

where 8 = 27 /a, we finally end up with the following spectral representation of the Feynman-
propagator as seen by the Rindler observer
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—2av 2
n_ ¢ 4 —iE(u—u') . 5(p”)
Grp.p) = 5o /d be (p2 Fie 2T gam — 1)' (3.16)

This is the finite temperature propagator. It follows, that, in equilibrium, atoms dragged along the
world line find their excited levels populated as predicted by temperature 37! = a/2.

The propagator is a sum of amplitudes for the path connecting p with p’. We shall continue to
Euclidean spacetime, in which

1

where the paths start at p’ and end at p. The path integral splits into pieces, each piece correspon-
ding to an integration over paths whose projection on the X°, X! plane winds n times around the
origin. If p,p’ lie in the X°, X! plane, then

Abbildung 3.4: Path corresponding to winding number +2 and 0

/DX“e_iquX“ = T;Z/DX&(n(X)—n—@exp(—%/XQ),
" 0

where the last path integral is only over path in the (X°, X!) plane,

/ XoX; — X1 X
X2+X2

is the winding number of the path X (s) and ¢ the angle between its endpoints. The path integral
for path with fixed windings can be calculated and then continued back to Minkowski spacetime.
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The result is
1 1 1

oo _
Gn[(U,U,O, 0)7 (U ) U 705 0)] - 471'2 62‘“’ _ 62‘“” (U —u = mﬂ)2 .

Specializing to the two events on the world line of an observer with v = 0, one has the result

1 1

Gnll0,0,0,0),0,0,0,00 = =2 g

which is what we wanted to show. Let us interpret the result for winding number 2 in figure (3.4).
Limiting ourselves to the Rindler wedge, we see a line being absorbed at p' coming from u = —o0,
one being emitted at p going to u = oo and an extra spectator going from u = —oo to u = oo.
This can be extended to general values of n.

Earlier on we have already argued, that the Feynman propagator requires for its definition either
a distinguished vacuum or a notion of positive frequency. Hence, the difficulty with the Unruh-
effect cannot be resolved merely by shifting attention from annihilation-creation operators to Green
functions. Indeed, we have just seen that the two methods yield the same result: an accelerated
observer will ’see’ thermal radiation, even though the field ¢ is in the vacuum state s and an
inertial observer detects no particles. Since both the accelerated and unaccelerated observer agree
that the stress-energy-momentum of ¢ vanishes this has led to the description ’quasi’ or ’fictious’
particles for the quanta that excite the accelerated detector. Later we shall reconsider the Unruh
effect and will have to say more about interpretational issues.

3.4 Quantum Fields in Curved Spacetime

Since no analog of either a plane wave basis or a choice of a positive frequency subspace’ is available
in a general curved spacetime, we reformulate quantum field theory without using a plane wave
expansion. A particle interpretation can be given in a stationary, curved spacetime. But in a general,
non-stationary spacetime, the states of the quantum field will not possess a physically meaningful
particle interpretation. It is necessary, that the causal structure of spacetime is well behaved so
that the space of classical solutions have the same basic structure as in Minkowski spacetime. The
conditions of global hyperbolicity ensures that this is the case.

In an arbitrary curved spacetime, the properties of the classical solutions can be very different
form those in Minkowski spacetime. Let us have a look at two examples:

1. Let M be a flat 4-torus, with spatial periodicity L and time periodicity 7. Then exp(—iwt +
ik®) is a periodic solution of the Klein-Gordon equation with m = 0 only if

2 N 21 2 22
w= W}no, k:WTm and %:%, where m, € Z.

Thus, for irrational 7?%/L? only the solution ¢ =constant is admitted.

2. Consider any spacetime with a ’timelike singularity’. Since anything can emerge from such
a singularity, uniqueness for solutions of the field equation with given initial conditions on a
spacelike hypersurface cannot hold.
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Fortunately, there is a simple condition on (M, g,,) which guarantees that the field equations have
a well posed initial value formulation. First, we assume that spacetime is time orientable, such that
a continuous choice can be made throughout spacetime of which half of each light cone constitutes
the future’ direction and which half the 'past’. Let ¥ C M be achronal hypersurface®. We define
the domain of dependence of ¥ by

D(X) = {p € M|every inextendible causal curve through p intersects X}.

Recall, that a curve is causal if its tangent is everywhere either timelike or null. If D(X) = M, then
¥ is called a Cauchy surface for the spacetime (which is automatically C°.) If M admits a Cauchy
surface, then it is said to be globally hyperbolic. Then the following theorem, due to Geroch (1970),
holds:

Theorem If (M, g,,) is globally hyperbolic with Cauchy surface ¥, then M has topology R x X.
Furthermore, M can be foliated by a one-parameter family of smooth Cauchy surfaces ¥, i.e. a
smooth 'time coordinate’ ¢ can be chosen on M such that each surface of constant ¢ is a Cauchy
surface.

In a globally hyperbolic spacetime with smooth, spacelike Cauchy surface X there is a well posed
initial value problem for the Klein-Gordon equation (Hawking and Ellis 1973): Given smooth initial
data ¢o, g € C(X), then there exists a unique solution ¢ of (3.17), defined on all of M, such
that on ¥ we have

¢=¢o and n*V,é = do,

where n* is the unit future-directed normal to X. In addition, ¢ is smooth and varies continuously
with the initial data.

The classical action of a minimally coupled scalar field without self-interaction is is

1
So =3 /n(g“"amam — m2¢2), n=+—gd'z

and the curved spacetime version of the Klein-Gordon equation reads

VAV . +m?¢ = 0. (3.17)

For the phase-space formulation of the Klein-Gordon field we introduce a ’slicing’ of M by spacelike
Cauchy surfaces ¥;. Let n* be the unit normal vector field to the hypersurfaces ¥;. The spacetime
metric g,, induces a spatial (three-dimensional Riemannian) metric (—h,,) on each ¥; by the
formula

huv =nuny — G-

Let t* be a "time evolution’ vector field on M satisfying t#V ,t = 1. We decompose it into its parts
normal and tangential to ¥,

t* = g"’t, = n*(n,t) — h*"t, = Nn* — N*,

3No pair of points p,q € & can be joined by a timelike curve.
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Abbildung 3.5: A globally hyperbolic spacetime with Cauchy hypersurface has a

well-posed initial value problem. 341 split.

where we have defined the lapse function N = (n,t) and the shift vector N* = h*¥t, tangential
to the ¥;. Now we introduce local coordinates z# = (t,2"),i = 1,2,3 with ¢tV 2" = 0, so that
t*V, = 0 and N*09, = N8;. The metric coefficients in this coordinate system are

goo = g(0:,0) = t"t"g(9,,0,) = N> + N'N;
goi = 9(0,0;) = N(n"0y,0;) — N"(0y,0;) = Njhji = N,
so that
_ N2 4+ N;N* N; vy L 1 —N*
(g;w)—< N; _hi],> and (g )—m(_Ni NiNj_Nthj>'

The determinant of the metric is det(g,,) = N?det(—h;;). Inserting these decompositions into the
Klein-Gordon action one obtains
S = / Ldt
1

=5 [{5(0-0i0) + 090,00, - m?e?) N Vides.

PO

with

We find that the momentum density, 7, conjugate to the configuration variable ¢ on ¥; is given
by
65 Vh
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A point in classical phase space P of the Klein-Gordon theory consists of the specification of
functions (¢(z), 7(x)) on a Cauchy surface ¥q. If we specify P precisely by requiring that (¢, n) €
C§° (smooth and of compact support) then, by the result of Hawking and Ellis above, they give
rise to a unique solution to (3.17). The space of solutions S is independent on the choice of the
Cauchy surface.

3.4.1 Stationary Spacetimes

At least technically one may generalize the well-known flat spacetime construction of a Fock space
if spacetime is stationary, i.e. possesses a global timelike Killing vector field K which generates a
flow of isometries. Then we may choose basic functions uj that satisfy

iLgu, = w(k)u and iLKuL = —w(k)uts,

where the w(k) > 0 are constant. If K* is globally timelike, then one may introduce a coordinate
t upon which the metric does not depend and with respect to which K* takes the form K = 0;.
The covariant components of K are K, = guo. Since ds* = goodt* + ... = (K, K)dt* + ..., the
coordinate t is in general not the proper time of observers moving with the flow of K. However,
since

Vik(K,K)=2K"*K*V,K, = K¥K®Lkg,, =0,

the norm of K is constant along the orbits of K. Therefore we may scale K such that ¢ gives directly
the proper time measured by at least one co-moving clock. The w(k) are the frequencies relative
to that clock. and the uj and uL are the positive and negative frequency solutions, or positive and
negative energy solutions, respectively. Now the construction of the vacuum, one-particle space
and Fock space is done in the usual way:

Gibbons* has given the following covariant constructions: The quantity

Tk = / T K,dS,,
2

is conserved on account of the Killing equation and covariant conservation of the energy-momentum
tensor. Although it is an ill-defined operator, it possesses well defined commutation relations with
the components of the field

Tk, | =il ¢.

One can make Tk well defined, by normal ordering it with respect to the above chosen a and a',

E= / LT K, dS,.
b

The vacuum will then be the zero reference point for energy

EQ =0.

4G.W. Gibbons, 1974
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The a and o' will be energy-raising and lowering operators
[E, a;] = —w(k)ay.
If there is another Killing vector L that commutes with K,
[K,L]=0<= [Lk, L] =0,
then the basis functions may be chosen so as to satisfy also
iLru, = Ak)ug,

where the A\(k) are constants. The a; and az then become raising and lowering operators for the
associated quantity

TL = / : T’U'V . L,,dE“,
b))

i.e.
[TL,ak] = /\(k)ak
More generally, if there is a set of independent Killing vectors generating a Lie algebra, the u; may

be selected to yield a irreducible representation of that algebra.

Problems with this procedure:

1. There may be no Killing vector at all. One probably has to give up the particle picture in
this generic situation.

2. There may be a global Killing vector, but it may not be everywhere timelike. Then one
may exclude the non-timelike region from space time. This corresponds to the imposition
of boundary conditions. One may also try to retain the non-timelike region but attempt to
define a meaningful vacuum by invoking physical argument.

3. Spacetime may be stationary only in limited regions. If each region possesses a complete
Cauchy hypersurface, then a local timelike Killing field may be set up in each and a vacuum
defined for each. With respect to the basis function of which region should the stress tensor
be normal ordered? It is not possible to define the stress tensor so that (a) it is normal
ordered in both regions (b) its matrix elements are smooth functions, and (c) it satisfies the
divergence equation

T =0

everywhere.
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3.4.2 The energy inner product

The following construction is do to Ashtekar and Magnon and to Kay®. Let

5= [dn(59"0.00,6-V(©) = [dut,  du=gli's

be the action of a scalar field. Using

5\/5 |g guuagul/ = ——\/559 g;u/a

one easily finds for the variation of the action
1 1
— z _z v
6S = /du(28“¢>6,,¢ 2g“,,/$)§g ,

and the metric stress-energy tensor

r o 2 08
" Vgl 69

has the simple form

Ty = 0490w — g L

Being the variation of the action with respect to the symmetric metric it is symmetric. Under a
infinitesimal one-parameter group of diffeomorphism, the orbits of which are tangential to the vector
field X (x), the metric and field transform as g = Lxg"” and ¢ = Lx¢. A diffeomorphism-

invariant action does not change under such variations, so that

6S 6S
0 = 6xS= /ddﬂ? 5!}“,,(9:)14)(9“"( ) + /dd V()Lxcb(x)
= %/duTw(V"X”—FV”X“) —/du (O¢+V'(¢)) Lx ¢

=~ [auryxr~ [du(@o+ Vi) Lyo,

If the scalar field fulfills the field equation (is on shell) then the metric energy momentum ten-
sor is automatically conserved on account of the diffeomorphism invariance of the action. The
conservation of T#" can also directly be proved by using the Klein-Gordon equation.

Let S be the space of solutions of the free Klein-Gordon equation. We complexify S to S¢ and

define an ’energy inner product’ as above

(1, 02) = /Tuu(¢1,¢2)Kunu\/ﬁd3$

P

5 Ashtekar, A. (1975), Proc. Roy. Soc. London A346, 375; Kay, B. (1978), Commun. Math. Phys. 62, 55.
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where the bilinear-form defined by the ’stress tensor’ is extended to S as

Ty (61, 62) = 5 (8 G2os 4610 B2, — 00 (V6] V85 — m?0] ).

We assume that m? > 0 so that (.,.) is positive for compact 3. Since the ¢; are solutions of the free
Klein-Gordon equation, the stress tensor is conserved and since K is a Killing field V,(T*" K,) = 0.
Hence, using Gauss’s law, we see that (.,.) is independent of the choice of Cauchy surface X. In
particular, let

OLtCM—)M

be the one-parameter group of isometries generated by the timelike Killing field K. Then (.,.) is
invariant under the time translation map o} : S¢ — S¢ defined by

ai(¢) =poar or (aj(¢))(z) = ¢(u(2)),

since applying o to solutions is equivalent to applying a; to X. Next we complete S¢ in the
‘energy-norm’ to get a complex Hilbert space #H (this is not yet the Hilbert space we seek). The
time translation map aj extends to # and defines a strongly continuous, one-parameter, unitary
group, also denoted by af. By Stone’s theorem

af =e", h  selfadjoint.

Note, that from the definition of the Lie derivative,

d
E(af¢)|t:0 =—-Lx¢
we have for all ¢ € S¢
h¢ = iLko.
Now we recall, that
Q([¢1,7T1], [¢2,7T2]) = / (71'1¢2 - 7T2¢1) d3$, ™= \/En“v,,qs,
o

is conserved on solutions and hence may be viewed as bilinear map on S¢, if we extend Q by
(complex) linearity in each variable. Now one can prove, that

|Q(¢J{,¢2)| < Ol oul|| @2l

from which follows, that Q((ﬂ, #2) extends continuously to a quadratic form on 7. It can also be
shown, that

B!, ho) = 2i(¢1, b2),

and that A is bounded away from zero. Now, let H+ be the positive spectral subspace of H and let
K be the projection map K : H — H7T. For all real solutions we may now define the scalar product

1(h1,d2) = SQK 1, K o) = 2R(K 1, h ™" K o).
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 is conserved for solutions of the Klein-Gordon equation, so we may view it as a bilinear map on

S,ie. 2:85xS — R.

The one-particle Hilbert space H is just the completion of the space HT, of ’positive frequency
solutions’ in the Klein-Gordon inner product. This construction avoids any direct attempt to take
the time Fourier transform’ of solutions along the orbits of the Killing field. Such Fourier transform
may exist only in a distributional sense.

3.5 The Stress-Energy Tensor

Beside the (smeared) fields there are many additional operators in which one is interested in
quantum theory. Primary among these is the stress-energy tensor. It is of interest since it describes
the local energy, momentum and stress properties of the field. It is relevant for describing the
back-reaction of the quantum field on the spacetime geometry. Semiclassically one would expect
that back-reaction is described by the ’semiclassical Einstein equation’

Gy = 87G (T ).

Thus, it is of considerable interest to determine the expectation value of the stress-energy tensor in
physically relevant states w. Some restrictions should be expected on the class of states on which
(Tyuw) can be defined. We shall see that the Hadamard condition provides a restriction of exactly
this sort of states.

3.5.1 Hadamard states

In the following we shall assume, that (M, g,.) is globally hyperbolic. Then the Cauchy problem
for the Klein-Gordon equation for any Cauchy surface ¥ has a unique solution. It follows, that
there are unique retarded and advanced Green functions

Avee(z,y) 5 Agaw(w,y) with supp(Aver) = {(z,9); 7 € J1(y)}.

Hadamard states are states, for which the two-point function has the following singularity structure

w(6(2)0(y)) = ws(w,y) = = +vloga +w,  where (3.18)

o(z,y) is the square of the geodesic distance of z and y and u, v, w are smooth functions on M. It
has been shown that if w» has the Hadamard singularity structure in a neighborhood of a Cauchy-
surface, then it has his form everywhere [6]. To show that, one observes, that w» satisfies the wave
equation. This result can then be used to show, that on a globally hyperbolic spacetime there is
a class of states, forming a dense subspace of a Hilbert space, whose two-point functions have the
Hadamard singularity structure.

The two-point function must be positive,

w(6(H) 6(f)) = / dyu()dpu(y)w (@) () F @) F () > 0,
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and must obey the Klein-Gordon equation. These requirements determine u and v uniquely and
puts stringent conditions on the form of wsy. The Feynman Greenfunction is related to wy and the
retarded Greenfunction as

iAp(z,y) = wa(2,y) + Arer(y, 7).
Since A,.; is unique, the ambiguities of Ap are the same as those of wy. The propagator function
iA(z,y) = [8(x), d(y)] = iAres(2,y) — iAaav(@,y)
determines the antisymmetric part of wo,
wa(x,y) — wa(y, @) = iA(z,y),
so that this part is without ambiguities. For a scalar field without self-interaction we expect, that

w(p(@1)...¢(xzn)) = 0 forodd n

w(ga1) .. da)) = Y [Jw(@l@i)bl;)).

i1<ig...<in k=1
71<i2---in

A state fulfilling these conditions is called quasifree. Now one can show, that any choice of ws(z,y)
fulfilling the properties listed above give rise to a well-defined Hilbert space, i.e. a Fock space over
a quasifree vacuum state. The Hilbert space is

H =P Hn, (3.19)

where the scalar-products on the 'n-particle subspace’ H,, in

%n — {w c D(Mn)symm/N}completeon (320)

is just
(¢17¢2) :/du(mla“awnayla"ayn)HwQ(wiﬂyi)iﬁl(wla"7mn)¢2(y17“7yn)7
=1

where we introduced the abbreviation du(z1, 22, ..) = du(z1)dp(zs) . . .. Since
(D + m2)w2(1‘ay) = 07

the functions in the image of O + m? have zero norm. The set A/ of zero-norm states has been
divided out in (3.20) in order to end up with a positive definite Hilbert space.

The smeared field operator is now defined in the usual way:

o(f) = a())! +a(f),
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where

(a(f)¢)n($1, ..,l'n) = Vvn+ 1/dll($,y)w2($,y)f($)¢n+1 (yaxla "axn)
(a(f)“/l)n(.’tl,,l'n) = %;f(xk)wnl(xla"afka"axn)a n >0

and (a(f)f1))o = 0. It is now easy to see, that w, is just the Wightman function of ¢ in the vacuum
state g:

wa (2, y) = WO, ¢(ac)¢(y)z/;0),

3.5.2 The Wald axioms for the stress-energy tensor
The difficulties with defining

(Tuw)

are present already in Minkowski spacetime. The divergences are due to the zero-point energies of
the infinite collection of harmonic oscillators which comprise the quantum field. A simple cure for
this difficulty is the normal ordering prescription:

UJ( : T,“, . ) = UJ(T,,,,) — (QM,T,“,QM).

The so defined vacuum expectation value of the stress-energy tensor vanishes. On curved spacetime
there is no satisfactory generalization of this prescription since there is

1. No preferred vacuum state

2. Due to vacuum polarization effects we do not expect that the stress-energy of the vacuum
(assuming there is a natural one) vanishes.

To make progress let us look at an alternative formulation of the normal ordering prescription
without doing the Fourier transformation. We first consider the ill-defined object ¢?(z), which is
part of the stress-energy tensor. We may split the points and consider first the object w(¢(x)d(y))
which solves the Klein-Gordon equation. This bi-distribution makes perfectly good sense. For
physically reasonable states ¢ in the Fock space (e.g. states with a finite number of particles)
the singular behavior of this bi-distribution is the same as that belonging to the vacuum state,
wo (¢(z)¢(y)). For such states the difference

F(z,y) = w(p(x)p(y)) —wo(o(z)o(y))

is a smooth function of its arguments. Hence, after performing this 'vacuum subtraction’ the
coincidence limit may be taken. We then define

w(¢(@)) = lim F(a,y).
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The same prescription can be used for the stress-energy tensor instead of ¢2. We define

, 1 " ,
@ (Tyu2)) = Jim, (8,000 = 500 [0,0" —m’] ) F(a, ).

z—x’

After what has been said above, we do not believe that this is a physical definition of expectation
values of the stress-energy tensor. However, note that the point-splitting prescription sensibly
defines the differences of the expected stress energy between two states,

w1 (Tuv) — w2 (Tw)-

In the absence of an obvious prescription to define the expectation values, it is useful to take an
axiomatic approach. Wald showed that a renormalized stress tensor satisfying certain reasonable
physical requirements is essentially unique [7]. Its ambiguity can be absorbed into redefinitions
of the coupling constants in the gravitational field equation. Wald argues that one expects this
operator to have the following properties:

1. Consistency: Whenever wi (¢(2)d(y)) —w2(p(z)¢(y)) is a smooth function, then w (T),,) —
wa(Tyy) is well-defined and should be given by the above ’point-splitting’ prescription.

2. Conservation: In the classical theory the stress-energy tensor is conserved. If the regulari-
zation needed to define a stress-energy tensor respects the diffeomorphism invariance, then

vV, T" =0

must also hold in the quantized theory. This property is needed for consistency of Einstein’s
gravitational field equation.

3. In Minkowski spacetime, we have (Qar, Ty, Qar) = 0.

4. Causality: We assume, that spacetime is asymptotically static. For a fixed in-state, wi, (T (2))
is independent of variations of g,, outside the past light cone of z. For a fixed out-state,
Wout (T,“,) is independent of metric variations outside the future light cone of z.

The first and last properties are the key ones, since they uniquely determine the expected stress-
energy tensor up to the addition of local curvature terms. This fact is contained in the

Uniqueness theorem (Wald): Let T),, and TW be operators on globally hyperbolic spacetime
satisfying the axioms of Wald. Then the difference

U =Ty — Ty
has the following properties.

1. U,y is a multiple of the identity operator.
2. Tt is conserved, V,U*" = 0.
3. It is a local tensor of the metric. That is, it depends only on the metric and its derivatives,

via the curvature tensor, at the same point z.
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BTH\) (X) =0

fixed initial geometry and state

Abbildung 3.6: Changes outside the past light cone do not affect (T}, (x)).

As a consequence of the properties,

W(Tyw) — w(Tyw)

is independent on the state w and depends only locally on curvature invariants. The Causality
axiom can be replaced by a locality property, which does not assume an asymptotically static
spacetime. The proofs of these properties are rather simple and can be found in the standard
textbooks.

3.5.3 Calculating the stress-energy tensor

A ’point-splitting’ prescription where one subtracts from w(¢(x)@(y)) the expectation value wo(d(z)d(y))
in some fixed state wg will fulfills the consistency requirement, but cannot fulfill the first and
third axiom at the same time. However, if one subtracts a locally constructed bi-distribution
H(x,y) which satisfies the wave equation, has a suitable singularity structure and is equals to
(Qur, ¢(x)d(y)Qar) in Minkowski spacetime, then all four properties will be satisfied.

To find a suitable bi-distribution one recalls the singularity structure (3.18) of wx(z,y). In Min-
kowski spacetime and for massless fields w = 0 and this suggests that we take the bi-distribution

U
1w9) = 70D v, log o

The resulting stress-energy obeys almost all properties, besides that for massive fields on Minkowski
spacetime we still find a non-vanishing vacuum expectation value, and that

v, w(T") = V,Q,

where () is a scalar density, locally dependent on the metric. Hence we may modify our prescription
by simply subtracting (@ + ¢)g,, from T),,. The constant c is chosen, such that on Minkowski
spacetime the vacuum expectation value vanishes.
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3.5.4 Effective action

We have seen, that the classical metric energy momentum tensor is automatically conserved if
it is gotten by variation of a diffeomorphism-invariant classical action. If we could construct a
diffeomorphism-invariant quantum action I'(g,.,¢), whose variation with respect to the metric
yields an expectation value of the energy momentum tensor,

2 4T
Vgl o9’

then (T},,,) would be conserved by construction. Let us look at a particular example.

{Tuw (7))

Conformally flat spacetimes

A conformally coupled scalar field propagating on a spacetime M has classical action

d—2

S[e] = /\/g( - %¢AC¢), where Ao =4 = o oR
M

is the Weyl-covariant wave operator. Note, that for a vacuum solution of the Einstein equation
the Ricci scalar vanishes and there is no distinction between conformal and minimal coupling.
Formally, the expectation value (which one?) of the stress-energy tensor is

o) = — L 20 s 290
(Tl =~ [ D6 s 10

where we have introduced the effective action
1
Ilg] = —log Z[g] = —log/Dgi) e S0l = 3 logdet(—A.).

For arbitrary spacetimes the spectrum of A is not known. However, the variation of T with respect
to o in

Juv = 620,@;“/;
which is proportional to the expectation value of the trace of the stress-energy tensor,

or or

= Qg — = — H
do(z) 29 dgrv VoI

can be calculated. The non-vanishing of this trace in the quantized theory is the so-called trace-
anomaly and this anomaly is known. It follows, that the difference I'[g] — I'[¢] can be calculated
by integrating the trace anomaly To do that explicitly, we recall (see our discussion of the Weyl-
transformation) that

A, = e*%(d”)"Ace%(dﬁ)”.
Now we interpolate between the reference metric ¢ and g by the one-parametric family of metrics

gl(jl-/) — 627'a'guu
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Using the manifestly covariant (-function techniques, the T-variation of
M7 = Llogdet(=A), AL = cH#IemA a2

can easily be calculated®. Integrating from 7 = 0 to 7 = 1 yields

1

Tg] - d/2 /d /\/g(_fad/2 (3.21)

0

where aglr/é is the coefficient of dimension L~ in the asymptotic small ¢t-expansion of the heat

kernel,

LS e (@),

zlexp (tA ) |z) ~
< | p( g( ))| > (47Tt)§ n=0

The Seeley-deWitt coefficients a,, are local scalar functions of the metric, have length-dimension
—2n and have been calculated up to as.

2 dimensions

Every 2-dimensional spacetime is conformally flat and we may assume that
Juv = 62"5,“, or Gy = Ouv.

It follows, that, up to the metric-independent effective action I'[§] the effective action can be
calculated. The result is the Polyakov effective action

lg) - 18] = oo [ VAR5 E,

where c is the central charge which is 1 for uncharged scalars. The expectation value of T}, is
gotten by differentiation with respect to the metric. The result is

(THV> = 24 (g;u/R v v AR)
(3.22)

. 1
+ (v AR v, AR ng AR-VC,ZR).

This is indeed conserved and has trace ¢cR/24x. In isothermal coordinates
R = —2A0 = —2e7% Ao, %, =090, +68%0, — 8o

and hence
c

T = 5 (600 [(V0)? = 20500] +2[0,0,0 — Bu0,0) ).

6We assume, that the Euclidean wave operator possesses no zero-modes
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Or, if we introduce complex coordinates z = %(xo +iz!) we obtain

c
127

<Tzz> = eaage_‘r and <Tzz> — —LA()G'.
127

Note, that o is not determined by R. We may always add a harmonic piece to o, without affecting
R. In a Lorentzian spacetime, the corresponding result is

(Tuow) = —ﬁevagmw Ftuw,  (Tuw) = ——Dgo, (3.23)

where we introduced the light cone variables u = 1(z° —z') and v = £ (2% +z"). The prescription to

invert the wave operator in O (3.22) shows up in the free function ¢, ,. A choice of these functions
is equivalent to the choice of the quantum state whose stress-energy is calculated. Let us now apply
these results to a toy black hole in 2 dimensional spacetime with metric

1 2

2 _ (1 2__ -
ds® = (1—2M/r)dt 1—2M/rdr

This is just the (¢,7)-part of the Schwarzschild metric in 4 spacetime dimensions. To find isothermal
coordinates in which light rays travel on 45° lines, we note, that null geodesics satisfy
dt 1

2 _ aty2 L
ds —0:>(dr) =3

Thus, on null geodesics
t = £r. + constant,

where the 'Regge-Wheeler tortoise coordinate’ r, is defined by

r. =7+ 2M log (% — 2). (3.24)

Note, that the event horizon at r = 2M has tortoise coordinate r. = —oco. In the coordinate system
(t,r.) the metric becomes conformally flat by construction,

ds* = (1 —2M/r)(dt* — dr?) = a(dt® — dr?). (3.25)
As above we introduce null-coordinates

1 1
u= §(t—r*) and v= §(t+r*).

Using that 9, = 9 + 9,-, and that pa,, = ad, we obtain

2M M2
o+ —r

_ 092 —0 __
Opo = —-a, €70,,6 " = =3 .

3
and the light-cone components (3.23) of the energy momentum tensor read

¢ 2Ma«
127 13

c (2Ma M?

<Tuu,vv> = _E + 7"_4) + tu,va <Tuv> =

r3
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With
Tuu(we)y = Too + Ti1 — (+)2To1  and Ty = Too — T11

we find for (T},,) in the z* = (¢,7.) coordinate system”

cM 47“—|—M/Oé 0 1 ty +ty ty — Ty
(3.26)

Ty =— Sl

( m > 24mrd 0 _M/a da \ —ty +t, —ty— 1y
The Boulware state is the state appropriate to a vacuum around a static star and contains no
radiation at spatial infinity J*. Hence the terms t,(v) and t¢,(u) must vanish and the tensor
simplifies to

(OS|TMV|OS> =

cM <4r+M/a 0 ) (3.27)

 24grt 0 —M/a

However, this state is singular at the horizon. To see that more explicitly, let us recall, how to
introduce Kruskal coordinates which cover the whole spacetime and are regular at the event horizon
r = 2M. The metric (3.25)

g2 = M _rjan
r

2M
v=w)/2M qydy - where we used o = —e("==")/2M
r

suggests, that we introduce
U=—e"?*M and V =e/?M
so that the metric is regular on the horizons:

3
ds? = %e‘r/QMdUdV.

r

With respect to these regular coordinates the energy momentum takes the form

M2 c 2Ma  M?
Tow) = ()" (4t - 3, 5=+ 75))
M. > ¢ 2Ma  M?
(Tvv) = (37) (4tv_3_ﬂ_(—,r3 +r—4))
M? ¢ 2Ma
Tov) = gyas e

The component (Tyy) is regular at the horizon U = 0 if M?t,, = ¢/1927 and (Tyv) is regular at
the horizon V = 0, if M?t, = ¢/1927 holds. The corresponding state is called the Israel-Hartle-
Hawking state. In this state the asymptotic form of the energy-momentum tensor is

w© — ; 1 0 _ ﬂ 2 1 0
Oru|TY|0rH) = 384w M?2 (0 -1) " 6 (kT) 0 -1 (3.28)

with T' = 1/8nkM = x/2nk. This is the stress-tensor of a bath of thermal radiation at temperature

“comparison with Birrell and Davies, p. 283: M?2t, = 1/192 + 4K — 2Q and M?%t, = 1/192 — 2Q
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Abbildung 3.7: The Kruskal extension of Schwarzschild spacetime

T'. Finally, demanding that energy-momentum is regular at the future horizon and that there is no
incoming radiation, i.e.

ty and £, =0

_ c
1927 M2

results in

" _ c 1 -1\ _cm 2 (1 -1
<0U|T"|OU>_7687rM2<1 1) =% (3.29)

The Unruh state is regular on the future horizon and singular at the past horizon. It describes the
Hawking evaporation process with only outward flux of thermal radiation.

3.6 Hawking radiation

and hence The most dramatic result arising from investigation of particle creation near black holes
was Hawking’s discovery that particle creation also occurs near a Schwarzschild black hole, resulting
in ’emission’ of a thermal spectrum of particles [2]. We give the main steps of the derivation and
the discussion of this result. Before doing that, we recall some facts about spherically symmetric
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spacetimes and the Schwarzschild metric.

3.6.1 Spherically symmetric spacetimes

A spacetime is spherically symmetric if its isometry group contains a subgroup isomorphic of
the rotation group SO(3), and if the orbits of this subgroup are two-dimensional spheres. The
induced metric on each orbit must be a multiple of the metric on a unit 2-sphere, and thus can
be characterized by the total area A, of the sphere. It is convenient to introduce the function r,
referred to as ’radial coordinate’, defined by r = (A/4x)'/2. Thus in spherical coordinates (8, ©)
the metric on each orbit takes the form

ds® = r2dQ? =12 (d02 + sin® 9d<p2).

The three linearly independent spacelike Killing vector fields with closed orbits and which satisfy
the so(3) commutation relations are

— sincp2 — cos p cot 193 cos wﬁ — sin y cot QE 3
06 0y’ 06 Op’  0Op’

In adapted coordinates the line element of a spherically symmetric spacetime has the canonical
form

ds® = e”dt* — eMdr? — r?d0?, v=u(tr), X=At,r). (3.30)

The most general vacuum solution of Einsteins field equation is given by the well-known Schwarz-
schild line element

1
ds® = adt® — Eer —r2dQ?, a=1-2M/r. (3.31)

This solution is stationary with timelike Killing field 9; which is orthogonal to the Hypersurfaces
t = const. Hence every spherically symmetric vacuum solution is automatically static. The advance
of the perihelion of mercury, the bending of light by the sun, the time delay of light and the gravi-
tational redshift have been used to test this line element. These and some more recent observations
are in good agreement with the theoretical predictions of Einsteins theory of relativity.

In the following spacelike, timelike and null-hypersurfaces will be important. A hyperplane ¥ with
normal vector field n at a point p is spacelike, null or timelike at this point if (n,n) is negative, zero
or positive at p. For example, the vector field normal to the hypersurfaces 2° = constant obeys

(n,0;) =n"gui =n; =0, i=1,2,3.
If we set ng = 1, then
(n,n) = ¢”.

A coordinate hypersurface z#=const. is spacelike, null or timelike if g"** is negative, zero or positive.
We see that the hypersurfaces with constant ¢ or constant 8 are space like at all points. Since
rr

g = —Ol(T),
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the surface of constant r is spacelike outside the event horizon at r = 2M, timelike inside and null
on the horizon.

3.6.2 The Kruskal Extension

The singularity of the Schwarzschild metric at the Schwarzschild radius r = 2M is a coordinate
singularity, whereas the singularity at » = 0 is a true singularity. The coordinate singularity is
very similar to the coordinate singularity if one uses Rindler coordinates on the Rindler wedge.
Introducing the tortoise coordinate as above, the line element reads

ds® = a(r)(dt* — dr?) — r?dQ?,
where r = r(r*) is given in (3.24). As above, we introduce the null-coordinates u, v so that

ds® = %e_r/QMe(”_“)/QMdudv —r2d02.
r

If one introduces the Kruskal coordinates U,V the metric becomes

32M

3
ds® = e~ "PMAUAV — r2d0?

r

and is regular at the horizon. If we finally set
U=T-X and V=T+X
then the Schwarzschild metric takes the final form given by Kruskal (1960)

320M° o—r/2M
’

ds® = (dT? — dX?) — r?dQ>. (3.32)

The transformation from the Kruskal coordinates (T, X) to the Schwarzschild coordinates (¢,7) is
explicitly given by

X2_T2 — _[UV =e—w/2M _ r./2M riem Ty
€ € € (27‘[ )
r+Xx _ Vi _ (utv)/2M 3
log +—= log ( U)—loge = 53

It follows, that

XdTl' - TdX  dt

r
_ =2 _ - r/2M
o =17 and  XdX —TdT = "/ ar.

The allowed range of the Kruskal coordinates is given by the condition » > 0, which yields T?—X?2 <
1. The spacetime diagram for the Kruskal extension is shown in figure (3.7). By construction all
radial null geodesics are 45° lines. There are spacelike physical singularities in the extended region
at T = £+/1+ X2. The wedge [ in with positive X and |T'| < X corresponds to the exterior
Schwarzschild solution.

85



3.6.3 Wave equation in Schwarzschild spacetime

According to the general discussion we need to study the classical wave propagation of a Klein-
Gordon scalar field in region I of the extended Schwarzschild spacetime (3.8). One might expect,

singularity +

Abbildung 3.8: Conformal diagram of the extended Schwarzschild spacetime.

that any solution in this region must have started from infinity or must have entered region I from
the white hole region IT1. At late times, one expects that every solution will propagate into the
black hole region II and/or propagate back to infinity. For the investigation we use, that in in
Schwarzschild coordinates the Laplacian reads

-,

1 9?2 1 92 0 L?
0= 2w (g tag) t (3.33)

Since spacetime is spherically symmetric we can expand the field in spherical harmonics and write
the wave equation (O + m?)¢ for each mode of the form Setting

¢) — f(t7 T) le e*iwt‘
r

= m

We obtain

ot or?

o*f 0°f 2MN 2M 11+ 1) 5
(1-=) G+ i) =0 (334
where the tortoise coordinate r, has been defined above, M is the mass of the black hole and m is
the mass of the Klein-Gordon field. This equation can be identified with the wave equation for a
massless scalar field in 2-dimensional flat spacetime with scalar potential
2MN 2M 11+ 1
My MUY oy

r3 r2

Vire) = (1

Asr, = —oo (i.e. r = 2M) the potential falls off exponentially, V' ~ exp(r./2M), and as r, — oo
the potential behaves as ~ m? — 2Mm?/r, in the massive case and ~ [(I + 1)/r? in the massless

r
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case. In the asymptotic region r — oo this equation possesses outgoing solution ~ ™" and ingoing
solutions ~ e~ In terms of the null-coordinates the asymptotic solutions look like

W

out"l_ ingoing: Le—iv
going: —e ) ingoing: —e™"". (3.35)

Because of the potential term in (3.34) the incoming waves will partially scatter off the gravitational
field to become a superposition of incoming and outgoing waves.

We decompose ¢ into a complete set of positive frequency modeled denoted by g, :
¢ = Z / dw (awlmuwlm + allmullm),
I,m

which are normalized according to

(uw1l1m17uw212m2) = (5(&)1 - w2)611125m1m27

where we used the conserved 'norm’ introduced earlier,

(ur,us) = z/ (UITL“VUUQ — (n“VUuJ{)uQ)\/Ed%,
oY

and are chosen to reduce to the incoming spherical modes (3.35) in the remote past. The state
should correspond to the absence of incoming radiation,

ayimto = 0. (336)
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