Interacting Fermions in two and three dimensions

Andreas Wipf

Theoretisch-Physikalisches Institut Friedrich-Schiller-University Jena

Dubna 13. June 2019

in collaboration with: Björn Wellegehausen, Julian Lenz und Daniel Schmidt

Relativistic four-Fermi theories

Critical flavour number with chiral lattice fermions

• Thirring model (Th), Gross-Neveu model (GN), ...

 $\mathcal{L}_{\mathsf{Th}} \propto (ar{\psi} \gamma^{\mu} \psi) (ar{\psi} \gamma_{\mu} \psi), \quad \mathcal{L}_{\mathsf{GN}} \propto (ar{\psi} \psi)^2, \quad \dots$

- effective models for CPT in QCD
- 2 spacetime dimensions:
 - massless Th: soluble
 - GN: asymptotically free, integrable
- 3 spacetime dimensions:
 - not renormalizable in PT
 - renormalizable in large-N expansion
 - interacting UV fixed point \rightarrow asymptotically safe
 - parity breaking at low T?
- Iattice theories:
 - generically: sign problem even for $\mu = 0$
 - partial solution

Thirring, Klaiber, Sachs+AW, ... Gross-Neveu, Coleman, ...

Gawedzki, Kupiainen; Park, Rosenstein, Warr

de Veiga, da Calen, Magnen, Seneor

Schmidt, Wellegehausen, Lenz, AW

possible QCD-phase diagram

- crystalline LOFF phase (colour superconductive phase)
 - $\mu \neq \mathbf{0} \Rightarrow$ complex fermion determinant

Taylor-expansion in μ : radius of convergence

- effective models: fluctuations of order parameter neglected?
- gauge theories without sign-problem (SU(2), G_2): large μ beyond reach
- simpler models which show crystal phase

- GN-Model in d = 1 + 1 at finite T and μ
- N_f flavours of Dirac-spinors $\Psi = (\psi_1, \dots, \psi_{N_f})^T \psi_a$ has two components
- massless Gross-Neveu model (GNM)

$$\mathcal{L}_{\mathrm{GN}} = \sum_{a} ar{\psi}_{a} \mathrm{i} \partial\!\!\!/ \psi_{a} + rac{g^{2}}{2\mathrm{N}_{\mathrm{f}}} (ar{\Psi}\Psi)^{2}, \quad ar{\Psi}\Psi = \sum_{a=1}^{\mathrm{N}_{\mathrm{f}}} ar{\psi}_{a} \psi_{a}$$

asymptotically free

$$eta(g)=-rac{\mathrm{N_f}-1}{2\pi}g^3+O(g^5)$$

- order parameter for discrete chiral symmetry $\langle \bar{\Psi}\Psi \rangle = \sum \langle \bar{\psi}_a \psi_a \rangle$
- realizations in condensed matter
 - conducting polymers (Trans- and Cis-polyacetylen)
 - quasi-one-dimensional inhomogeneous superconductor

Su, Schrieffer, Heeger Mertsching, Fischbeck

- chemical potential μ for fermion number
- Hubbard-Stratonovich transformation

$$\mathcal{L}_{\sigma} = \sum_{a} \bar{\psi}_{a} i D \psi_{a} + \frac{N_{f}}{2g^{2}} \sigma^{2}, \quad D = \partial + \sigma + \mu \gamma^{0} \neq D^{\dagger}$$

• expectation value in grand canonical ensemble

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D} \bar{\Psi} \mathcal{D} \Psi \, \mathrm{e}^{-S_{\psi}} \mathcal{O} = \frac{1}{Z} \int \mathcal{D} \bar{\Psi} \mathcal{D} \Psi \mathcal{D} \sigma \, \mathrm{e}^{-S_{\sigma}} \mathcal{O}$$

• chiral condensate: Ward-identity \Rightarrow

$$\langle ar{\psi}(x)\psi(x)
angle = rac{\mathrm{i} \mathrm{N}_\mathrm{f}}{g^2}\langle \sigma(x)
angle \equiv \mathrm{i} \Sigma$$

partition sum

$$\begin{split} Z &= \int \mathcal{D}\bar{\Psi}\mathcal{D}\Psi\mathcal{D}\sigma \mathrm{e}^{-S_{\sigma}} = \int \mathcal{D}\sigma \ e^{-\mathrm{N}_{\mathrm{f}}\mathcal{S}_{\mathrm{eff}}[\sigma]} \stackrel{\mathrm{N}_{\mathrm{f}}\to\infty}{\longrightarrow} \mathrm{e}^{-\mathrm{N}_{\mathrm{f}}\min_{\sigma}} \stackrel{\mathcal{S}_{\mathrm{eff}}[\sigma]}{\longrightarrow},\\ \mathcal{S}_{\mathrm{eff}}[\sigma] &= \frac{1}{2g^2} \int \sigma^2 - \log \det D \end{split}$$

 $\bullet~\mbox{for}~N_f \rightarrow \infty :$ saddle point approximation exact,

$$Z = e^{-N_{\rm f} \min_{\sigma} S_{\rm eff}[\sigma]}$$

- translational invariance \Rightarrow constant condensate Σ = minimizing σ
- renormalized $S_{eff} = \beta L U_{eff}$

$$\begin{split} U_{\rm eff} &= \frac{\sigma^2}{4\pi} \Big(\log\frac{\sigma^2}{\sigma_0} - 1\Big) \\ &- \frac{1}{\pi} \int_0^\infty \mathrm{d}p \, \frac{p^2}{\varepsilon_p} \left(\frac{1}{1 + \mathrm{e}^{\beta(\varepsilon_p + \mu)}} + \frac{1}{1 + \mathrm{e}^{\beta(\varepsilon_p - \mu)}}\right) \end{split}$$

• one-particle energies $\epsilon_p = \sqrt{p^2 + \sigma^2}$

• renormalization at $\langle \sigma \rangle_{T=\mu=0} = \sigma_0 \Rightarrow$ energy scale σ_0

 μ/σ_0

• symmetric (massless, gapless) phase for large T, μ

- homogeneous broken (massive, gapped) phase for small T, μ
- special points: $(T_c, \mu) = (e^{\gamma}/\pi, 0)$ and $(T, \mu_c) = (0, 1/\sqrt{2})$
- Lifschitz-point at $(T, \mu_0) \approx (0.318, 0.608)$

Wolff, Barducci

- inhomogeneous condensate for low T, large μ
- $\bullet\,$ breaking of translational invariance for $N_f \to \infty$
- all transitions are continuous
- $\bullet\,$ baryons are with $0,1,2,\ldots,N_f$ fundamental fermions

- homogeneous ⟨ψψ⟩ breaks Z₂-symmetry should not happen for T > 0
- inhomogeneous $\langle \bar{\psi}\psi \rangle$ breaks translation invariance \rightarrow massless Goldstone-excitations \rightarrow should not exist in d = 1 + 1
- $\bullet~$ No-go theorems not valid for $N_f \rightarrow \infty$
- phase diagram = artefact of $N_f \rightarrow \infty$?
- $\bullet\,$ is there a inhomogeneous condensate for $N_f < \infty ?$
- number of massless Goldstone excitations:

 n_k number of type k Goldstone modes type 1: $\omega \sim |\mathbf{k}|^{2n+1}$, e.g. relativistic dispersion relation type 2: $\omega \sim |\mathbf{k}|^{2n}$, e.g. non-relativistic dispersion relation inner symmetries $n_1 + 2n_2 =$ number of broken directions spacetime symmetries $n_1 + 2n_2 \leq$ number of broken directions

• large μ : dispersion relation need not be relativistic

- simulations for $N_{\rm f}=8, L=64$, chiral fermions
- low temperature $T = 0.038 \sigma_0$, medium density $\mu = 0.5 \sigma_0$
- typical configuration

spatial correlations of chiral condensate

$$C(x) = \frac{1}{L} \sum_{y} \langle \sigma(y, t) \sigma(y + x, t) \rangle$$

- N_f = 8, *L* = 64 naive fermions
- above: homogeneous phases

 $\mu = 0$ $T/\sigma_0 \in \{0.082, 0.988\}$

below: inhomogeneous phase

 $\begin{array}{l} T = 0.082\sigma_0 \\ \mu/\sigma_0 \in \{0.5, 0.7, 1.0\} \end{array}$

'inhomogeneous' phase: k-space

Fourier-transform of spatial correlation function

$$\tilde{C}(k) \propto \sum_{x} \mathrm{e}^{\mathrm{i}kx} C(x)$$

- N_f = 8, *L* = 64 naive fermions
- above: homogeneous phases

 $\mu = 0$ $T/\sigma_0 \in \{0.082, 0.988\}$

• below: inhomogeneous phase

 $T = 0.082 \,\sigma_0$ $\mu/\sigma_0 \in \{0.5, 0.7, 1.0\}$

'inhomogeneous' phase: μ -dependence

spatial correlation function and Fourier-transform

- $N_f = 8, L = 64$ SLAC-fermions
- low temperature $T = 0.038\sigma_0$
- different chemical potentials $\mu/\sigma_0 \in \{0, 0.4, 0.5, 0.7\}$
- violet: symmetric phase $\mu = 0, T = 0.61 \sigma_0$

- relatively shifted configurations
- have same

$$\mathcal{C}(x) \propto \int \mathrm{d}y \, \langle \sigma(y,t) \sigma(y+x,t)
angle$$

- configurations related by translation symmetry ⇒ same C
- $\bullet\,$ position of maxima/minima does not move or very slowly for $\rm N_f=12$
- compare with Mexican hat: ball does not move in valley
- $\bullet\,$ but: all results very similar to $N_f=\infty$

- $\bullet\,$ phase diagram for $N_{\rm f}=8$ with chiral naive/SLAC fermions
- $\bullet\,$ qualitatively the same as for $N_f=\infty$

•	first numerical results for finite μ , T , N_f (no analytic results are known) collaboration Frankfurt – Jena comparable results for $N_f = 8$ and $N_f = 16$	Lenz, Pannullo, Wagner, Wellegehausen, AW
	for naive and SLAC fermions (both are chiral)	
•	no sign problem for even N_{f}	
٩	phase diagram similar as for $N_f \to \infty$	Thies
٩	first simulations for $N_{\rm f}=$ 2 on very large lattices (L $_2$	§ 1024)
	\rightarrow long-range correlations for $N_f \rightarrow \infty$	Witten
٢	what happens to Goldstone-theorem?,	
۲	are there baryons as for $N_{\mathrm{f}}=\infty?$	
٩	NJL-model, higher dimensions,	

17/30

low-energy description of interacting electrons

- low energy description of tight binding model with NN hopping
- graphen's honeycomb lattice (GN)
- increase coupling \Rightarrow PT semi-metal \rightarrow (Mott) insulator
- $\bullet~$ long-range order \Rightarrow AF, CDW, QAHS

18/30

applications to Dirac materials: two Dirac points
 ⇒ reducible ψ with 4 components

$$\mathcal{L}_{\mathrm{Th}} = ar{\Psi}\mathrm{i}\partial\!\!\!/\Psi - rac{g^2}{2\mathrm{N_f}}(ar{\Psi}\mathsf{\Gamma}^\mu\Psi)^2$$

reducible models: ψ four components

- euclidean 4 × 4 gamma-matrices $\Gamma_1, \Gamma_2, \Gamma_3$ in $\partial = \Gamma^{\mu} \partial_{\mu}$
- in addition $\Gamma_4, \Gamma_5 \Rightarrow$ two notions of "chirality"
- N_f reducible flavors, symmetry $\mathbb{Z}_2 \times U(2N_f)$
- $\langle\bar{\Psi}\Psi\rangle$ order parameter for \mathbb{Z}_2 parity only

irreducible models: ψ two components

- euclidean 2 × 2 gamma-matrices $\gamma_1, \gamma_2, \gamma_3$ in $\gamma^{\mu} \partial_{\mu} = \not \partial$
- no notion of chirality in d = 3
- $N_{\rm f}^{\rm ir}$ irreducible flavors, symmetry $\mathbb{Z}_2 \times \textit{U}(N_{\rm f}^{\rm ir})$
- $\langle \bar{\Psi} \Psi \rangle$ order parameter for \mathbb{Z}_2 parity only

- $\bullet\,$ massless case: models equivalent $N_{\rm f}^{\rm ir}=2N_{\rm f}$
- massive case: \mathcal{L}_{red} parity invariant

 \mathcal{L}_{irred} not parity invariant

• Hubbard-Stratonovich:

$$\mathcal{L}_{\mathrm{Th}} = ar{\Psi} ig(\mathrm{i}
ot\!{D} \otimes \mathbbm{1}_{\mathrm{N}_{\mathrm{f}}}ig) \Psi + rac{\mathrm{N}_{\mathrm{f}}}{2g^2} \, rac{oldsymbol{\mathcal{V}}_{\mu}}{oldsymbol{\mathcal{V}}^{\mu}}, \quad
ot\!{D} = \partial \!\!\!/ - \mathrm{i} \,
ot\!{V}$$

20 / 30

• fermionic integration

$$Z_{\rm Th} = \int \mathcal{D} V_{\mu} \left(\det i \not \!\!\! D \right)^{N_{\rm f}} \mathrm{e}^{-N_{\rm f}/2g^2 \int \mathrm{d}^3 x \, V_{\mu} V^{\mu}}$$

- previous lattice studies for reducible models
 - \rightarrow Wilson/staggered fermions break parity invariance and $U(2N_f)$
 - \rightarrow may end up in wrong universality class

- Jena group: first simulations with chiral fermions!
- chiral SLAC fermions
 - ∂_{μ} real, antisymmetric
 - i
 ∅ hermitean
 - no additional sign-problem due to discretization
 - internal symmetries in continuum \equiv internal symmetries on lattice
 - no doublers, non-local
- successfully applied to
 - scalar field theories
 - non-linear sigma-models
 - supersymmetric Yukawa models

Körner, Wozar, AW

Wozar, Wellegehausen, Bergner, Kästner, AW

- $\bullet \ N_{\rm f}^{\rm ir} \geq \text{2: PhD Thesis Daniel Schmidt, Jena}$
- $\bullet~N_{\rm f}^{\rm ir}=$ 1: Thesis Julian Lenz, Jena (dual formulation)
- $N_{\rm f}^{\rm ir} = 1 : \langle \bar{\psi}\psi \rangle \neq 0; \ N_{\rm f} \to \infty: \langle \bar{\psi}\psi \rangle_{m \to 0} = 0$

expect critical flavor number Nf crit

• Results from SD equations, 1/N_f-expansion, functional renormalization group, simulations with staggered and domain wall fermions

23 / 30

spontaneous symmetry breaking signaled by

 $\kappa = \left. V_{\rm eff}''(x) \right|_{x=0}$

 $\bullet \mbox{ even } N_{\rm f}^{\rm ir}: \ \kappa > 0 \Rightarrow \mbox{no SSB}$ for all reducible Thirring models

• curvatures for $3 \le N_f^{ir} \le 11$ odd (bars: estimates for λ^*)

 $N_{
m f\,irr}^{
m crit} pprox$ 9 for odd $N_{
m f}^{
m ir}$ and $N_{
m f}^{
m crit} pprox$ 0.8

Phys. Rev. D96 (2017) 094504 and arXiv:1905.00137

24 / 30

۲	Simon Hands (2019): "domain wall" fermions	
	chiral condensat, spektrum of Goldstone-bosons	
	no SSB for $\rm N_f=2,3,\ldots$ reducible fermion species	
	there could be SSB for $\rm N_f=1$	PRD 99, 2019
٩	Dabelow, Gies, Knorr (2019): FRG	
	momentum-dependent coupling	
	$N_{\rm f}^{\rm crit}$ decreases as compared to more crude truncations	
	new results could be compatible with $\rm N_{f} < 1$	arXiv:1903.07388
۲	Lenz, Wellegehausen, Wipf (2019): chiral SLAC-fermions	
	no SSB for $N_{\rm f} > 0.80$ reducible fermion species \rightarrow newest results improve and confirm results from 2017	arXiv:1905.00137

26 / 30

- $\bullet\,$ transition with order parameter $\langle\bar\psi\psi\rangle$ for $N_f\leq 0.8$
- $\bullet\,$ transition without order parameter for $N_{\rm f} \geq 0.8$
- we calculated
 - chirale condensate Σ_{L,N_f}
 - mean spectral density $\bar{\varrho}_{L,\mathrm{N_f}}(E)$
 - masses of light mesons $\mathrm{N_f} \in \{0.8, 1.0\}$ symmetry of meson spectrum
 - susceptibilities
- simulations with "small" fermion masses
- nuisance:

lattice-artefact transition for all $\ensuremath{N_{\mathrm{f}}}$ and strong coupling

$C_a(t)$: symmetric (N_f = 1) and broken (N_f = 0.8) phases

Banks-Casher argument

mean spectral density of Dsymmetric phase N_f = 1.0, L = 8, 12, 16no condensation of low lying modes \Rightarrow symmetric phase

mean spectral density of $D \hspace{-.15cm}/$ broken phase $N_f = 0.8, L = 8, 12, 16$ condensation of low lying modes \Rightarrow broken phase

Phase diagram in ($\lambda, N_f)\text{-plane}$

- do phase transition lines meet?
- probably second order transitions

- reliable simulations of 3d theories with chiral fermions
 - no sign-problem with reducible fermions
 - sign-problem with odd number of irreducible fermions, under control
- no SSB for all all reducible models with $N_f = 1, 2, 3, ...$ staggered fermions, early functional results \odot consistent with domain wall fermions, improved functional methods \odot
- $\bullet~$ odd N_f^{ir} : parity breaking PT for $N_f^{ir} \lessapprox$ 9, corresponds to $N_f \lessapprox$ 4.5
- parity breaking PT with order parameter $\rm N_{f} \leq 0.8$ new PT without order parameter $\rm N_{f} \geq 0.8$
- $\bullet\,$ can construct continuum limit for all $N_{\rm f}$
- staggered fermions fail in theory with strongly interacting fixed point

cp. Anna Hasenfratz

30 / 30