
Chapter 14

Path integral for gauge fields

All fundamental theories in particle physics are gauge theories. These theories contain first class

constraints which generate the (time-independent) gauge transformations and hence must be

quantized along the lines outlined above. We shall first recall the classical canonical structure of

pure Yang-Mills theories with particular emphasis on the constraints. At the end we specialize

to the Abelian case and set some of the potentials and field strengths to zero to recover the path

integral for the Schwinger model.

14.1 Classical Yang-Mills Theories

In Minkowski spacetime the Lagrangian for a non-Abelian gauge theory reads

L = −1

4
trFµνF

µν , (14.1)

where the (hermitian) field strength is Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ]. The chromoelectric

and chromomagnetic fields are the generalization of the electric and magnetic fields in electro-

magnetism,

F0i = Ei and Fij = −ǫijkBk (14.2)

Expanding the potential and field strength as

Aµ =
dim G
∑

a=1

Aµ
aTa , F µν =

dim G
∑

a=1

F µν
a Ta,

where the (hermitian) generators Ta of the Lie algebra obey the commutation relations

[Ta, Tb] = ifabcTc, (14.3)
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with totally anti-symmetric and real structure constants fabc, we find the following formulae for

the components in group-space,

Ea =
d

dt
Aa −∇A0

a + fabcA
0
bAc , Ba = −∇× Aa −

1

2
fabcAb × Ac. (14.4)

We have set A = (A1, A2, A3), E = (E1, E2, E3) and B = (B1, B2, B3). One would have the

usual sign convention [51] if one would take A = (A1, A2, A3) that is replace A by −A. In the

non-covariant notation the Lagrangian reads

L =
1

2

∑

a

(E 2
a − B

2
a ). (14.5)

The non-covariant form of the Yang-Mills equations DνF
µν are the generalized Gauss- and

Ampere law

D · E = 0 ⇐⇒ ∇ · Ea + fabcAb · Ec = 0

DtE = (D × B) ⇐⇒ ∂tEa + fabcA
0
bEc = ∇×Ba + fabc(Ab × Bc). (14.6)

The corresponding identities in two dimensions for F01 = E are obtained by setting E =

(E, 0, 0), B = 0 and A2 = A3 = 0 in the above equations.

14.1.1 Hamiltonian structure

Our task is to build a Hamiltonian scheme, which will give rise to these Yang-Mills equations.

The first problem in passing to a Hamiltonian description arises from the fact that L does not

depend on Ȧ0
a and thus there is no momentum conjugate toA0

a. To remedy this we use the gauge

freedom to choose the temporal gauge A0
a = 0. In this gauge we have

L =
1

2
(Ȧ2

a −B
2
a ) (14.7)

and the Gauss- and Ampere laws take the simple forms

(D · E )a = 0 and Ėa = (D ×B)a. (14.8)

The momentum density conjugate to Aa is gotten by differentiating L in (14.7) with respect to

the ’velocity’ Ȧ,

πa(x) =
δL

δȦa(x)
= Ȧa = Ea (14.9)

which then lead to the following Hamiltonian and Hamiltonian density,

H =
∫

d3xH, where H =
1

2
(E 2

a +B
2
a ). (14.10)

————————————

A. Wipf, Path Integrals
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The canonical equal time commutation relations read (here we do not distinguish between upper

and lower indices, in particular Ai = Ai)

{Ai
a(t, x), E

j
b (t, y)} = δabδijδ

3(x− y), (14.11)

from which follows that

{Bi
a(t, x), E

j
b (t, y)} = ǫijk

(

δab∂xkδ(x− y)− fabcA
k
cδ(x− y)

)

. (14.12)

Now it is rather straightforward to calculate the time-derivative of the canonical fields. On

obtains

Ȧi
a(x) = {Ai

a(x), H} =
∫

d3y {Ai
a(x), E

j
b (y)}Ej

b(y) = Ei
a(x) (14.13)

and similarly, using (14.11),

Ėi
a(x) = {Ei

a(x), H} = ǫijk
(

∂jB
k
a + fabcA

j
bB

k
c

)

(14.14)

and hence the Hamiltonian equations reproduce Ampere’s law (14.8) and the definition of Ea

in terms of Ȧa. However, Gauss’s law has yet not emerged, since it is a fixed-time constraint

between canonical variables.

To understand the role of the Gauss constraints

Ca(x) = (D ·E )a = ∂iE
i
a + fabcA

i
bE

i
c (14.15)

more clearly let us calculate the commutator of these constraints with the canonical variables.

One finds

{Ab(y), Ca(x)} = δab∇xδ(x− y)− fabcAcδ(x− y)

{Eb(y), Ca(x)} = −fabcEcδ(x− y). (14.16)

Smearing the constraints with arbitrary test functions θa as

Cθ =
∫

d3xθa(x)Ca(x), (14.17)

these commutation relations become

{Aa(y), Cθ} = −∇θa(y) + fabcθb(y)Ac(y)

{Ea(y), Cθ} = fabcθb(y)Ec(y). (14.18)

From the first equation one may obtains

{Ba(y), Cθ} = fabcθb(y)Bc(y). (14.19)

————————————

A. Wipf, Path Integrals
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Now we shall see, that the constraints generate the time-independent gauge transformations

A −→ e−iθ
Aeiθ + ie−iθ∇eiθ, E −→ e−iθ

Eeiθ, B −→ e−iθ
Beiθ. (14.20)

The corresponding small transformations of the gauge potential and field strengths are

δθA = −∇θ − i[θ,A] δθE = −i[θ,E ] and δθB = −i[θ,B ], (14.21)

which, after expanding θ = θaTa read in component form

δθAa = −∇θa + fabcθbAc, δθEa = fabcθbEc and δθBa = fabcθbBc (14.22)

which are identical with the corresponding commutation relations in (14.18,14.19) with the

smeared constraintCθ. Hence the Gauss-constraints generate the time-independent gauge trans-

formations.

It follows then that the Hamiltonian commutes with the constraints since it is gauge invari-

ant. Finally, using the identity

f(y)δ′(x− y) = f(x)δ′(x− y) + f ′(x)δ(x− y) (14.23)

and the Jacobian identity

fabdfcpd + fcadfbpd + fbcdfapd = 0 (14.24)

one shows that the commutator of two different constraints follow the Lie algebra of the gauge

group,

{Ca(x), Cb(y)} = fabcCc(x)δ(x− y), (14.25)

and thus form a system of first class constraints. The transition from the classical Poisson

bracket to the corresponding commutators is as usual achieved by replacing Poisson brackets

{., .} by commutators −i[., .]/h̄ in the above relations.

The path integral for the Yang-Mills Hamiltonian (14.10) is given by analogy with the con-

strained quantum mechanical system (13.19) by

Z =
∫

DEaDAaδ(Ca)δ(Fa) det{Fa, Cb} exp
[ i

h̄

∫

(EaȦa −
1

2
E

2
a − 1

2
B

2
a )dtd

3x
]

, (14.26)

where the Fa are the gauge fixing depending on Aa. We have seen that
∫

θaCa generates in-

finitesimal gauge transformations, and hence {Fa, Cb} is just an infinitesimal gauge transfor-

mation with parameters θa stripped off

{Fb(A(y)), Ca(x)} =
δ

δθa(x)
δθ(Fb[A(y)]) ≡ δaFb. (14.27)

————————————

A. Wipf, Path Integrals
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For the constraint δ-function we may insert

δ(Ca) = const ·
∫

DA0
a exp

[ i

h̄

∫

A0
a(DE )a

]

so that

Z =
∫

DEaDAa
µδ(Fa) det(δaFb) exp

[ i

h̄

∫

(ȦaEa − (DA0)aEa −
1

2
E

2
a − 1

2
B

2
a )d

4x
]

,(14.28)

where we have partially integrated in the exponent. Next we calculate the Gaussian Ea-integral

which results in

Z = const ·
∫

DAa
µδ(Fa) det(δaFb) exp

[ i

h̄

(

(Ȧa − (DA0)a)
2 −B

2
a

)]

Comparing with (14.4) and (14.5) we find the covariant expression for the partition function

Z = const ·
∫

DAa
µ δ(Fa) det(δaFb) e

i
h̄
S[A]. (14.29)

In our derivation the gauge conditions Fa depend only on the spatial components of the gauge

potential. Recall that det(δaFb) is the determinant of the scalar-products of the gradient vectors

∇AFb(A) with the symmetry-generating vector-fields (generating the θa-gauge orbits). We

may now assume that Fb also depends on A0 as long as we guarantee that the determinant keeps

this geometric meaning in the enlarged space of the gauge potentials (and not only their spatial

components). But also in this enlarged space

δ

δθa(x)
δθFb =

δFb

δAc
µ

(
δ

δθa
δθA

c
µ) = (∇Fb, Xa), (14.30)

where now the gauge transformation may depend on time as well, and hence in δaFb we must

take the gauge variation of all components of Aa
µ. We see that the gauge fixing functions Fa

in (14.29) may depend on all components of the gauge potential. Since the action is gauge-

invariant, (14.29) still holds and the second equation in (14.27) still defines the object δaFb

appearing in the path integral.

We can derive a more general representation for the transition amplitude than (14.29) by

shifting Fa → Fa + ga, where the functions ga do not depend on the gauge potential and hence

δa(Fb − gb) = δaFb. Since (14.29) is independent of the gauge choice Fa it is also independent

of the functions ga. Hence (we suppress h̄)

Z = const ·
∫ DgG(g) ∫ DA δ(Fa − ga) det(δaFb) e

iS[A]

∫ DgG(g)
= const’ ·

∫

DA G(Fa) det(δaFb) e
iS[A]. (14.31)

————————————

A. Wipf, Path Integrals
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At this point one can introduce Grassmann-valued fields, so-called Fadeev-Popov ghosts η, η̄ to

represent the determinant of the infinitesimal gauge transformations, so that finally

Z[j] = const ·
∫

DADηDη̄ G(Fa) e
i(S[A]+

∫

η̄(δaFb)η+
∫

jµAµ), (14.32)

where we have re-introduce the coupling to a conserved current. The constant in front of the

path integral is chosen such that Z[0] = 1.

Let us see apply this formalism to the Lorentz gauge

Fa(A) = ∂µA
µ
a , (14.33)

the infinitesimal gauge variation of which reads

δθFb(A) = −∂µ∂µθb + fbcd∂µ(θcA
µ
d). (14.34)

We strip of the gauge parameter and obtains the following Faddeev-Popov operator,

δaFb =
δ

δθa(x)
δθFb(A(y)) =

(

− δab∂
2 + fabcA

µ
c (x)∂µ

)

δ(x− y).

Let us further take

G(Fa) = exp
[ i

2λ

∫

F 2
a

]

. (14.35)

Finally, writing

S[A] = −1

4

∫

F a
µνF

µν
a =

1

2

∫

Aµ
a(ηµν∂

2 − ∂µ∂ν)A
ν
a + Sint[A], (14.36)

where Sint[A] contains all the cubic and quartic (self-interacting) terms, the path integral takes

the form

Z[j] = const ·
∫

DADηDη̄ ei(Seff [A,η,η̄]+
∫

jµAµ), (14.37)

where

Seff [A, η, η̄] = S0
eff + Sint

eff . (14.38)

We have split Seff into a quadratic term and a term containing higher orders of the fields,

S0
eff =

1

2

∫

Aµ
a

(

ηµν∂
2 − (1− 1

λ
)∂µ∂ν

)

Aν
a +

∫

η̄a(−∂2)ηa

Sint
eff = Sint[A] +

∫

η̄a(fabcA
µ
c ∂µ)ηb. (14.39)

Now we see the effect of the gauge fixing more clearly. Whereas S0 (the term quadratic in the

gauge potential) has zero modes, S0[Aµ = ∂µλ] = 0, and hence cannot be inverted, the effective

quadratic term in (14.39) has no zero mode and can be inverted.

————————————

A. Wipf, Path Integrals
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14.2 Abelian Gauge Theories

In the Abelian case fabc = 0 and the interaction terms are absent. The ghost integral is indepen-

dent of the gauge potential and chancels in the normalized path integral. Hence

Z[j] = const ·
∫

DA eiS
0

eff
[A]+i

∫

jµAµ, (14.40)

where

S0
eff =

1

2
(Aµ, KµνA

ν), Kµν = ηµν∂
2 − (1− 1

λ
)∂µ∂ν . (14.41)

Since the operator K has no zero modes we can calculate the Gaussian integral and find

Z[j] = exp
[

− i

2
(jµ, K−1

µν j
ν)
]

(14.42)

for the partition function, where the propagator is easily found to be

K−1
µν =

1

∂2

(

ηµν − (1− λ)
1

∂2
∂µ∂ν

)

. (14.43)

Common choices for λ are λ = 1 (Feynman gauge) and λ = 0 (Landau gauge).

The continuation to the Euclidean sector is achieved by replacing E → −iE , B → −B

and d3x→ −id3x, so that

Z[j] = C ·
∫

DAe−S0

eff
[A]+

∫

jA , (14.44)

where now

S0
eff =

1

2
(Aµ, KµνA

ν) with Kµν = −δµν∆+ (1− 1

λ
)∂µ∂ν , (14.45)

so that

Z[j] = exp
[1

2
(jµ, K−1

µν j
ν)
]

. (14.46)

The Euclidean propagator reads

K−1
µν =

1

∆

(

− δµν + (1− λ)
1

∆
∂µ∂ν

)

. (14.47)

14.3 The Schwinger model, Part II

After these preparations we are now ready to quantize the bosonic degrees of freedom of the

Schwinger model, that is integrate over the ’photon’ field. In the following it will be convenient

to Hodge-decompose the gauge potential as

Aµ = ǫµν∂νφ+ ∂µλ, (14.48)

————————————

A. Wipf, Path Integrals
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where λ is a pure gauge degree of freedom and drops in gauge invariant expressions. In partic-

ular

F01 = −∆φ =⇒ 1

4
FµνF

µν =
1

2
(∆φ)2, (14.49)

and the effective action Γ in (12.51) becomes

Γ[A] =
1

2

∫

φ
(

∆2 − e2

π
∆
)

φ. (14.50)

The function Φ in (12.39) simplifies to

Φ = λ− iγ5φ. (14.51)

Note that both the effective action and the Green function are local in the new fields φ and λ.

We shall use the representation (14.29) (or rather its Euclidean continuation) for the path

integral, where we choose the Lorentz gauge

F = ∂µA
µ = ∆λ (14.52)

and transform variables from A to φ, λ. First we note that the Jacobian of the transformation

(14.48) is just

J = det

(

∂1 ∂0
−∂0 ∂1

)

= det1/2
(

∆ 0

0 ∆

)

= det(∆) (14.53)

and second the constraint becomes

δ(F ) = δ(∆λ) =
1

det(∆)
δ(λ).

The important point is that neither the Jacobian J nor the determinant coming from rewrit-

ing the constraint in the new variables depend on the gauge potential and hence they cancel in

expectation values against the normalization (here they cancel each other even without normal-

ization). If we compute the expectation value of a gauge invariant operator, say O, which does

not depend on the field λ, then the λ-integration is trivial and one obtains

〈O〉 = 1

Z[0]

∫

Dφe−Γ[φ]O[φ], where Z[0] =
∫

Dφe−Γ[φ]. (14.54)

The most general 2n-point function (e.g. the two-point function (12.58) are not gauge-invariant

but we can built gauge invariant objects out of them, namely operators of the form

exp
(

i

y
∫

x

A
)

ψ̄(y)Mψ(x), (14.55)

————————————

A. Wipf, Path Integrals
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or functions of such bilinears. Here M is one of the four matrices Id, γ5 and γµ. The phase

factor is needed for the bilinear expression to be gauge invariant (recall that ψ → exp(iλ)ψ

under gauge transformations). Using

T 〈0|ψ̄(y)Mψ(x)|0〉 = −〈0|M α
β ψα(x) ψ̄

β(y)|0〉 = −trMG(x, y) (14.56)

one finds

〈eie
∫

Aψ̄(y)Mψ(x)〉 = − 1

Z[0]

∫

Dφe−Γ[φ] eie
∫

ǫµν∂νφdxµ

tr MG(x, y)|λ=0. (14.57)

Recalling that ((12.42))

G(x, y)|λ=0 = eγ5(eφ(x)−eφ(y))G0(x− y), where G0(ξ) = − i

2π

ξµγµ
ξ2

(14.58)

we see that the spinorial trace in (14.58) vanishes for M = Id and M = γ5 and thus

〈J±〉 = 0, where J± = ψ̄P±ψ, P± =
1

2
(1± γ5). (14.59)

Similarly, using

T 〈0|ψ̄(y1)Mψ(x1) · ψ̄(y2)Nψ(x2)|0〉
=M α1

β1
N α2

β2

(

G β1

α1
(x1, y1)G

β2

α2
(x2, y2)−G β2

α1
(x1, y2)G

β1

α2
(x2, y1)

)

= tr [MG(x1, y1)] tr [NG(x2, y2)]− tr [MG(x1, y2)NG(x2, y1)]

one finds for M = P− and N = P+

〈ψ̄(x)P−ψ(x) · ψ̄(y)P+ψ(y)〉 = − 1

Z[0]

∫

Dφe−Γ[φ]tr P−G(x, y)P+G(y, x)

=
1

Z[0]

∫

Dφe−Γ[φ]tr P− e
2γ5[eφ(x)−eφ(y)]G2

0(x− y)(14.60)

= − 1

Z[0]

1

4π2(x− y)2

∫

Dφ e−Γ[φ] e2[eφ(y)−eφ(x)]

where we have inserted the explicit form (12.42) of G and used that γ5 anti-commutes with G.

Also note that the phase factor is not present in this correlation function. The remaining path

integral is Gaussian, that is has the form

1

Z[0]

∫

Dφe−Γ[φ]+
∫

jφ = e
1

2
(j,Dj), (14.61)

where the propagator D is determined by the operator appearing in (14.50) and therefore reads

D =
1

∆(∆− e2

π
)
=

π

e2

( 1

∆− e2/π
− 1

∆

)

. (14.62)

————————————
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D is just the difference of a massive and massless Klein-Gordon propagator. Whereas the Klein-

Gordon operator is ultra-violet divergent the effective propagator D is well behaved for x = y.

Comparing (14.60) and (14.61) we see that j(z) = 2eδ(y − z)− 2eδ(x− z) so that

〈J−(x)J+(y)〉 = − 1

4π2(x− y)2
e2e

2[D(x,x)+D(y,y)−2D(x,y)], (14.63)

where we have used that D is symmetric in its arguments. For large separations r = |x− y| →
∞ only the massless propagator contributes to D(x, y) and thus (see (12.43))

D(x, y) −→ − π

e2
〈x| 1

∆
|y〉 = − 1

2e2
log[µr]. (14.64)

The function exp(−4e2D(x, y)) ∼ µ2(x − y)2 grows sufficiently fast to cancel the decreasing

factor in (14.63) and thus makes the whole expression remain constant for large separations

〈J−(x)J+(y)〉 −→ − µ2

4π2
e4e

2D(0). (14.65)

To find the numerical value we must compute D(0). The exact massive propagator is just a

Bessel function

〈x| 1

∆− e2/π
|y〉 = − 1

2π
K0(er/

√
π) ∼ 1

2π

[

log(er/2
√
π) + γ

]

(14.66)

where γ = 0.577215. Together with the massless propagator (12.43) one finds then

〈x|D|y〉 ∼ π

e2
1

2π

[

log(er/2
√
π) + γ − log(µr)

]

=
1

2e2

[

log
e

2µ
√
π
+ γ

]

. (14.67)

The only natural mass-scale is the mass of the ’photon’, hence we set µ = e/
√
π and then

4e2〈x|D|y〉 ∼ − log(4) + 2γ

so that finally

〈J−(x)J+(y)〉 −→ − e2

16π3
e2γ (14.68)

(the overall sign does not agree with the result in the literature?). For completeness we also

write down the exact answer

〈J−(x)J+(y)〉 = − e2

16π3
e2γ exp

[

2K0(er/
√
π)
]

. (14.69)

Now there is a subtle problem with the result (14.68) or (14.69). For a system with a unique

vacuum state the linked cluster property should hold, which states that

〈J−(x)J+(y)〉 −→ 〈J−(x)〉 · 〈J+(y)〉 = 〈J−(0)〉 · 〈J+(0)〉 (14.70)

————————————

A. Wipf, Path Integrals
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for |x− y| → ∞. In other words the connected 2-point function of J− and J+ should decay for

large separations. From (14.70) we conclude that

〈J−〉 =
e

4π

1√
π
eγe−iθ and 〈J+〉 =

e

4π

1√
π
eγe+iθ, (14.71)

where θ is an arbitrary parameter not fixed by our considerations. Summing the two expectation

values yields then

〈ψ̄ψ〉 = e

2π

1√
π
eγ cos(θ) (14.72)

that is a generically non-vanishing fermionic condensate. On the other hand, in (14.59) we

concluded that the expectation values (14.71) and hence the condensate must vanish. What

went wrong?

To see what are the problems with the above calculation let use study the zero-energy eigen-

states of the Dirac operator. Introducing spherical coordinates

x0 = r cos(φ) and x1 = r sin(φ)

the Dirac-operator reads

/D =

(

0 e−iφ(Dr − i
r
Dφ)

eiφ(Dr +
i
r
Dφ) 0,

)

so that the Dirac equation for the zero-energy states ψ = (ψ+, ψ−) can be rewritten as

Aφ = −i∂φ log(ψǫ)− ǫr∂r log(ψǫ). (14.73)

Integrating this equations around a circle or radiusR and introducing the electric flux 2πΦ(R) =
∮

RAφdφ through the corresponding disk yields

2πΦ(R) = −i
∮

∂φ log(ψǫ)− ǫr∂r

∮

logψǫ, (14.74)

where we have chosen the spherical gauge Ar = 0 in the gauge invariant expression (14.72).

The first integral on the right hand is just the winding number m of the solutions, e.g. if ψ ∼
exp(imφ) then it coincides with the angular momentum.

Near the origin a normalizable ψ must be smaller then 1/r and since Φ(0) = 0 we find

ǫ = + : (m+ 1) > 0; ǫ = − : (m− 1) < 0 ⇐⇒ ǫ ·m > −1. (14.75)

For large radii the wave function must decay more rapidly than 1/r and setting Φ = Φ(∞) we

obtain

ǫ = + : (Φ−m) > 1; ǫ = − : (Φ−m) < −1 ⇐⇒ ǫ · (Φ−m) > 1. (14.76)

————————————
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It follows that m and Φ possess the same sign and that 0 ≤ m < |Φ| − 1 and 1− |Φ| < m ≤ 0

for ǫ = + and ǫ = − respectively. Given Φ, the conditions on ǫ and m can be summarized as

mΦ ≥ 0, ǫ · Φ ≥ 0 and 0 ≤ |m| < |Φ| − 1. (14.77)

Note that there are only either right- or lefthanded zero-modes, depending on the sign of the

total flux, and that the total number of zero modes is just the biggest integer less than |Φ|. For

example, for a flux Φ = 3.1 there are 3 zero modes ψ+, but for Φ = 1 there is no zero mode.

Now, for gauge fields for which the Dirac operator possesses zero modes (12.20) is not equal

to (12.22) as we shall see next. Lets assume that the Dirac operator has n zero-modes which

we denote by ψj , j = 1, . . . , n. The excited modes we denote by ψk, k = n + 1, . . . ,∞).

Decomposing the field operators as

ψ(x) =
n
∑

1

αjψj(x) +
∞
∑

n+1

βkψk(x)

and similarly ψ̄ one has

(η̄, ψ) =
∑

(η̄, ψj)αj +
∑

(η̄, ψk)βk

(ψ̄, η) =
∑

ᾱj(ψj , η) +
∑

β̄k(ψk, η).

Inserting this decomposition into (12.20) and using DψDψ̄ = DαDᾱDβDβ̄ the integral over

the α’s can easily be done since the action does not depend on them. One finds

∫

DαDᾱ exp
[

∑

(η̄, ψj)αj + ᾱj(ψj , η)
]

=
∫

DαDᾱ 1

n!

[

∑

(η̄, ψj)αj + ᾱj(ψj , η)
]n

=
∫

DαDᾱ
∏

αjᾱj

∏

(η̄, ψj)(ψj , η) =
n
∏

1

(η̄, ψj)(ψj, η).

The remaining β-integration is performed by shifting

βk −→ βk −
1

λk
(ψk, η) and β̄k −→ β̄k −

1

λk
(η̄, ψk),

where the λk are the (non-zero) eigenvalues of the modes ψk (This can be generalized to the

situation where the excited modes are scattering states. Then one uses the Greensfunction on

the space orthogonal to the zero-modes). After this shift the β integration yields

∫

DβDβ̄ exp
[

n
∑

1

λkβ̄kβk
∞
∑

n+1

(η̄, ψk)
1

λk
(ψk, η)

]

= det′(i /D)e−
∫

η̄(x)Ge(x,y)η(y),

where det′ is the determinant with the zero-eigenvalues omitted and Ge is the Green function

of the excited states that is on the space orthogonal to the zero modes

i /DGe(x, y) = δ(x− y)−
∑

ψj(x)ψ
†
j(y). (14.78)
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Inserting all this into the path integral for the partition function we end up with

Z[η̄, η] =
n
∏

1

(η̄, ψk)(ψj , η)det
′(i /D) e−

∫

η̄Geη (14.79)

and this is the generalization of (12.24) when fermionic zero-modes are present.

Let us now come back to problem of computing the two point functions (14.56) with M =

Id and M = γ5. We have already seen that the naive calculation, which is valid for gauge

fields with no zero-modes, that is for gauge fields with total flux less or equal to 1, gives no

contribution. The gauge field with 2 or more zero modes do not contribute either, since Z

is higher order in the fermionic current so that after differentiating twice with respect to these

currents and setting them afterward to zero on gets a zero-result. So the only contribution comes

from the gauge fields with flux between 1 and 2 or −1 and −2. Those have exactly one zero

mode ψ1 and thus

∫

Dψ̄Dψ ψ̄(x)Mψ(x) = det′(i /D)tr (ψ̄1(x)Mψ1(x)). (14.80)

For M = P+ only the right-handed zero mode contributes and thus only gauge potentials with

1 < Φ ≤ 2. For M = P− only the left-handed zero mode contributes and thus only gauge

potentials with −2 ≤ Φ < −1.

Typical gauge configurations having fermionic zero-modes are the vortex potentials

Aµ = −Φ(r)

r2
ǫµνx

ν (14.81)

where Φ is a function which vanishes at the origin so that A is regular there and tends to a

constant value for large radii Φ(r) −→ Φ. The corresponding φ in the decomposition (14.48)

and field strength read

φ(r) = −
r
∫

Φ(r′)

r′
dr′ ∼ Φ log(r) and F01 = −∆φ =

Φ′(r)

r
(14.82)

from which follows that the Φ’s in (14.82) and (14.74) are the same. For these vortex fields

both the primed determinant (after subtracting the determinant of the free Dirac operator) and

the classical Maxwell action are finite and so is then the effective action Γ appearing in the

bosonic path integral. Thus the functional integration over φ’s with a given vortex flux should

yield a non-zero answer for

〈J+(x)〉 =

∫

1<Φ≤2
Dφe−Γ[φ]tr (ψ̄1(x)P+ψ1(x))

∫

−1≤Φ≤1
Dφe−Γ[φ]

, (14.83)

where the effective action in the denominator has the form (2.87a) and the one in the numerator

contains the classical Maxwell term and the primed determinant. As far as I now, nobody has
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so far attempted to calculate the remaining path integral over φ in the continuum. But we see

that our previous naive calculation missed this non-vanishing term.

Similar considerations show that in the correlation function (14.60) the zero-modes drop

completely, since for a given gauge potential these modes are either left- or right handed. This

is the reason why the naive calculation above yields the correct result for the expectation values

(14.68,14.69).

This finishes the technical part of our discussion of the Schwinger model. Most of the

results presented have been obtained by Nielsen and Schroer [52]. The Schwinger model on the

sphere and the torus have also been studied and the results of these refined calculations agree

with (14.71,14.72). So there is no doubt that the Schwinger model shows a breaking of the

chiral symmetry (the operator ψ̄ψ transforms non-trivially under global chiral transformations).

One may ask what happened to the celebrated Goldstone theorem since on the one hand a

continuous U(1) symmetry is broken and on the other hand there is no massless Goldstone

boson. The answer to this apparent contradiction comes from the fact that the axial current is

not conserved in the Schwinger model, and the derivation of the Goldstone theorem assumes a

conserved Noether current. The Schwinger model possesses another quiet interesting property.

If we couple the gauge potential to an external current L −→ L + jµAµ with j0(x) = ρ(x) =

q1δ(x − x1) + q2δ(x − x1), then the interaction decreases exponentially with the separation

|x1−x2| of the two charges, due to the mass of the photon. So the expected long range Coulomb

force does not appear. This can only happen if the charges q1 and q2 are shielded. The physical

mechanism responsible for this charge shielding is the spontaneous pair production. As soon

as one tries to separate two ’quarks’ (we call the fundamental field ψ quark field to emphasize

the analogy to QCD) it is favorable to create a quark pair out of the vacuum and then each of

the two created quarks shield one of the originally present quarks. The physical particles of the

theory are quark pairs, and not quarks.
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