Birefringence in Strong-Field QED

A. Wipf

Theoretisch-Physikalisches Institut, FSU Jena

with T. Heinzl (University Plymouth) B. Liesfeld, K. Amthor, H. Schwörer (FS-University Jena) R. Sauerbrey FZ Dresden-Rossendorf

> Optics Communications 267 318-321 (2006) work in progress

Milano

18. January 2007

Birefringence in Strong-Field QED

A. Wipf

ntroduction

Vacuum Polarisation

Light propagation $m{B}$ field

Birefringence at photon collider

Introduction

Vacuum Polarisation

Light propagation in B field

Birefringence at photon collider

Conclusion

Birefringence in Strong-Field QED

A. Wipf

ntroduction

Vacuum Polarisation

light propagation n *B* field

Birefringence at photon collider

Introduction

QED - basic vertex

- pair production (absorptiv)
- photon-photon scattering (dispersiv)

Birefringence in Strong-Field QED

A. Wipf

Introduction

Vacuum Polarisation

_ight propagation n *B* field

Birefringence at photon collider

Birefringence in Strong-Field QED

External Field (e.g. laser)

- Schwinger effect $E \rightarrow e^-e^+$ exponentially small for $E < E_c$ Sauter, Schwinger
- scale: critical electric field: $eE_c \lambda = m_e c^2$

$$E_c = \frac{m_e^2 c^3}{e\hbar} \approx 1.3 \cdot 10^{18} \frac{\text{V}}{\text{m}}, \quad B_c = 4.41 \cdot 10^{13} \text{G}$$
$$I_c \approx 4 \cdot 10^{29} \frac{\text{W}}{\text{cm}^2}$$

► vacuum polarization: $\gamma + E \rightarrow \gamma'$ ⇒ quantum induced NLED

(Euler, Heisenberg, Weisskopf, ...)

 \Rightarrow birefringence of vacuum

Klein, Nigan, Breitenlohner, Brezin.s Bialynicka-Birula²

A. Wipf

Introduction

Vacuum Polarisation

Light propagation in $m{B}$ field

Birefringence at photon collider

multi-photon Breit-Wheeler PP (Burke et.al, SLAC 97)

- ► NL-Compton: $e + n\gamma_I \rightarrow e' + \gamma$
- multi-photon Breit-Wheeler $\gamma + n\gamma_L \rightarrow e^+ e^-$
- $n\gamma_L$ from Terawatt laser n = O(10) $E_e = 46.6 \text{ GeV}$ $E_{\gamma_L} = 2.35 \text{ eV} (527 \text{ nm})$
 - $E_{\gamma_L} = 2.53 \text{ eV} (527 \text{ mm})$ $E_{\gamma} = 29 \text{ GeV} (\text{vs. 111 GeV})$

► O(100) rate of e⁺ production agreement with QED (trident e'e⁺e⁻?) Birefringence in Strong-Field QED

A. Wipf

Introduction

Vacuum Polarisation

ight propagation n *B* field

Birefringence at photon collider

Birefringence in Strong-Field QED

'Keldisch adiabaticity parameter' of Laser background (BG)

$$\eta = \frac{E/E_c}{\omega_L/m_e} \approx \frac{e}{m_e \omega_L c} E_{\rm rms}$$

regimes:

- $\eta \ll 1$: low intensity high BG frequency ω_L
 - low-order perturbation theory
 - 'standard' QED regime
- $\eta \gg 1$: high intensity low BG frequency ω_L
 - multi-photon (high-order) processes important
 - 'new' QED regime
 - realised by high-power optical lasers!
- SLAC-experiment: $\eta = 0.36$

A. Wipf

Introduction

Vacuum Polarisation

Light propagation in *B* field

Birefringence at photon collider

Birefringence in Strong-Field QED

A. Wipf

Introduction

Vacuum Polarisation

Light propagation in *B* field

Birefringence at photon collider

Conclusion

Laser performance (cf. Ringwald 2003)

characteristic	Vulkan	XFEL	XFEL	ELI
	Polaris		('goal')	
ω_L	1.2	$3.1 \cdot 10^{3}$	$8.3 \cdot 10^{3}$	1
focus	10 ³	21	0.15	10 ³
1	$3\cdot 10^{22}$	$8\cdot 10^{19}$	$7\cdot 10^{27}$	10 ²⁶
E/E_c	10^{-4}	10^{-5}	10^{-1}	10^{-2}
η^{-1}	50	$2\cdot 10^{-3}$	10	$5 \cdot 10^{3}$

 ω_L in eV, focus in nm, I in W/cm²

Vacuum Polarisation

central object: vacuum polarisation tensor

$$\Pi_{\mu\nu}[A] = \cdots \bigcirc \bigcirc \cdots \Rightarrow \cdots \bigcirc + \cdots \bigcirc \downarrow \cdots$$

- describes modified light propagation and PP (via Im)
- for special BGs exact one-loop results available
- ▶ low-energy limit $(\omega, \Omega \rightarrow 0) = \text{Heisenberg-Euler}$

$$u = \omega/m_e$$
 , $\epsilon = E/E_c$ small

e.g. X-probe (\approx 5 KeV), uh-power laser (10²⁶ W/cm²):

$$u pprox \epsilon pprox 10^{-2}$$

Birefringence in Strong-Field QED

A. Wipf

ntroduction

Ω

Vacuum Polarisation

ight propagation n *B* field

Birefringence at photon collider

encoded in effective action (fermionic integration)

$$\mathcal{L}_{EH} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \Delta \mathcal{L} \left(F^{\mu\nu} F_{\mu\nu}, F^{\mu\nu} \tilde{F}_{\mu\nu} \right)$$

- $\Delta \mathcal{L}$: derivatives and powers of E, B
- ▶ $\nu \ll 1 \Rightarrow$ constant fields $\Delta \mathcal{L}$ known (Euler, Heisenberg, Weisskopf,...)

• $\epsilon \ll 1 \Rightarrow$ only leading terms in power series expansion

$$\Delta \mathcal{L} = \frac{2\alpha^2}{45m_e^4} \left((\boldsymbol{E}^2 - \boldsymbol{B}^2)^2 + \boldsymbol{b}(\boldsymbol{E} \cdot \boldsymbol{B})^2 \right) + \dots$$

QED: b = 7 and Born-Infeld b = 1

Birefringence in Strong-Field QED

A. Wipf

ntroduction

Vacuum Polarisation

light propagation B field

Birefringence at photon collider

quantum Maxwell equation for a 'light probe' $f^{\mu\nu}$: strong brackground + probe field

$$F_{\mu\nu} \rightarrow F_{\mu\nu} + f_{\mu\nu}, \quad f_{\mu\nu} \ll F_{\mu\nu}$$

linearize with $F_{\mu\nu}$ quasi-constant

$$0 = \partial_{\mu} f^{\mu\nu} - \frac{8}{45} \frac{\alpha^2}{m^4} F_{\alpha\beta} F^{\mu\nu} \partial_{\mu} f^{\alpha\beta} - \frac{14}{45} \tilde{F}_{\alpha\beta} \tilde{F}^{\mu\nu} \partial_{\mu} f^{\alpha\beta}$$

Toll '54 Baier, Breitenlohner '67 Narozhniy '69 Bialynicka-Birula '70 Adler '71

Birefringence in Strong-Field QED

A. Wipf

Introduction

Vacuum Polarisation

Light propagation in $m{B}$ field

Birefringence at photon collider

- Birefringence in Strong-Field QED
 - A. Wipf

Introduction

Vacuum Polarisation

Light propagation in *B* field

Birefringence at photon collider

Conclusion

- effective $\epsilon(E, B), \mu(B, E)$ observable?
- ▶ methods from nonlinear optics: probe plane wave $k = (\omega, \omega n) \Rightarrow f(n, E, B) = 0$

$$n_{\pm}=|n_{\pm}|=1+\Delta n_{\pm}$$

similar to uniaxial crystal:

$$\Delta n_{\pm} = \frac{\eta_{\pm}}{2} \frac{\alpha}{45\pi^2 E_c^2} \left(E^2 + B^2 - 2S \cdot k - (E \cdot k)^2 - (B \cdot k)^2 \right)$$

 $S\colon$ Poynting, QED: $\eta_+=7, \eta_-=$ 4 , BI: $\eta_+=\eta_-$

 quantum vacuum induces birefringence detection schemes: PVLAS, BMV, Photon-collider, ...

Light propagation in B field

phase velocities depend on polarisation

$$\begin{split} V_{\parallel} &\approx 1 - \frac{14}{45} \frac{\alpha^2}{m^4} B^2 \sin^2 \theta_B \\ V_{\perp} &\approx 1 - \frac{8}{45} \frac{\alpha^2}{m^4} B^2 \sin^2 \theta_B \end{split}$$

Birefringence in Strong-Field QED

A. Wipf

ntroduction

Vacuum Polarisation

Light propagation in ${\boldsymbol{B}}$ field

Birefringence at photon collider

Conclusion

linear polarisation \rightarrow elliptic polarisation

$$\psi_{\ell} = \pi \frac{L}{\lambda} \Delta v \sin 2\theta, \quad \Delta v (5.5T) \approx 10^{-22}$$

Birefringence in Strong-Field QED A. Wipf

Light propagation in ${\boldsymbol{B}}$ field

• above threshold (QED: $\omega > 2m_e$)

$${\rm damping} \quad \kappa_{\parallel,\perp} = -\frac{1}{\omega} {\rm Im}\, \Pi_{\parallel,\perp}$$

dichroism induces rotation:

$$|\Delta \theta| \approx \frac{1}{4} \Delta \kappa L \sin 2\theta$$

Polarizzazione del Vuoto con LASer (PVLAS)

- magnet 6 T, 4.2 K, 1 m
- rotation of magnet pprox 0.3 Hz
- ▶ laser: 100 mV, $\lambda = 1064$ nm (532 nm)
- cavity finesse: $N \approx 10^5$, $L \approx 60$ km
- observed ellipticity signal

$$rac{\psi_{exp}}{\psi_{QED}} pprox 10^4 \quad ({
m preliminary})$$

- instrumental artifact? investigated at length without success!
- new physics?

(pseudo)-scalar coupling $\phi F^{\mu\nu}F_{\mu\nu}$ or $\phi \tilde{F}^{\mu\nu}F_{\mu\nu}$? millicharged particles? see Ahlers, Gies, Jaeckel, Ringwald 2006 Birefringence in Strong-Field QED

A. Wipf

Introduction

Vacuum Polarisation

Light propagation in B field

Birefringence at photon collider

Birefringence at photon collider

experimental setup (Polaris)

birefringence maximal for counter-propagating probe beam

$$n_{\pm} = 1 + \frac{\alpha}{45\pi} \left\{ \begin{matrix} 14\\8 \end{matrix} \right\} \frac{I}{I_c}$$

Birefringence in Strong-Field QED

A. Wipf

ntroduction

Vacuum Polarisation

Light propagation in *B* field

Birefringence at photon collider

relative phase shift: focus length d, probe λ :

$$\Delta \phi = \frac{2\pi d}{\lambda} \left(n_{+} - n_{-} \right) = \frac{4\alpha}{15} \frac{d}{\lambda} \frac{I}{I_c}$$

Gaussian beam: $d \rightarrow \kappa z_0$ z_0 Rayleigh length, κ intensity integral

Birefringence in Strong-Field QED

A. Wipf

ntroduction

Vacuum Polarisation

Light propagation in $m{B}$ field

Birefringence at photon collider

► Polaris:

$$\hbar\omega\approx 2\times 10^{-3}m_ec^2,\quad I\approx 2\times 10^{-8}I_c$$

(backscattered Thomson photons)

> parameters (ω in KeV, λ in nm, z_0 in μ m)

	ω	λ	<i>z</i> ₀	$ riangle \phi$ (rad)	ellipticity δ^2
Jena	12	0.1	10	$1.2 imes10^{-6}$	$4.9 imes 10^{-11}$
XFEL	15	0.08	25	$4.4 imes10^{-5}$	$4.8 imes10^{-10}$

- ► In principle $\delta^2 = (\frac{1}{2}\Delta\phi)^2 \approx 10^{-11}$ (E. Alp et.al, Hyperfine Interactions 125 (2000) 45)
- ELI: $\delta^2 \approx 10^{-7} \dots 10^{-4}$!!!

Birefringence in Strong-Field QED

A. Wipf

ntroduction

Vacuum Polarisation

Light propagation in *B* field

Birefringence at photon collider

Conclusion

 \blacktriangleright nonlinear pure- γ effects:

- Im \mathcal{L}_{EH} : Schwinger pair production, vacuum dichroism
- Re L_{EH}: vacuum birefringence with static B-field – new physics (Zavattini et al. 2005)
- light-by-light scattering (Bingham et al. 2005)
- photon splitting (Adler 1970)
- include charges
 - nonlinear Thomson scattering (SLAC, JETI)
 - laser induced particle acceleration
 - dressed (Volkov) particles (Matsukado et a. 2000)

challenging but feasable! Complementary to particle collider physics Birefringence in Strong-Field QED

A. Wipf

Introduction

Vacuum Polarisation

Light propagation in **B** field

Birefringence at photon collider