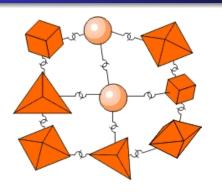

Von den kleinsten zu den größten Dimensionen in der Physik

Andreas Wipf

Theoretisch-Physikalisches Institut Physikalisch-Astronomische Fakulät Friedrich-Schiller-Universität Jena


Bausteine des Universums

Der Beginn aller Wissenschaften ist das Erstaunen, daß die Dinge sind, wie sie sind.

ARISTOTELES

Bausteine des Universums

Scheinbar ist Farbe, scheinbar Süßigkeit, scheinbar Bitterkeit: wirklich nur Atome und Leeres DEMOKRIT, 5. JHD. V.CHR.

Wenn die Menschen nur über das sprächen, was sie begreifen, dann würde es sehr still auf der Welt sein.

ALBERT EINSTEIN

Wie Groß ist Groß, Wie Klein ist Klein

Galaxienabstand:

20 Billiarden Meter = 20 000 000 000 000 000 m

Atomgröße:

1 Zehn-Milliardstel Meter = $0,000\,000\,000\,1\,m = 0,1\,nm$

10 ³	Tausend	Kilo	k	10^{-3}	Tausendstel	Milli	m
10 ⁶	Million	Mega	Μ	10^{-6}	Millionstel	Mikro	μ
10 ⁹	Milliarde	Giga	G	10 ⁻⁹	Milliardstel	Nano	n
10 ¹²	Billion	Tera	Τ	10^{-12}	Billionstel	Piko	р
10 ¹⁵	Billiarde	Peta	Р	10^{-15}	Billiardstel	Femto	f
10 ¹⁸	Trillion	Exa	Ε	10^{-18}	Trillionstel	Atto	а

Auflösung Teilchenbeschleuniger: $L_{min} \approx 10^{-18} \text{ m}$

Radius des bekannten Universums: $L_{max} \approx 10^{+26} \text{ m}$

mittlere Abstand: $\bar{L} \approx 10 \text{ km}$

Grenzgeschwindigkeit = Lichtgeschwindigkeit

c = 299792458 km/s

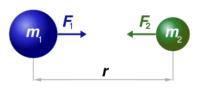
30 Zentimeter in 1 Nanosekunde = Tempolimit in Natur Physik des sehr Schnellen: *spezielle Relativitätstheorie*

$$v/c = 0.8$$

Elementare Ladung

elektrische Ladungen Vielfache von

$$e = 1,6 \times 10^{-19} \, \text{As}$$


Elektron q = -eProton q = +e

Jede Sekunde 10¹⁸ Elektronen durch Glühbirne

$$\mathsf{Kraft} \propto \frac{q_1 q_2}{(\mathsf{Abstand})^2}$$

Physik der elektrischen und magnetischen Erscheinungen

Gravitationskonstante

$$F_1 = F_2 = G \frac{m_1 \times m_2}{r^2}$$

Kraft zwischen zwei Körpern mit Massen m_1 und m_2

$$Kraft = G \frac{m_1 m_2}{r^2}$$

immer anziehend wirkt universell auf alle Körper Gravitationskonstante

$$G = 6.67428 \cdot 10^{-11} \frac{\text{m}^3}{\text{kg s}^2}$$

Physik des Großen: Gravitationstheorie

Plancksches Wirkungsquantum

Jede Wirkung ein Vielfaches von

$$\hbar = 10^{-34} Js = 10^{-34} \, kg \times m \times m/s$$

Unschärferelationen: $\Delta x \cdot \Delta p \ge \hbar$ $\Delta t \cdot \Delta E > \hbar$

Stabilität der Materie

Physik des sehr Kleinen: Quantentheorie

Sp. Relativitätstheorie
$$c=299\,792\,458\,rac{
m km}{
m s}$$

Gravitation $G=6.674\,28\cdot 10^{-11}rac{
m m^3}{
m kg~s^2}$

Quantentheorie $\hbar=1.05457148\cdot 10^{-34}\,rac{
m kg~m^2}{
m s}$

Elektromagnetismus $\alpha=rac{e^2}{\hbar c}=rac{1}{137.035999679}$

zeitabhängig (Dirac)? überall gleich? e, G, c aus einheitlicher Feldtheorie?

$$1/\alpha = 108 \cdot \pi (8/1843)^{1/6} = 137.035915$$

Einstein im Brief an Ilse Rosenthal-Schneider (Mai 1945)

"Sie haben in der Frage der universellen Konstanten eine der interessantesten Fragen aufgeworfen, die man wohl stellen kann. Es gibt deren zweierlei: scheinbare und wirkliche. Die scheinbaren kommen einfach von der Einführung willkürlicher Einheiten, sind aber eliminierbar. Die wahren sind echte Zahlen, die Gott gewissermaßen willkürlich zu wählen hatte, als der diese Welt zu erschaffen geruhte. Meine Meinung ist nun, kurz gesagt, dass es solche Konstanten der zweiten Art gar nicht gibt, und dass ihre scheinbare Existenz darauf beruht, dass wir nicht tief genug eingedrungen sind. Ich glaube also, dass derartige Zahlen nur von rationaler Art sein können, wie zum Beispiel π oder e"

Damit z.B. wäre c keine Naturkonstante

Energie

Energie: Fähigkeit eines Systems, Arbeit zu verrichten

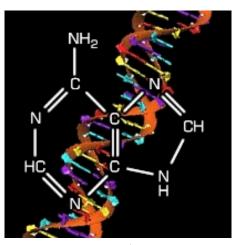
Energie ist erhalten

Energie ist umwandelbar

mechanische, potentielle, elekrische und magnetische,...

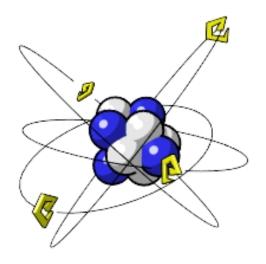
Thermische Energie:

$$E = k_B T$$
, $k_B \approx 1,38 \cdot 10^{-23} \frac{J}{K}$


Masse ist Form von Energie

$$\textit{E} = \textit{mc}^2, \quad \textit{c}^2 = 9 \cdot 10^{16} \, \frac{J}{kg}$$

Joule, Ws, ... $1eV \approx 1, 6 \cdot 10^{-19} J$



Moleküle

Moleküle >Ångtrøm

Atome

Atom

Größe der Atome

Wasserstoffatom

Elektron "bewegt sich" relativ langsam um ruhenden Atomkern: e, m Quanteneffekte stabilisieren Atom (Unschärferelation): \hbar

Energie =
$$\frac{m^2}{2}v^2 - \frac{e^2}{r}$$
 klassisch instabil

$$\Delta p \cdot \Delta x \approx mv \cdot r \approx \hbar \Longrightarrow \text{Energie} = \frac{\hbar^2}{2mr^2} - \frac{e^2}{r}$$

minimal für Bohr Radius

$$\label{eq:rb} \textit{r}_{\textit{B}} = \frac{\hbar^2}{\textit{me}^2} = 5 \times 10^{-11} \; \text{m} \quad , \quad \textit{E}_{\textit{B}} = -\frac{\textit{me}^4}{\hbar^2} \approx \text{eV},$$

Mit zunehmender Verschwommenheit ($\propto \hbar$) wir Atom größer Mit zunehmender Masse wird Atom kleiner (μ -Atome): $r \propto 1/m$

Größe der Atome

Dimensionsbetrachtung

Elektron "bewegt sich" relativ langsam um ruhenden Atomkern: e, m Quanteneffekte stabilisieren Atom (Unschärferelation): \hbar

m Dimensions M

Kraft = Masse x Beschleunigung e^2 Dimension ML^3/T^2 Wirkung = Energie x Zeit $\Rightarrow \hbar$ Dimension ML^2/T

Bohr Radius
$$r_B = \frac{\hbar^2}{me^2} = 5 \times 10^{-11} \text{ m}$$

Mit zunehmender Verschwommenheit ($\propto \hbar$) wir Atom größer Mit zunehmender Masse wird Atom kleiner (μ -Atome): $r \propto 1/m$

Atom = Atomkern + Elektron, Größe $\approx 10^{-10} \text{ m}$

Elektron

Elektron

Masse:

 $9\cdot 10^{-31}\ kg$

= 511 keV

In einem Schwarzbrot: 1/8 g Elektronen

Elektron = kleiner als 10⁻¹⁸ m punktförmig, elementar (?)

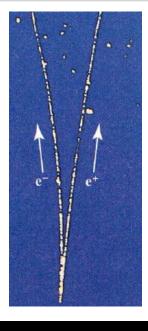
> inneren Drehimpuls magnetisches Moment

Ladung e: Arbeitspferd der Moderne

Compton Wellenlänge des Elektrons

Quantenmechanik und Relativitätstheorie

Beschreibung des bei Elektrons kleinen Längenskalen


Lokalisierung des Elektrons auf $\Delta x \Rightarrow \Delta p \geq \hbar/\Delta x$ genaue Lokalisierung $\Rightarrow \Delta p$ und rel. kinetische Energie T groß T gleich Ruhenergie mc^2 des Elektrons für $\Delta x = \lambda_c$

Dimensionsbetrachtung

 \hbar Dimension ML²/T, c Dimension L/T

$$\lambda_c = \frac{\hbar}{mc} = 4 \times 10^{-13} \,\mathrm{m}$$
 Compton-Wellenlänge $\propto \frac{1}{m}$

Paarproduktion

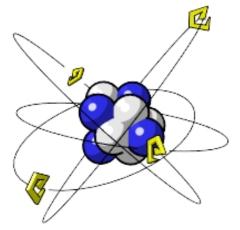
Lokalisierung des Elektrons auf

$$\Delta x < \lambda_c \Rightarrow$$

genügend Energie für

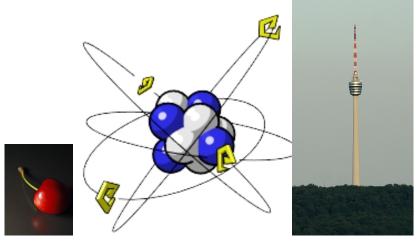
Elektron-Positron Paarproduktion

$$\gamma + \mathbf{e}^- \longrightarrow \mathbf{e}^- + \mathbf{e}^+ + \mathbf{e}^-$$

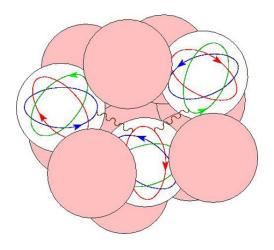

Vereinigung von Quantentheorie und Relativitätstheorie ⇒

Existenz von Antimaterie . . . Elementarteilchenphysik

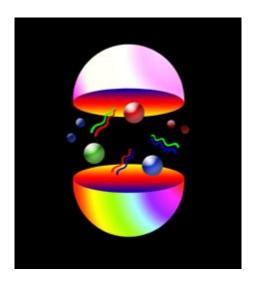
Theorie: Quantenfeldtheorien


Experimente: Teilchenbeschleuniger

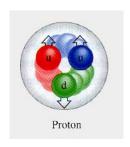
Der Raum ist leer


Atom: 0.1 nm=10⁵ fm Atomkern: 1 fm

Der Raum ist leer

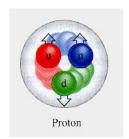

Atom: 0.1 nm=10⁵ fm Atomkern: 1 fm

Atomkerne


Atomkern: Protonen und Neutronen

Quarks

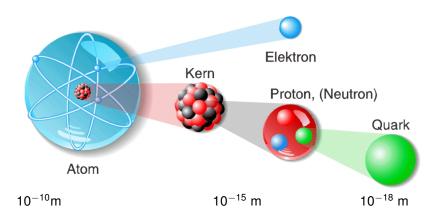
Quarks und Gluonen im Proton


Starke Kraft

Starke

Kraft

Starke Kraft



Starke

Kraft

Bausteine des Universums

Photonen = Teilchen des Lichts

Photon γ

Photonen = Teilchen des Lichts

Photon γ

10 000 000 000 000 000 000 = 10^{22} masselose Photonen/Sekunde ($m < 10^{-47}$ kg)

$$E = \hbar \omega$$
 , $p = \hbar k$ (Einstein)

bewegen sich im Vakuum immer mit v = c

Neutrinos

Neutrinos

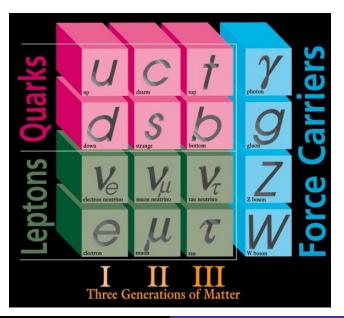
Neutrinos

z.B. aus Zerfall den Neutrons $n \rightarrow p + e + \bar{\nu}$

70 Milliarden solare ν pro Sekunde und cm^2 auf Erdoberfläche fliegen mit großer Wahrscheinlichkeit durch Millionen-km dicke Bleiklötze

 \Rightarrow sehr schwierig nachzuweisen

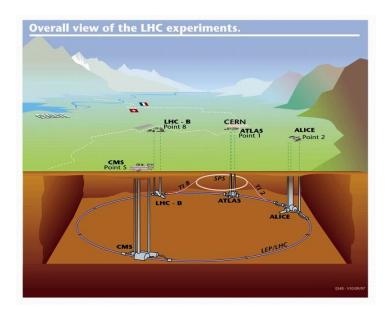
braucht viele ν , viel Zeit und rießige Detektoren

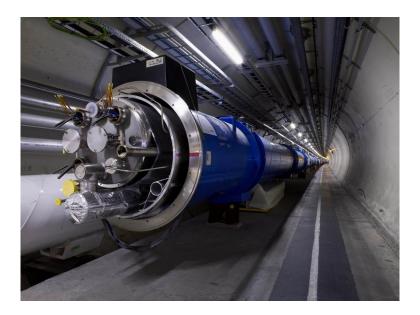

Neutrinos von Sonne, Supernovae,... Beispiel: Super-Kamiokande

50 000 Tonnen hochreines Wasser

11 200 Photomultiplier

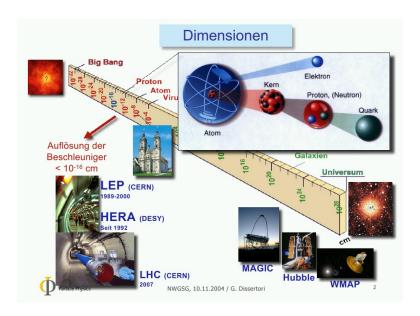
mißt Tscherenkow-Strahlung von Elektronen


Bausteine des Universums

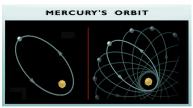

CERN

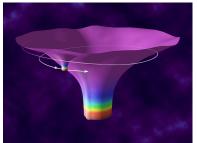
Der Large Hadron Collider (LHC)

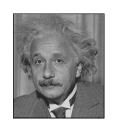
Der Large Hadron Collider (LHC)

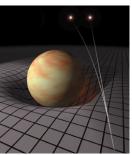


Der Large Hadron Collider (LHC)


... und der Bauplan im Großen?






Universelle Gravitationskraft dominiert

ALBERT EINSTEIN 1879-1955

Planck-Skala

Wann werden Quanten- und Gravitationseffekte wichtig?

Raumzeit wird körnig: Wheeler: space-time foam

Hawking: See von virt. Schwarzen Löchern

Ashtekar: Netzwerk von Knoten

Dimensionsanalysis

Naturkonstanten:

$$[G] = \frac{m^3}{kg s^2}, \quad [\hbar] = \frac{kg m^2}{s}, \quad [c] = \frac{m}{s}$$

Eindeutige Kombination die Länge ergibt

$$L_p = \sqrt{\frac{\hbar G}{c^3}} = 1.6 \cdot 10^{-35} \, \text{cm}$$

Quanteneffekte, relativistische Effekte, Gravitation: alle wichtig

Planck-Skala

Schwarzes Loch mit Horizontradius

$$r_{SL} = \frac{2Gm}{c^2}$$

Horizontradius = Compton-Wellenlänge für

$$r_{BH} = L_p$$


Lokalisierung eines SL auf $\Delta x < L_{p}$ nicht möglich Paarproduktion von SL

Konzept eine kontinuierlichen Raumzeit?

Quanteneffekte, relativistische Effekte, Gravitation gleichermaßen wichtig

Planck-Skala

Theorie aller Kräfte

Quantengravitation? Stringtheorie? ...

Hoffnung:

Beschreibung des sehr frühen Universums

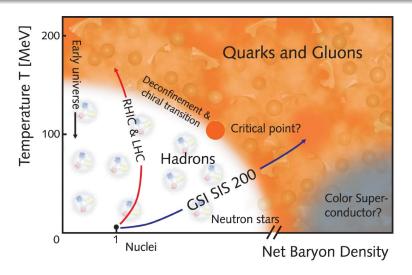
Erklärung der Vakuumenergie (dunklen Energie)

Teilchenmassen, Kopplungskonstanten Naturkonstanten

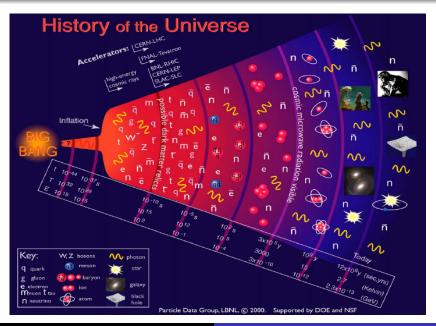
Stringtheorie braucht Supersymmetrie und extra Dimensionen

Teilchenphysik und Gravitation treffen sich

Neue hoch-interessante und geförderte Gebiete der Physik:


Astro-Teilchenphysik

Neutrinophysik Supernovas kompakte Objekte (WZ, NS) hochenegetische kosmische Strahlung (10²⁰ eV) dunkle Materie


Kosmo-Teilchenphysik

Phasenübergänge im frühen Universum Materie über Antimaterie-Überschuß Strukturentstehung aus Quantenfluktuationen Rätsel der dunken Materie (20-30 %) und dunklen Energie (70 %)

Phasenübergang

Entwicklung des Universums

