
Chapter 2

Deriving the Path Integral

Quantization is a procedure for constructing a quantum theory starting from a classical the-

ory. There are different approaches to quantizing a classical system, the prominent ones being

canonical quantization and path integral quantization1. In this course I shall assume that you

are familiar with the first one, that is the wave mechanics developed by SCHRÖDINGER and the

matrix mechanics due to BORN, HEISENBERG and JORDAN. Here we only recall the important

steps in a canonical quantization of a classical system.

2.1 Recall of Quantum Mechanics

A classical system is described by its coordinates {qi} and momenta {pi} in phase space. An

observable is identified with a function O(p, q) on this space. In particular the energy H(p, q)

is an observable. The phase space is equipped with a symplectic structure which means that

(locally) it possesses coordinates with Poisson brackets

{pi, q
j} = δ j

i , (2.1)

and this structure naturally extends to observables by the derivation rule {OP,Q} = O{P,Q}+

{O,Q}P and the antisymmetry of the brackets. The time-evolution of any observable is deter-

mined by its equation of motion

Ȯ = {O,H}, e.g. q̇i = {qi, H} and ṗi = {pi, H}. (2.2)

Now one may ’quantize’ a classical system by requiring that observables become hermitean

linear operators and Poisson brackets are replaced by commutators:

O(p, q) → Ô(p̂, q̂) and {O,P} −→
1

ih̄
[Ô, P̂ ]. (2.3)

1Others would be geometric and deformation quantization.
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In passing we note, that according to a famous theorem of GROENEWOLD [10], later extended

by VAN HOVE [11], there is no invertible linear map from all functions O(p, q) of phase space

to hermitean operators Ô in Hilbert space, such that the Poisson-bracket structure is preserved.

It is the Moyal bracket, the quantum analog of the Poisson bracket based on the Weyl corre-

spondence map, which maps invertible to the quantum commutator.

The evolution of observables which do not explicitly depend on time is determined by the

Heisenberg equation of motion

d

dt
Ô =

i

h̄
[Ĥ, Ô] =⇒ Ô(t) = eitH/h̄Ô(0)e−itH/h̄. (2.4)

In particular the phase-space coordinates become operators and their equations of motion read

d

dt
p̂i =

i

h̄
[Ĥ, p̂i] and

d

dt
q̂i =

i

h̄
[Ĥ, q̂i] with [q̂i, p̂j] = ih̄δij . (2.5)

For example, for a non-relativistic particle with Hamilton operator

Ĥ = Ĥ0 + V̂ , with Ĥ0 =
1

2m

∑

p̂2i (2.6)

one finds the familiar equations of motion,

d

dt
p̂i = −V̂,i and

d

dt
q̂i =

p̂i
2m

. (2.7)

Observables are represented as hermitean linear operators acting on a separable Hilbert space

H (the elements of which define the states of the system)

Ô(q̂, q̂) : H −→ H. (2.8)

Here we do not distinguish between an observable and the corresponding hermitean operator.

In the coordinate representation the Hilbert space for a particle on the line is the space L2(R)

of square integrable functions on R and and the position- and momentum operators are

(q̂ψ)(q) = qψ(q) and (p̂ψ)(q) =
h̄

i
∂qψ(q). (2.9)

In experiments we have access to matrix elements of observables. For example, the expectation

values of an observable in a given state is given by the diagonal matrix element2 〈ψ|O(t)|ψ〉.

The time-dependence of expectation values is determined by the Heisenberg equation (2.4). We

may perform a t-dependent similarity transformation from the Heisenberg- to the Schrödinger

picture,

Os = e−itH/h̄O eitH/h̄ and |ψs〉 = e−itH/h̄|ψ〉. (2.10)

2We drop the hats in what follows.

————————————
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In particular Hs = H . In the Schrödinger picture the observables are time-independent,

Ȯs = e−itH/h̄
(

−
i

h̄
[H,O] + Ȯ

)

eitH/h̄ = 0. (2.11)

The picture changing transformation (2.10) is a (time-dependent) similarity transformation such

that matrix elements are invariant,

〈ψ|O(t)|ψ〉 = 〈ψs(t)|Os|ψs(t)〉. (2.12)

The values of observable matrix elements do not depend on the chosen picture. After the picture

changing transformation {O(t), |ψ〉} −→ {Os, |ψs(t)〉} the states evolve in time according to

the Schrödinger equation

ih̄
d

dt
|ψs〉 = H|ψs〉. (2.13)

The solution is given by the time evolution (2.10),

|ψs(t)〉 = e−itH/h̄|ψ〉 = e−itH/h̄|ψs(0)〉 (H = Hs) (2.14)

and depends linearly on the initial state vector |ψs(0). In the coordinate representation this

solution takes the form

ψs(t, q) ≡ 〈q|ψs(t)〉 =
∫

〈q|e−itH/h̄|q′〉〈q′|ψs(0)〉dq
′

=
∫

K(t, q, q′)ψs(0, q
′)dq′, (2.15)

where we made use of the completeness relation for the position eigenstates,

∫

dq′ |q′〉〈q′| = 1 (2.16)

and have introduced the unitary time evolution kernel

K(t, q, q′) = 〈q|e−itH/h̄|q′〉. (2.17)

It is the probability amplitude for the particle to propagate from q′ at time 0 to q at time t and is

occasionally denoted by

K(t, q, q′) ≡ 〈q, t|q′, 0〉. (2.18)

This evolution kernel (sometimes called propagator) will be of great importance when we

switch to the path integral formulation. It satisfies the time dependent Schrödinger equation

ih̄
d

dt
K(t, q, q′) = HK(t, q, q′), (2.19)

————————————
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whereH acts on the coordinates q of the final position. In additionK obeys the initial condition

lim
t→0

K(t, q, q′) = δ(q − q′). (2.20)

The propagator is uniquely determined by the differential equation and initial condition. For a

non-relativistic free particle in Rd with Hamiltonian H0 as in (2.6) it is a Gaussian function of

the initial and final coordinates q′, q ∈ Rd, ,

K0(t, q, q
′) = 〈q|e−itH0/h̄|q′〉 = Ad

t e
im(q−q′)2/2h̄t, At =

√

m

2πih̄t
. (2.21)

The factor proportional to t−d/2 infront of the exponential function is needed to recover the

δ-distribution in the limit t→ 0, see (2.20). In one dimension one has

K0(t, q, q
′) = At e

im(q−q′)2/2h̄t. (2.22)

After this preliminaries we now turn to the path integral representation of the evolution kernel.

2.2 Feynman-Kac Formula

Now we are ready to derive the path integral representation of the evolution kernel in coordinate

space (2.17). The result will be the marvelous formulae of RICHARD FEYNMAN [12] and

MARC KAC [13]. The path integral of Feynman is relevant for quantum mechanics and that

of Kac is relevant for statistical physics. The formula of Feynman-Kac is very much related to

stochastic differential equations and has many application outside of the realm of physics, for

example in Biology (evolution processes), financing (optimal prizing) or even social sciences

(stochastic models of social processes).

In our derivation of the Feynman-Kac formula we shall need the product formula of Trotter.

In its simplest form, proven by LIE, it states that for two matricesA andB the following formula

holds true

eA+B = lim
n→∞

(

eA/neB/n
)n
. (2.23)

To prove this simple formula we introduce the n’th roots of the matrices on both sides in (2.23),

namely Sn := exp[(A+B)/n] and Tn := exp[A/n] exp[B/n] and telescope the difference

‖Sn
n − T n

n ‖ = ‖eA+B − (eA/neB/n)n‖

= ‖Sn−1
n (Sn − Tn) + Sn−2

n (Sn − Tn)Tn + · · ·+ (Sn − Tn)T
n−1
n ‖.

Since the matrix-norms of the sum and product of two matrices X and Y satisfy ‖X + Y ‖ ≤

‖X‖+ ‖Y ‖ and ‖X · Y ‖ ≤ ‖X‖ · ‖Y ‖ it follows at once that ‖ exp(X)‖ ≤ exp(‖X‖) and

‖Sn‖, ‖Tn‖ ≤ e(‖A‖+‖B‖)/n ≡ a1/n.

————————————
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Now we can bound the norm of Sn
n − T n

n from above,

‖Sn
n − T n

n ‖ ≤ n · a(n−1)/n‖Sn − Tn‖.

Finally, using Sn−Tn = −[A,B]/2n2+O(1/n3) this proves the product formula for matrices.

This theorem and its proof can be extended to the case where A and B are self-adjoint operators

and their sum A +B is (essentially) self-adjoint on the intersection D of the domains of A and

B:

e−it(A+B) = s− lim
n→∞

(

e−itA/ne−itB/n
)n
. (2.24)

Moreover, if A and B are bounded below, then

e−τ(A+B) = s− lim
n→∞

(

e−τA/ne−τB/n
)n
. (2.25)

With the strong limit one means that the convergence holds on all states in D. The first for-

mulation is relevant for quantum mechanics and the second is needed in statistical mechanics

and diffusion problems. For a proof of the Trotter product formula for operators I refer to the

mathematical literature [21, 22].

Using the product formula (2.24) in the evolution kernel (2.17) yields

K(t, q, q′) = lim
n→∞

〈q| (e−itH0/h̄ne−itV/h̄n)n|q′〉 . (2.26)

Inserting n − 1-times the resolution of the identity 1 =
∫

dwj|wj〉 〈wj| associated with the

position eigenstates, we obtain for the matrix element on the right hand side

〈q| e−itH0/h̄ne−itV/h̄n
1 e−itH0/h̄ne−itV/h̄n

1 . . .1 e−itH0/h̄ne−itV/h̄n|q′〉

=
∫

dw1 · · · dwn−1

j=n−1
∏

j=0

〈wj+1| e
−itH0/h̄ne−itV/h̄n|wj〉 . (2.27)

In the last formula wn = q is the final position and w0 = q′ the initial position of the particle.

Since the potential is diagonal in the coordinate representation we find

〈wj+1| e
−itH0/h̄ne−itV/h̄n|wj〉 = 〈wj+1| e

−itH0/h̄n|wj〉 e
−itV (wj)/h̄n. (2.28)

Now we insert the evolution kernel (2.22) of the free particle and find for Kn the representation

K(t, q, q′) = = lim
n→∞

An
ǫ

∫

dw1 · · · dwn−1 · e
iS(n)(w)/h̄

S(n)(w) =
m

2

n−1
∑

j=0

ǫ
(

wj+1 − wj

ǫ

)2

−
n−1
∑

j=0

ǫV (wj) (2.29)

where ǫ = t/n. This is the celebrated formula of Feynman and Kac and it is just the path

integral representation of the evolution kernel we have been aiming at.

————————————
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Figure 2.1: A broken path of a particle propagating from w0 to wn.

To see more clearly why (2.29) is called a path integral (or functional integral in field theory)

we divide the time interval [0, t] into n equidistant intervals with length ǫ = t/n and identify wk

with w(s = kǫ), see fig. (2.1). Now we connect every pair of points (jǫ, wj) and (jǫ+ ǫ, wj+1)

by a straight line and obtain a broken line path from w0 = q′ to wn = q

The exponent SL in (2.29) is a Riemann sum approximation to the classical action of a

particle moving along this broken line path,

S(n)(w)
n→∞
−→

t
∫

0

ds
(

m

2
ẇ2 − V (w)

)

≡ S[w] (2.30)

The integrations
∫

dw1 . . . dwn−1 in (2.29) is to be interpreted as summing over all possible

broken line paths connecting q′ with q. Since any continuous path from q′ with q can be ap-

proximated by a broken line path and since finally we must take the continuum limit n→ ∞ or

equivalently ǫ → 0, we may interpret the integral (2.29) as a sum over all paths from q′ at time

0 and to q at time t. The ǫ-dependent constant

An
ǫ =

(

m

2πih̄ǫ

)n/2

(2.31)

in the path integral (2.29) is required to obtain a unitary time evolution. It diverges in the

continuum limit ǫ → 0, but this divergence is harmless as we shall see later. In the continuum

limit we denote the path integral representation for the evolution kernel (2.29) by

K(t, q, q′) =

w(t)=q
∫

w(0)=q′

Dw eiS[w]/h̄, (2.32)

with the formal ’measure’ Dw on the set of paths defined by the limit (2.29). Since the infinite

product of Lebesgue measures like
∏∞

1 dwj fails to be a measure, the symbol Dw is mathemati-

cally not well-defined. However, one can define a measure on the set of paths if one analytically

————————————
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continues to imaginary time. For more general Lagrangian systems, for example for particles

propagating in 3 dimensions, a similar path integral representation for the evolution kernel can

be given. In same cases, for example for particle in external fields, ordering ambiguities in the

canonical approach translate into discretization ambiguities even in the continuum limit.

2.3 Non-stationary systems

The Feynman-Kac formula not only holds for stationary systems, it also holds for time-dependent

Hamiltonians H(t) for which the evolution kernel has the form

K(t, q, t′, q′) = 〈q|T exp
(

−
i

h̄

∫ t

t′
H(s)ds

)

|q′〉 , (2.33)

where T denotes the time ordering. The generalization to time-dependent Hamiltonians is useful

when on considers system under varying external conditions, for example in a time-dependent

external field. In a non-stationary situation the evolution operator depends on the initial and

final times and not only on the time-difference t − t′. But the continuum path integral for the

evolution kernel K looks the same as in the stationary case,

K(t, q, t′, q′) =

w(t)=q
∫

w(t′)=q′

Dw eiS[w]/h̄, (2.34)

where now the Lagrange function depends explicitly on time. For a system with Hamiltonian

H = H0 + V (t) the path integral is the continuum limit of

K(t, q, t′, q′) = lim
n→∞

An
ǫ

∫

dw1 · · · dwn−1 e
iS(n)(w)/h̄

S(n)(w) =
m

2

n−1
∑

j=0

(

wj+1 − wj

ǫ

)2

−
n−1
∑

j=0

ǫV (t′ + jǫ, wj), (2.35)

where ǫ = (t−t′)/n. Note that now the potential depends on the (discretized) time. To establish

(2.34) we show that

ψ(t, q) =
∫

K(t, q, t′, q′)ψ(t′, q′) dq′ (2.36)

obeys the time-dependent Schrödinger equation. For that purpose we set t′ = t − ǫ with small

ǫ. The evolution for a infinitesimal time step ǫ is given by

ψ(t, q) = Aǫ

∫

dq′ exp
{

im

2h̄ǫ
(q − q′)2 −

iǫ

h̄
V (t− ǫ, q′)

}

ψ(t− ǫ, q′).

Changing variables according to q → q′ + u this reads

ψ(t, q) = Aǫ

∫

du eimu2/2h̄ǫe−iǫV (t−ǫ,q+u)/h̄ ψ(t− ǫ, q + u). (2.37)

————————————
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Due to the first Gaussian factor the u-integral gets its main contribution from the neighborhood

of u = 0 and thus we may expand the last two factors in powers of u. The resulting integrals

over u are computed with the help of the formula

∫

du u2neimu2/2h̄ǫ =
1

Aǫ

(

ih̄ǫ

m

)n

(2n− 1)!! (2.38)

where 0!! = (−1)!! = 1 by definition. Of course, the integrals with odd powers of u vanish. We

only need the terms of order 1 and ǫ on the right hand side in (2.37) and thus it is sufficient to

expand ψ to second order in u. Up to terms of order ǫ2 we find

ψ(t, q) = Aǫ

∫

du eimu2/2h̄ǫ
(

1−
iǫ

h̄
V (t, q)

)

(

ψ(t− ǫ, q) +
u2

2
ψ′′(t, q)

)

+O(ǫ2).

The integration over u finally leads to

ψ(t, q) = ψ(t− ǫ, q)−
iǫ

h̄
V (t, q)ψ(t, q) +

ih̄ǫ

m
ψ′′(t, q) +O(ǫ2). (2.39)

Note that for ǫ→ 0 the right hand side converges to ψ(t, q) such thatK converges to the identity

as t′ → t. Now we subtract ψ(t−ǫ, q) from both sides in (2.39) and divide the resulting equation

by ǫ. In the continuum limit ǫ→ 0 we recover the time-dependent Schrödinger equation,

ih̄
∂ψ

∂t
= −

h̄2

2m
ψ′′ + V (t)ψ, (2.40)

and this shows that even for a time-dependent Hamiltonian the propagator is given by the path

integral (2.34) or more accurately by (2.35).

2.4 Greensfunctions

In quantum field theory one is interested in vacuum expectation values of time-ordered products

of Heisenberg field operators since these objects are related to amplitudes of physical processes

such as scattering amplitudes or decay rates of particles. We look at the analogous objects in

quantum mechanics:

G(n)(t1, t2, . . . , tn) = 〈Ω|T q̂(t1)q̂(t2) · · · q̂(tn)|Ω〉, (2.41)

where|Ω〉 represents the vacuum state and the position operator has the time dependence

q̂(t) = eitH/h̄q̂e−itH/h̄, (2.42)

see equation (2.4). The objects G(n) are known as Greensfunction or correlation functions. The

time ordering operator T orders its arguments such that the operator at earliest time acts first (is

the right-most), the operator at the second earliest time acts next etc. For example

T q̂(t1)q̂(t2) =

{

q̂(t1)q̂(t2) t1 > t2
q̂(t2)q̂(t1) t2 > t1.

(2.43)

————————————
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Now will derive the path integral expression for the Greensfunction (2.41). Actually we shall

calculate correlation functions with fixed endpoints, for example

〈q, t|T q̂(t1)q̂(t2)|q
′〉 , where |q, t〉 = eitH/h̄|q〉 (2.44)

is the past-evolved position eigenstate, q̂(t)|t, q〉 = q|t, q〉. Later we shall see how one recovers

the vacuum expectation values (2.41) from the correlation functions with fixed endpoints. We

assume t1 > t2 and insert twice the identity in (2.44), one after every position operator q̂,

〈q, t| q̂(t1)q̂(t2)|q
′〉 = 〈q| e−i(t−t1)H q̂e−i(t1−t2)H q̂e−it2H |q′〉

=
∫

dw1dw2 〈q| e−i(t−t1)H |w1〉w1 〈w1| e
−i(t1−t2)H |w2〉w2 〈w2| e

−it2H |q′〉 .

Inserting the path integral representation for the three matrix elements we obtain

〈q, t| q̂(t1)q̂(t2)|q
′〉 =

∫

dw1dw2w1w2

w(t)=q
∫

q(t1)=w1

Dw eiS/h̄
w(t1)=w1
∫

w(t2)=w2

Dw eiS/h̄
w(t2)=w2
∫

q(0)=q′

Dw eiS/h̄. (2.45)

This expression consists of a first path integral from the initial position q′ to the position w2, a

second one from w2 to the position w1, and a third one from w1 to the final position q. So we

are integrating over all paths from q′ to q, subject to the restriction that the paths pass through

the intermediate points w2 and w1 at times t2 and t1, respectively. Finally we integrate over the

two arbitrary positionsw2 and w1, so that in fact we are integrating over all paths. Thus we may

combine the three path integrals and the integrations over w1 and w2 into a single path integral.

The factors w1 and w2 in the integrand are just the values w(t1) and w(t2) of the paths at the

intermediate times. Hence we end up with

〈q, t| q̂(t1)q̂(t2)|q
′〉 =

w(t)=q
∫

w(0)=q′

Dww(t1)w(t2) e
iS[w]/h̄ (t1 > t2). (2.46)

A similar calculation reveals that the same result holds true for the matrix element of q̂(t2)q̂(t1)

when t2 > t1. The path integral takes care of the time ordering. Thus we arrive at the following

formula for all pairs t1, t2:

〈q, t|T q̂(t1)q̂(t2)|q
′〉 =

w(t)=q
∫

w(0)=q′

Dww(t1)w(t2) e
iS[w]/h̄. (2.47)

The generalization to higher correlation function is evident. One obtains

〈q, t|T q̂(t1)q̂(t2) · · · q̂(tn)|q
′〉 =

w(t)=q
∫

w(0)=q′

Dww(t1)w(t2) · · ·w(tn) e
iS[w]/h̄. (2.48)

————————————
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Now we relate the time ordered correlation functions for fixed endpoints to the vacuum expecta-

tion values in (2.41). Normalizing the Hamiltonian such that its groundstate|Ω〉 has zero energy,

in which case it is time-independent, we obtain

〈Ω| =
∫

dq 〈Ω| q, t〉 〈t, q| =
∫

dq 〈Ω| q〉 〈t, q| =
∫

dq Ω̄(q) 〈t, q| . (2.49)

Now we multiply (2.48) with Ω̄(q)Ω(q′) and integrate over the arguments q and q′. This yields

〈Ω|T q̂(t1) · · · q̂(t1)|Ω〉 =
∫

dqdq′ Ω̄(q)Ω(q′)

w(t)=q
∫

w(0)=q′

Dww(t1) · · ·w(tn) e
iS[w]/h̄. (2.50)

Actually, to calculate such vacuum-to-vacuum transition amplitudes one conveniently continues

to imaginary time and this will be studied in a later chapter.

Generating functional for time ordered products: The Greenfunctions for time ordered

products of position operators at different times are generated by a functional depending on an

external source. It is given by the path integral in which a source term is added to the action,

S[w] −→ Sj [w] = S[w] + (j, w), (j, w) =
∫ t

0
dsj(s)w(s). (2.51)

The corresponding evolution kernel in the presence of the source

K(t, q, q′; j) =

w(t)=q
∫

w(0)=q′

Dw eiSj [w]/h̄. (2.52)

is just the generating functional for the Greenfunctions (2.48). For example, its first variational

derivative with respect to the source is

h̄

i

δ

δj(t1)
K(t, q, q′; j) =

∫

Dww(t1) e
iSj/h̄. (2.53)

The n-fold differentiation of K at j = 0 yields the path integral with several w-insertions,

h̄

i

δ

δj(t1)
· · ·

h̄

i

δ

δj(tn)
K(t, q, q′; j)|j=0 =

∫

Dww(t1) · · ·w(tn) e
iS[w]/h̄, (2.54)

which according to the result (2.48) is equal to the expectation value of the time-ordered product

of n position operators at different times

h̄

i

δ

δj(t1)
· · ·

h̄

i

δ

δj(tn)
K(t, q, q′; j)|j=0 = 〈q, t|T q̂(t1) · · · q̂(tn)|q

′〉 . (2.55)

For an interacting system the generating functional cannot be calculated in closed form. But

with the result (2.48) we can easily set up a perturbative expansion for the Greenfunctions. This

will be done in chapter 4.

————————————
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