Supersymmetric Flows for Supersymmetric Field Theories

A. Wipf

Theoretisch-Physikalisches Institut, FSU Jena

in collaboration with G. Bergner, H. Gies, J. Braun, F. Synatschke-Czerwonka

Phys. Rev. **D81** (2010) 125001; Phys. Rev. **D80** (2009) 085007; Phys. Rev. **D80** (2009) 101701; JHEP **0903** (2009) 028

ERG 2010: 5th International Conference on the Exact Renormalization Group, September, 2010

Why apply ERGE to SUSY-theories

Supersymmetric Yukawa (Wess-Zumino) models

Flow of super-potential

- 4 2 space-time dimensions
- 5 3 space-time dimensions

Supersymmetry (susy) and ERGE

particle physics beyond Standard Model ⇒ supersymmetry

bosons \iff fermions

- lattice simulations:

susy (partially) broken by spacetime lattice, dynamical fermions, ...

- \implies need complement to lattice studies
- exact renormalization group?

Challenges

- manifest supersymmetric renormalization flow
 - e.g. $m_{\rm boson} = m_{\rm fermion}$
- non-renormalization theorems

talk of Synatschke-Czerwonka

relevant dof at low energies? (cp. Veneziano-Yankielowicz)

related (mostly structural) investigations by:

Sonoda; Bonini & Vian; Falkenberg & Geyer;

Arnone & Yoshida; Arnone& Guerrieri & Yoshida;

Rosten, Sonoda & Ulker; Horiskoshi & Aoki & Taniguchi & Terao

Supersymmetric Yukawa (Wess-Zumino) models

• minimal supersymmetry \Rightarrow real fields (ϕ, ψ, F) : Lagrangian

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + \frac{i}{2} \bar{\psi} \partial \psi - \frac{1}{2} F^{2} + \frac{1}{2} W''(\phi) \bar{\psi} \gamma_{*} \psi - W'(\phi) F$$

• action invariant under susy transformation:

$$\delta\phi = \bar{\varepsilon}\gamma_*\psi, \quad \delta\psi = (F + i\gamma_*\partial\phi)\varepsilon, \quad \delta F = i\bar{\varepsilon}\partial\psi$$

• eliminate auxiliary field $F \Longrightarrow$

$$\mathcal{L} = \frac{1}{2} (\partial \phi)^2 + \frac{i}{2} \bar{\psi} \partial \psi + \frac{1}{2} W'^2(\phi) + \frac{1}{2} W''(\phi) \bar{\psi} \gamma_* \psi$$

- classical Yukawa-model determined by superpotential W
- W(φ) ~ φ^m: m even: susy always unbroken m odd: susy breaking possible

need supersymmetric regulator for flow equation

$$\partial_k \Gamma_k = \frac{1}{2} \operatorname{STr} \left\{ \left[\Gamma_k^{(2)} + R_k \right]^{-1} \partial_k R_k \right\}$$

superspace formulation ⇒
 general cutoff *R_k* depends on two functions *r*(*p*²) and *s*(*p*²)
 choose *s*(*p*²) = 0 ⇒

$$\Delta S_k = \frac{1}{2} \int d^d x \left(\phi \, \rho^2 r(\rho^2) \, \phi - \bar{\psi} \, \rho r(\rho^2) \, \psi - r(\rho^2) \, F^2 \right)$$

- susy relates 3 cut-off functions
- here: 2 and 3 dimensions
- model with extended supersymmetry

talk of Synatschke-Czerwenka

Flow of super potential

• this talk: mainly local potential approximation

NLO: Synatschke, Gies, Wipf

$$\Gamma_{k} = \int d^{d}x \left(\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + \frac{i}{2} \bar{\psi} \partial \psi - \frac{1}{2} F^{2} + \frac{1}{2} W_{k}^{\prime\prime}(\phi) \bar{\psi} \gamma_{*} \psi - W_{k}^{\prime}(\phi) F \right)$$

• project flow to $F \Longrightarrow$ flow equation for $W_k(\phi)$:

$$\partial_k W_k(\phi) = -\frac{k^{d-1}}{A_d} \frac{W_k''(\phi)}{k^2 + W_k''(\phi)^2}, \qquad A_2 = 4\pi, \ A_3 = 8\pi^2$$

Fixed point structure in 2 dimensions

• dimensionless quantities $k \to t$, $W_k(\phi) = kw_t(\phi)$

$$\partial_t w_t(\phi) + w_t(\phi) = -\frac{1}{4\pi} \frac{w_t''(\phi)}{1 + w_t''(\phi)^2}$$

allow for susy-breaking: even w_t'

$$W'_t(\phi) = \lambda_t(\phi^2 - a_t^2) + b_{4,t}\phi^4 + b_{6,t}\phi^6 + \dots$$

 \implies system of coupled ODE's

- a_t does not enter equations for higher order couplings λ_t, b_{2i,t}
- fixed point analysis: $(a^*)^2 = 1/2\pi$, a_t^2 : always IR-unstable

2d-fixed points continued

• keep terms up to $b_{2n,t}\phi^{2n} \Longrightarrow 2n$ non-Gaussian fixed points

$$\pm \left(\lambda_{p}^{*}, b_{4,p}^{*}, \ldots, b_{2n,p}^{*}\right), \quad p = 1, \ldots, n$$

- ordering $\lambda_n^* > \lambda_{n-1}^* > \ldots \Longrightarrow$
 - λ_n^* : 1 IR-unstable direction a_t^2
 - λ_{n-1}^* : 2 IR-unstable directions
 - λ_{n-2}^* : 3 IR-unstable directions . . .
- root belonging to IR-stable fixed point $\lambda_n^* \stackrel{n \to \infty}{\longrightarrow} \lambda_{crit} = 0.9816$

λ^*	$\Re(\theta^{I})$ of non-Gaussian fixed points, truncation at 2n=16								
$\pm.9816$	-1.54	-7.43	-18.3	-37.3	-68.9	-120	-204	-351	
$\pm.8813$	6.16	-1.64	-9.82	-25.6	-52.5	-96.9	-170	-300	
$\pm.7131$	21.4	4.37	-1.57	-11.1	-30.1	-63.3	-120	-223	
$\pm.5152$	28.7	13.3	3.33	-1.39	-11.6	-32.8	-71.7	-145	
$\pm.3158$	20.0	20.0	8.40	2.57	-1.14	-11.6	-34.3	-80.4	
$\pm .1437$	11.2	11.2	8.63	5.19	1.95	842	-11.1	-35.7	
$\pm.0322$	4.20	4.20	2.86	2.72	2.72	1.47	540	-10.5	
$\pm.0003$	1.57	1.57	1.43	1.43	1.14	.542	.542	-0.221	

• odd solutions of nonlinear ODE for $u(\phi) = w_*''(\phi)$:

$$(1 - u^4)u'' = 2u'^2(3 - u^2)u - (1 - u^2)^34\pi u$$

- periodic solutions for $u'(0) \le 2\lambda_{crit}$, $\lambda_{crit} = 0.982$ previous polynomials converge to periodic solution
- $u'_{crit}(0) = 2\lambda_{crit}$: IR-stable fixed point, finite for $|\phi| \le 0.5823$

next-to leading-order flows

- wave function renormalization $\Longrightarrow \eta = -\partial_t \log Z_k^2$
- θ^0 critical exponent of relevant direction a_t^2 (related to W)
- new superscaling relation (exact in NLO)

$$\nu_{w} = \frac{1}{\theta_{0}} = \frac{d - \eta}{2}$$

superscaling relation at maximally IR-stable fixed point (d=2)

2 <i>n</i>	2	4	6	8	10	12	14
η	0.3284	0.4194	0.4358	0.4386	0.4388	0.4387	0.4386
$1/\nu_W$	0.8358	0.7903	0.7821	0.7807	0.7806	0.78065	0.7807

number of IR-unstable direction = number of nodes of u plus 1

Supersymmetry breaking

• supersymmetric phase: $\min_{\phi} V_{k=0}(\phi) = \min_{\phi} W_{k=0}^{\prime 2}(\phi) = 0$

• susy broken: $W'_{k=0}(\phi)$ has no node

left: flow of a potential $V = W'^2$ with susy breaking, $W'_{\Lambda}(\phi) = \bar{\lambda}_{\Lambda}(\phi^2 - \bar{a}^2_{\Lambda})$ right: phase diagram for couplings specified at Λ , different truncations.

masses of bosons and fermions

- supersymmetric phase: $Z_k^4 m_{k,\text{boson}}^2 = W_k''^2 (\chi_{\min}/Z_k) = Z_k^4 m_{k,\text{fermion}}^2$
- broken phase:(superscaling) $Z_k^4 m_{k,\text{boson}}^2 = W_k'(0) W_k'''(0) \sim k^{1+\eta/2}$

Wess-Zumino model in 3 dimensions

with J. Braun and F. Synatschke-Czerwonka

- one Wilson-Fisher fixed point for Yukawa-model
- LPA, polynomial expansion

Wilson-Fisher fixed point from polynomial expansion

			•			
2n	$\pm\lambda^*$	$\pm b_4^*$	$\pm b_6^*$	$\pm b_8^*$	$\pm b_{ m 10}^{st}$	$\pm b_{12}^{*}$
4	1.546	2.305				
6	1.590	2.808	6.286			
8	1.595	2.873	7.150	13.41		
10	1.595	2.873	7.155	13.48	1.212	
12	1.595	2.870	7.118	12.90	-8.895	-183.3

- rapid convergence (contrary to 2 dimensions)
- a_t^2 defines the only IR-unstable direction

2 <i>n</i>	critical exponents for different truncations										
6	-0.799	-5.92	-20.9								
8	-0.767	-4.83	-14.4	-38.2							
10	-0.757	-4.35	-11.5	-26.9	-60.8						
12	-0.756	-4.16	-9.94	-21.4	-43.8	-89.0					
14	-0.756	-4.10	-9.13	-18.3	-35.1	-65.4	-123				
16	-0.756	-4.08	-8.72	-16.4	-29.9	-52.9	-91.9	-163			
18	-0.756	-4.08	-8.54	-15.2	-26.4	-45.0	-75.0	-124	-209		

• phase diagram from parameter study of $W'_{k\to 0}$

Finite temperature

• $\int dp_0 \longrightarrow$ summation over Matsubara frequencies

● sums can be calculated explicitly ⇒ two flow equations

$$\partial_{k} W_{k}^{\prime \text{bos}} = -\frac{k^{2}}{8\pi^{2}} W_{k}^{\prime\prime\prime} \frac{k^{2} - W_{k}^{\prime\prime2}}{(k^{2} + W_{k}^{\prime\prime2})^{2}} \times F_{\text{bos}}(T, k)$$

$$\partial_{k} W_{k}^{\prime \text{ferm}} = -\frac{k^{2}}{8\pi^{2}} W_{k}^{\prime\prime\prime} \frac{k^{2} - W_{k}^{\prime\prime2}}{(k^{2} + W_{k}^{\prime\prime2})^{2}} \times F_{\text{ferm}}(T, k)$$

- susy breaking by thermal fluctuations (bosons ≠ fermions)
- T = 0: susy broken $\longleftrightarrow \mathbb{Z}_2$ unbroken
 - \implies study \mathbb{Z}_2 breaking at finite T

Phase diagram

finite-temperature phase diagram for fixed $\lambda_\Lambda=0.8$

Andreas Wipf (FSU Jena)

17/19

Phase diagram, continued

finite-temperature phase diagram

Future

- supersymmetric O(n) and CP(n) models lattice O(3) ~ CP(1) flow equation for large n
- supersymmetric gauge theories first studies lattice flow equation

R. Flore, D. Körner, C. Wozar

M. Masthaler, F. Synatschke-Czerwonka

B. Wellegehausen

F. Synatschke-Czerwonka

