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OUTLINE:

o Generalities
e From Susy-QM to Susy-LT
® vacuum sector

e susy vs. lattice derivatives



Motivation, Problems

Why Susy?

e Only possible extension of POINCARE invariance to

larger spacetime symmetry (HSL)

e Physics beyond Standard Model (hierarchy, gauge

coupling unification, dark matter candidates)
e Superstring theory (susy needed for consistent QG?)

e Tool to obtain results in strongly coupled QFT.

Why Susy-QM?

e Most simple susy-FT

e |IR-dynamics of susy-FT in finite V

e Matrix theory description of M theory

e Index theorems, isopectral deformations, integrable

systems, susy inspired approximations ...



Why Susy-LT7?

Nonperturbative dynamics (spectrum, CSB)
Confirm /extend existing results (N = 2 SYM)
Check conjectured results (M =1 SYM)

How to deal with fermions

Gauge Theories

e Main focus on N =1 SYM:

L=—3F, F" + Dy

anomaly condensate
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N, ground states (A\\) = cA3e?™/Ne ¢ =7
(SU(2) and SU(3) : DESY-Miinster)
hadron spectrum (VY action from WI)
mass splitting for mz # 0 (Evans et.al)
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beyond VY (Farrar et.al, Louis et.al)

glue/gluinoball mixing (Peetz et.al: small)
which type of fermions?

— Wilson: non-chiral, undoubled, ultra-local, cheap,
hermitean
susy broken by lattice + Wilson term
susy and chiral limit at mg — 0
condensate, smallest masses, Ward identities:
Montvay et.al, Peetz et.al, . ..

— Ginsparg-Wilson (overlap, domain walls): chiral,
undoubled, local, expensive, non-hermitean
no fine-tuning for chiral limit

condensate: Kogut et.al

N =2o0or N =4SYM:
2 or 6 scalars — fine tuning gets worse
euclidean S unbounded from below?

new approaches (Kaplan et.al, Sugino, Itoh et.al)



Problems specific to Lattice regularization

e No discrete version of susy = plethora of unwanted

relevant operators, fine tuning = models with
subset of exact susy? (WZ; SYM with N > 1)

e No Leibniz rule on lattice A:
f:A—=C, (f.9)=> flx)g(x)

(Df)(x) =) Dayf(y) linear

D(fg) = (Df)g+ f(Dg) = D =0

e ultralocal forward /backward derivatives (a=1):

@I f)(x) = flz+a) - f(z)
(021)(z) fx) = f(z —f1)
(f.0]9) = —(9°f,9).
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e \Wilson fermions

Sk = (¢, D)), D, = "o, —m+ als

~~ ~———
doubling W —term

e Hamiltonian form: continuous ¢, discrete space

hi = —ial, 0" + 3 (m — %aﬁ) — hgT



e Slac fermions (Weinstein et.al): chiral, no doubling

hp = —io/ﬁwﬁflac + Om = hTF,
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o 821’“ non-local, "identical’ spectrum as 05

e Ginsparg-Wilson fermions (e.g. Neuberger)

5D 4+ Dvs = aDvsD, D' =~5D7s

9512 antisymmetric



Models, Methods and selected results

e Divergences depend on fermion type:
(d,N') = (2,2) and (4,1) Wess-Zumino: tadpoles
linearly divergent for W, finite for WG (Fujikawa)

e No Leibniz rule:
- superfield - superfield # superfield

- would be central charges not central:

> (v (9)) (@) # Y 5’(;2;? 0;;:;)

x

- restoration of rule for a — 0 (Fujikawa et.al)

e Exact (partial) susy on lattice:

=> decrease number of fine tunings
applied to d = 2,4 WZ and extended SYM

e covariant quantization:

typically non-local fermions;



sometimes non-local interaction (no Leibniz rule!)
- keep subset of extended susy: 4 — 1 (Catterall)
- keep Leibniz rule via noncommutativity (D'Adda)

(Kaplan, Sugino, Campostrini,. . . )

Hamiltonian formalism:

time continuous, keep spectral subalgebra (?) of
{chxa Qé} = 2 (5IJP046 + iéaﬁzflj + ’i%aﬁzéj)

Z : central charges, Qé real supercharges
Example: WZ in 2 dimensions: Zij = 0,

NZlI ZSZ/dwa@W
N=2: F(¢'+i¢p?) =W +iU

(2&7) = o3 / dz O, W — o1 / dz 0,U,



Susy-QM

e Susy FT on finite space lattice = susy-QM

e |attice derivative: most simple case
0 A
Q:( ) A=0+W, AT =0T+ W,

AT 0
H_QQ_(AAT 0 )
= L 0 AA

discretize H:
(AANY, = - +W2 4+ W'
(ATA), = —*+W2-W

discretize (): isospectral operators

ApAT = 99T + W2 4 OW + W
AtAL = 90+ W24+9TW +Wo

Difference: no Leibniz, o7 # —0, central charge
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Figure 1. EV of (Qr)? and Hy, for SLAC derivative
and forward-derivative for N = 180, L = 30, A = 1.

non-local SLAC-derivative:
- much more accurate for WZ-models (first studies)

- further improvement for gauge theories (Slavnov)

e generalization = lattice FT (here N/ = 2):
{4, wT} — 1, nilpotent complex charge:

0 1
Q=v®(@+W), w:(o O):,QH:{Q,@}
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2N dimensions: z € R?N, ot ... 2N
Wn(w) = Onx(x) {¢n>¢mT} ="

Q = Zw n + OnX) = € XQoeX, Q° =0

Hamiltonian of 2N-dimensional N/ = 2 SQM:

H = ——A+ (Vx, Vx) + Ax VX ™

H=hHx - -®§, h = Ly(R?*) ®C*

D
N —times

SQM — Lattice-WZj3 5 via identifications

o =" ) w=("0)

= (Y, hpy)) + ... = x = 5(¢, hrd) +

yreal: = AV =03, A =iy, 1= —09 =
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hrp = = —170, + m~y — iy 0,
ol —m

unusual Wilson term ~ 9° (N = 1: usual one)
h% = (00T +m?)1,

Interacting fields

X =3(6.hrd) + > f(o(n), Af=0.

Super-Hamiltonian: H = Py + Z

Po= 5 (mm) + 5(6,00'0) + 5(Vf, Vo)
(0, Byp) — (¥, 7T (0)9)
I'(¢) = f11(¢) — 17+ f12(¢), Yukawa

f harmonic =

of —@ and

b1 Do

of _ 99
0d2 9



Would be central charge

Z = —(Vg4g,0%) + (Vyg, 030°0)

e weak coupling:
free massive model for f = im(¢3 — ¢3):

exist one unique susy ground state (for all 9)

e strong coupling: (Jaffe et.al)
Neglect O in controlled way = H =) h,

h., single site operators on Ly(R?) x C*

H= A+ (V1 V) w0,

7(6) = %% (61 + i)

Elitzur, Schwimmer: p — 1 susy ground states =

Lattice WZ has (p — 1)V susy ground states
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Can prove: Holds true for all A # 0; e.g.

7(9) = gm (61 + ida)? +o(¢?) = (p— )V

Highly degenerate vacuum sector!!

From strong to weak coupling:
Step 1: Perturbation O(¢) = Qp + €Q;

hermitean Q;, commute with I' = I‘T, =1

Q(e)y(e) = A(€)v(e)
Qoo =0, T'ipg = %o

= A(0) = 0; formal power series

Ple) =vo+ Y i, Ae) =)
k=1 k=1

Proposition: (Jaffe, Lesniewski and Lewenstein)
as formal power series A\(e) = 0 and I'Y(e) = 9(e)
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Step 2: In Majorana representation

{Q, 1} =1{91,Qi} =2 + 2)
{Q,Q3} =0, Z2=24 =-2¢

Q1 = (m,¢1) + (VW, ) + (09", 93) — (8762, 43)

Vo

Bg strong coupling By perturbation

By essentially s.a. on D(By) = C*R*Y) @ C”
use By to define energy norm

e bounds on al|f||* + ||Bofl|?, f € D(Bo)
— D(B,) weighted Sobolov space
e Forall A e R, € > 0 exists C¢ > 0 such that

IABLf|| < el Bofll + Cell fll,  Vf € D(Bo)

Kato-Rellich: Q1(\) s.a. on D(B)
AB1 is By bounded with arbitrary small bound
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= Q1i(e) analytic family (Kato)
e Spectrum of Q1(¢€) discrete = A\(¢) analytic
KLW, Annals of Physics 316 (2004) 357

appliesto N =1 in d = 2:
deg W = p even:
susy unbroken in sc and pt
deg W = p odd:

susy broken in sc; may be unbroken in pt; example

W ($) = g2¢° + go¢

strong coupling: susy broken Vgq (correct)

weak coupling: susy for go < 0

appliesto N =2 in d = 2:

puzzle

(p — l)N susy ground states on finite lattice
(p—1) susy ground states in continuum (Jaffe et.al)

a—0

conjecture H =Fy+ 2, Z — —c <0
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rigoros result independent on choice of 0

N =1 WZ in 4 dimensions

analog results for ground states of Q% = H — Ps.
Not applicable to potentials with flat directions!!

For arbitrary 0: 'would be central charges'’

2y’ = o3’ (W,0"¢) — o1’ (U, 0"9)
2, = o’ (W, 0°0) + o1 (YU, 0°9)
—i (7, 10°¢) — L(, [0°))
cont. algebra, no doubling, chiral symmetry =
Slac derivative favoured (gauge theories ?)
checked index theorem on lattice of D3'a¢[U]

how to implement (detailed balance, ergodic,. . . )
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