G₂-QCD at Finite Density

A. Wipf

Theoretisch-Physikalisches Institut, FSU Jena

collaboration with Axel Maas (Jena) Lorenz von Smekal (Darmstadt/Gießen) Bjoern Wellegehausen (Gießen) Christian Wozar (Jena)

Swansea, 07.06.2014

- 2 G₂ and G₂ Gauge Theory
- Confinement in pure G₂ gauge theory
- Breaking of G₂ to SU(3) Gauge Theory
- 5 G₂-QCD at Finite Density

Water

different phases, transition lines, critical point, triple point, .

that is not all:

- crystalline and amorphous phases
- order of H-binding
- critical point
- triple points
- structural transitions
- small p: hex/cub ice, ice XI
- high p: ice VII, VIII, X

Some facts about exceptional Lie group G₂

- smallest exceptional Lie group
- rank = 2, dimension = 14
- real group (not only pseudo-real!)
- subgroup of SO(7)
- $\bullet~G_2/SU(3){\sim}~S^7 \rightarrow$ efficient parametrization
- fundamental representations {7}, {14} (= adjoint)
 - 7 quarks instead of 3 (cp. GUTS)
- can be broken to SU(3) with scalars in $\{7\}$ fermions: $\{7\} \rightarrow \{3\} + \{\overline{3}\} + \{1\}$, gauge bosons: $\{14\} \rightarrow \{8\} + X$
- smallest (simply connected) Lie group with trivial center

singlet representation colorless states

 $\{7\} \otimes \{7\} = \{1\} \oplus \{7\} \oplus \{14\} \oplus \{27\}$ $\{7\} \otimes \{7\} \otimes \{7\} = \{1\} \oplus 4 \cdot \{7\} \oplus 2 \cdot \{14\} \oplus \dots$ $\{14\} \otimes \{14\} = \{1\} \oplus \{14\} \oplus \{27\} \oplus \dots,$ $\{14\} \otimes \{14\} \otimes \{14\} = \{1\} \oplus \{7\} \oplus 5 \cdot \{14\} \oplus \dots,$ $\{7\} \otimes \{14\} \otimes \{14\} = \{1\} \oplus \dots$

• branching $G_2 \rightarrow SU(3)$

 $\{7\} \longrightarrow \{3\} \oplus \{\overline{3}\} \oplus \{1\},$ $\{14\} \longrightarrow \{8\} \oplus \{3\} \oplus \{\overline{3}\}.$

first order confinement/deconfinement PT

asymptotically free

- no center, no order parameter
- chiral restoration in quenched theory at same T_c
- qualitatively similar glueball spectrum as SU(3)
- Casimir scaling to high accuracy
- topological properties, instantons

seit 1558

Wellegehausen, Wozar, AW

Pepe et al.; Greensite; Cossu et al.

Wellegehausen, Wozar, AW; Liptat et al.; Greensite et al.

Graz group

Maas, Oleinik, Ilgenfritz

Why consider G₂ Theories

• G₂ has trivial center:

confinement models based on center?

- G₂ contains SU(3) as subgroup: smooth interpolation between G₂- and SU(3)-gauge theories
- particle spectrum comparable to QCD (mesons and baryons + ...)
- G₂ has no sign problem:
 simulations at finite *T* and finite possible μ possible
- G₂-QCD has baryons and mesons: can build a "neutron star"

- understanding of G₂ under extreme conditions
- phases and phase-transition at finite T and n_B
- distinguish phases: densities, pressure, energy density, condensates, symmetries, ... order parameters ⇔ symmetries
- vary control parameters:

temperature, chemical potentials, fields,

• physics question:

what are the relevant degrees of freedom in a given phase?

Lattice simulations for SU(3)

- large baryon density:
 - sign problem
 - \Rightarrow not accessible to simulations based on important sampling
- effective models, functional methods,
- proposals/speculations on exotic phases of cold dense matter
- relevant of *n**?
- simulations of theories without sign problem
- even better: solve sign problem?
- here: fast implementation of (local)HMC, no low acceptence rate,

Confinement in pure G₂ gauge theory

finite $T \Rightarrow$ lattice = cylinder with circumference $\beta_T = 1/kT = aN_0$.

• approximate order parameter: Polyakov loop

$$P(x) = \operatorname{tr} \mathcal{P} \exp \left[i \int_0^\beta d\tau A_0(\tau, x) \right]$$

static potential

 $\langle {\cal P}(x)
angle_eta=e^{-eta{\cal F}(x)}\ ,\quad \langle {\cal P}(x){\cal P}^\dagger(y)
angle_eta=e^{-eta{\cal V}_{qar q}(R)}$

Andreas Wipf (FSU Jena)

Polyakov loop in fundamental representation

rapid change with $\beta = 1/g^2$

histogramm in vicinity of β_c

Polyakov loop approximate order parameter
first order PT as in SU(3) gluodynamics

• $V_{q\bar{q}}(R)$ static potential

confinement: $\langle P \rangle = 0$, de-confinement: $\langle P \rangle \neq 0$

- confinement: $V o \sigma R \Rightarrow \langle P(x) P^{\dagger}(y) \rangle_{\beta} \propto e^{-\sigma \cdot \text{Area}}$
- $e^{\sigma \cdot \text{Area}}$ varies over 100 orders of magnitude
- brute force approach does not work
- Lüscher and Weisz method: exponential error reduction
- split lattice in time slices
- $\bullet\,$ calculate $\langle \dots \rangle$ with fixed bc on each slice
- full result: integral over boundary conditions
- iteration \rightarrow *multilevel algorithm*

• static potential for charges in representation \mathcal{R} :

$$V_{\mathcal{R}}(R) = \gamma_{\mathcal{R}} - \frac{lpha_{\mathcal{R}}}{R} + \sigma_{\mathcal{R}}R$$

• Casimir scaling hypothesis for string tensions:

$$\frac{\sigma_{\mathcal{R}}}{\boldsymbol{c}_{\mathcal{R}}} = \frac{\sigma_{\mathcal{R}'}}{\boldsymbol{c}_{\mathcal{R}'}}$$

• from ratios of Wilson(Polyakov) loops

$$V_{\mathcal{R}}(R) = rac{1}{ au} \ln rac{\langle W_{\mathcal{R}}(R,T)
angle}{\langle W_{\mathcal{R}}(R,T+ au)
angle}.$$

• linear potential for static quarks in different G₂ representations

Wellegehausen, AW., Wozar

1.4

seit 1558

String-breaking

• meson, diquark $\bar{q}q \rightarrow$ 2 mesons, diquarks

Click here

- energy scale = 2 m_{glueball}
- decay products: glue-lumps

Wellegehausen, AW., Wozar (2011)

G₂ Yang-Mills-Higgs theory

- breaking $G_2 \rightarrow SU(3)$
- lattice action with normalized Higgs $\varphi = (\varphi_1, \dots, \varphi)^T$ in $\{7\}$

$$\mathcal{S}_{\mathrm{YMH}}[\mathcal{U}, \varphi] = -rac{1}{g^2} \sum \mathcal{U}_{\Box} - \kappa \sum \varphi_x^T \mathcal{U}_{x,\mu} \varphi_{x+\mu}$$

- Higgs-mechanism for $v = \langle \varphi \rangle \neq 0$:
- $\{14\} \longrightarrow \{8\} \oplus \{3\} \oplus \{\overline{3}\}$ $\{8\}$: SU(3) gluons $\{3\} + \{\overline{3}\}$: massive Vector bosons
- scalars $7 \rightarrow 1$

• $\kappa = 0$: pure G_2 gauge theory:

first order deconfinement transition

- $\kappa = \infty$: 6 vector bosons decouple, pure *SU*(3) first order deconfinement transition
- first order transition line connecting two theories?
- calculate

Polyakov loop and plaquette actions, susceptibilities on grid in $\beta \propto 1/g^2$, κ -plane ($\beta = 5 \dots 10$, $\kappa = 0 \dots 10^4$) \Rightarrow

Phase diagram of G₂ YMH theory

average actions and susceptibilities (small lattice)

FIG. 4: Average plaquette, Higgs action and susceptibilities near the critical point on $6^3 \times 2$ lattice.

Results

- average plaquette action, Higgs action and Polyakov loop
- susceptibilities (and higher derivatives) and finite size analysis
- large β ∝ 1/g² ⇒ Higgs transition line cluster algorithm for SO(7) nonlinear sigma model line of second order PT O(7) → O(6)
- $\bullet~$ line of first order PT $G_2 \rightarrow SU(3)$ with small gap in between

triple point

$$\beta_{crit} = 9.55(5)$$
 , $\kappa_{crit} = 1.50(4)$

first order (almost?) line hits second order lineconfining phase meets two deconfining phases

Andreas Wipf (FSU Jena)

21/37

phase diagram (16³ \times 6): where the lines almost meet

seit1558

23/37

G₂ QCD with dynamical fermions

collaboration with

Axel Maas, Lorenz von Smekal und Bjoern Wellegehausen

- fermionic determinant real and positive
- no sign problem: simulations at finite T and μ
- expected particle spectrum:

glueballs

- bosonic quark-quark bound states (mesons, diquarks)
- fermionic 3 quark states (baryons)
- fermionic 1 quark 2 gluon bound states (fermion hybrids)

- confinement-deconfinement transition (Polyakov loop)
- chiral symmetry breaking (chiral condensate)
- quenched: same critical temperatures
- G₂ has fermionic baryons
 degenerate Fermigas at large ρ_B
 relevant for physics of compact 'stellar objects'
- Bose-condensates of diquarks, ...
- results from (expensive) numerical simulations

Maas, Gattringer

G2-QCD: global symmetries and breaking

- anomalous
- spontaneous $\langle \bar{\psi}\psi \rangle$
- explicit m, μ

first results on $\langle \bar{\psi}\psi \rangle$, n_B and $\langle P \rangle$

Andreas Wipf (FSU Jena)

27 / 37

Spectroscopy I

Name	O	Т	J	Р	С			
π	$ar{u}\gamma_5 d$	SASS	0	-	+			
η	$\bar{u}\gamma_5 u$	SASS	0	-	+			
а	ūd	SASS	0	+	+			
f	ūu	SASS	0	+	+			
ρ	$ar{u}\gamma_\mu d$	SSSA	1	-	+			
ω	$ar{u}\gamma_{\mu}u$	SSSA	1	-	+			
b	$ar{u}\gamma_5\gamma_\mu d$	SSSA	1	+	+			
h	$ar{u}\gamma_5\gamma_\mu u$	SSSA	1	+	+			

mesons (baryon number 0)

exotic particles (baryon number 1)

Name	0	Т	J	Р	С
N'	$T^{abc}(ar{u}_a\gamma_5d_b)u_c$	SAAA	1/2	±	±
Δ'	${\cal T}^{abc}(ar u_a\gamma_\mu u_b)u_c$	SSAS	3/2	±	±
Hybrid	$\epsilon_{abcdefg} \textit{U}^{a} \textit{F}^{bc}_{\mu u} \textit{F}^{de}_{\mu u} \textit{F}^{fg}_{\mu u}$	SSSS	1/2	±	±

seit 1558

Andreas Wipf (FSU Jena)

T: (x, s, C, F)

diquarks (baryon number 2)

Name	0	Т	J	Р	С
d(0 ⁺⁺)	$\bar{u}^{c}\gamma_{5}u+c.c.$	SASS	0	+	+
$d(0^{+-})$	$ar{u}^{ extsf{C}}\gamma_{5}u- extsf{c}. extsf{c}.$	SASS	0	+	-
$d(0^{-+})$	$\bar{u}^{c}u+c.c.$	SASS	0	-	+
d(0)	$\bar{u}^{C}u-c.c.$	SASS	0	-	-
d(1 ⁺⁺)	$ar{u}^{C}\gamma_{\mu}oldsymbol{d} - ar{oldsymbol{d}}^{C}\gamma_{\mu}oldsymbol{u} + oldsymbol{c}.oldsymbol{c}.$	SSSA	1	+	+
d(1 ⁺⁻)	$ar{u}^{ extsf{C}}\gamma_{\mu}oldsymbol{d}-ar{oldsymbol{d}}^{ extsf{C}}\gamma_{\mu}oldsymbol{u}-oldsymbol{c}.oldsymbol{c}.$	SSSA	1	+	-
d(1 ⁻⁺)	$\bar{u}^{\mathrm{C}}\gamma_{5}\gamma_{\mu}d-\bar{d}^{\mathrm{C}}\gamma_{5}\gamma_{\mu}u+c.c.$	SSSA	1	-	+
d(1)	$\bar{u}^{\mathrm{C}}\gamma_{5}\gamma_{\mu}d-\bar{d}^{\mathrm{C}}\gamma_{5}\gamma_{\mu}u-c.c.$	SSSA	1	-	-

baryons (baryon number 3)

Name	0	Т	J	Ρ	С
N	$T^{abc}(ar{u}_a^{ m C}\gamma_5 d_b)u_c$	SAAA	1/2	Ŧ	±
Δ	$T^{abc}(ar{u}_a^{ m C}\gamma_\mu u_b)u_c$	SSAS	3/2	±	±

spectroscopy II

- diquark masses are degenerate
- contain only connected contributions (as pions in QCD)
- $m_{\eta} m_{\text{diquark}} = \text{disconnected contributions}$
- tree level improved Szymanzik action
- Wilson fermions (chiral properties?)
- no sources for diquarks needed
- N_F complex-valued pseudo-fermions plus RHMC
- two time-scale integration (Sexton-Weingarten and leapfrog)
- further optimizations (preconditioning, adaptive mesh, ...)

masses of mesons, diquarks, baryons

Ensemble	β	κ	$m_{d(0^+)}a$	$m_N a$	$m_{d(0^+)}$ [MeV]	a [fm]	a^{-1} [MeV]	MC
Heavy	1.05	0.147	0.59(2)	1.70(9)	326	0.357(33)	552(50)	7K
Light	0.96	0.159	0.43(2)	1.63(13)	247	0.343(45)	575(75)	5K

heavy ensemble

light ensemble

seit1558

Wellegehausen, Maas, Smekal, AW (2013)

32 / 37

zooming in in: baryon density vs. chemical potential

- n_q grows rapidly at half of (0⁻) mass (silver blaze)
- plateaus visible for larger n_q
- three transitions
- phase between $\mu_q = 300 - 600$ MeV: hadronic phase
 - \rightarrow quasi particle picture

Wellegehausen, Maas, Smekal, AW (2013)

comparison with fermi gas of (Wilson) fermions

- fit above $a\mu = 1 \Rightarrow \kappa = 0.162$, $n_f^{\text{sat}} = 14.4$ cp. with free quarks: $\kappa = 0.147$, $n_f^{\text{sat}} = 14 \Rightarrow$ saturation regime
- fit below $a\mu = 1 \Rightarrow \kappa = 0.211$, $n_f^{\text{sat}} = 4.02$

cp. lattice gas of freee Δ -baryons: $n_f^{sat} = 4$

• $0.6 \le a\mu \le 1$: n_q due to fermionic baryons (same as spectroscopy)

(preliminary) interpretation

- low density: in accordance with silver blaze clean signal (no diquark sources)
- two small jumps at diquark thresholds
 ⇒ two (probably) second order PT?
- two plateaus after thresholds
- Bose-condensates of diquarks? admixture with gas of diquarks?
- one (probably) first order PT at $\approx \Delta$ threshold simulations slow down near PT
- hadronic phase for higher n_q (under investigation)
- $a\mu \gtrsim$ 1: lattice artifacts, e.g. saturation effects

Summary

- G₂ QCD is a useful laboratory
- accessible at finite density by lattice methods
- phases and transition at high densities and temperatures
- condensates, access to hadronic phase
- access to dense baryonic matter (as in n*)
- shares many features with real QCD
- $\bullet\,$ interpolation G_2-QCD \rightarrow QCD with Higgs-mechanism possible
- full phase diagram in principle accessible to simulations

Outlook

- clarify further nature of dense and cold phases
- include finite temperature effects beyond rough overview
- follow first order transition line (critical end point?)
- break G_2 -QCD \rightarrow QCD with quarks via Higgs-mechanism
- deformation vs. sign problem?
- testbed for model building
- testbed for alternative approaches (eg. renormalization group)?

Thanks for your attention

