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Abstract: We investigate Thirring-like models containing fermionic and scalar
fields propagating in 2-dimensional space time. The corresponding conformal al-
gebra is studied and we disprove a conjecture relating the finite size effects to
the central charge. Some new results concerning the fermionic determinant on
the torus with chirally twisted boundary conditions and a chemical potential are
presented. In particular we show how the thermodynamics of the Thirring model
depends on the current-current interaction.

The dependence of expectation values on the temperature, particle density,

space region, imposed boundary conditions or external fields is of impor-

tance in all the branches of physics [1]. In the present work we address

these questions for the 2-dimensional model defined by the action

S =

∫ √−g
[

iψ̄γµ(∇µ − ig1∂µλ+ ig2η
ν
µ ∂νφ)ψ

+ gµν(∂µφ∂νφ+ ∂µλ∂νλ)− g3Rλ
]

,

(1)

for the fermionic, scalar and pseudo scalar fields ψ, λ and φ respectively.

For g3=0 and g21 =−g22 =g2 (1) belongs to the well known Thirring model

[2,3]. For g1=g2=0 the theory decouples into free fields and non-minimally

coupled scalars describing the minimal models in CFT. g3 measures the

deviation from minimal coupling to gravitation.
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On flat space-time (R=0) the action (1) defines a conformal field theory

admitting a U(1)-Kac-Moody symmetry algebra. But the conformal algebra

is deformed relative to that of the Thirring model. Part of this deformation

can already be seen on the classical level. Indeed the energy momentum

tensor

Tµν =
i

2

[

ψ̄γ(µDν)ψ − (D(µψ̄)γν)ψ
]

+ 2∇µφ∇νφ− gµν∇αφ∇αφ + (φ↔ λ)

− 2g3(g
µν∇2 −∇µ∇ν)λ

+
1

2
jµ (g1∇νλ− g2η

να∇αφ) + (µ↔ ν)

+ g2g
µνjαηαβ∇βφ− 2g2j

αηα
(µ∇ν)φ ,

(2a)

has trace

Tµµ = g23R. (2b)

For g3=0 the trace vanishes, and the theory becomes Weyl-invariant. Hence

it reduces to a conformal field theory in the flat spacetime limit [4]. However,

(1) can be made Weyl invariant even for g3 6=0 by adding a nonlocal Wess-

Zumino-type term to the action

S → S′ = S − g23
4
Sp where Sp =

∫ √−gR 1

△R. (2c)

The field equations are not affected by the WZ term but the energy mo-

mentum tensor is modified in such a way that its trace vanishes and thus

for gµν → ηµν the Lagrangian corresponds to a conformal field theory in

Minkowski spacetime.

The conformal weights of the fundamental fields are obtained comput-

ing their poisson brackets [5] with the generator Tf of the conformal

symmetry transformations. In light cone coordinates x± = x0 ± x1,

Tf =
∫

dx−f(x−)T−− and

{Tf , φ} = f∂−φ

{Tf , λ} = f∂−λ− g3
2
∂−f

{Tf , ψ+} = f∂−ψ+ +
1

2
(1− ig1g3)ψ+∂−f

{Tf , ψ†
+} = f∂−ψ

†
+ +

1

2
(1 + ig1g3)ψ

†
+∂−f,

(3)
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where ψ+ = 1
2 (1 + γ5)ψ denotes the right moving fermions. φ and ψ+ are

primary fields with conformal weights hφ = 0 and hψ+
= 1

2
(1 − ig1g3), re-

spectively. The non-primary character of λ is linked with the g3-dependent

term in the transformation of the Dirac field. Since ψ is not a scalar under

conformal transformation the term ψ̄(...)ψ in (1) is only conformally invari-

ant because λ transforms inhomogenously like a spin connection. It may be

surprising that the symmetry transformations depend on the coupling con-

stant g3 which is not present in the flat space time Lagrangean. However,

the same happens in 4 dimensions if one couples a scalar field conformally

to gravity. Although the Lagrangeans for the minimally and conformally

coupled particles are the same on Minkowski spacetime, their energy mo-

mentum tensors are not. The same happens for the conformally invariant

nonabelian Toda theories wich admit several energy momentum tensors and

hence several conformal structures [6].

The current transforms as

{Tf , j−} = f∂−j− + j−∂−f (4a)

and hence is a primary field with weight 1. For the energy momentum tensor

we find

{Tf , T−−} = f∂−T−− + 2T−−∂−f − g23∂
3
−f (4b)

and thus a classical central charge c=24πg23 .

The quantum analogues of (3,4) are encoded in the short distance expan-

sion of the fields with the stress tensor. Stress tensor insertions are gotten

by differentiation w.r.t. the metric as

Z(g)〈O1(x1)...On(xn)Ty1y1 ...Tynyn〉 =
(−2)n

√

g(y1)...g(yn)

δn

δgy1y1 ...δgynyn
〈O1(x1)...On(xn)〉Z(g).

(5)

For a primary field O with conformal weight h one then finds the transfor-

mation law

1

i

∮

dzf(z)〈O(x) Tzz〉 = f(x)∂xO(x) + hO(x)∂xf(x). (6)

Note that we have switched to the Euclidian region for the quantum consid-

erations. The metric dependence of the effective action follows essentially

from the trace anomaly. One finds
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Z(g) = e(
2

24π
+g23)SLZ(ĝ), where g = e2σ ĝ (7)

and SL=−
∫ √

gσ△σ is the Liouville action. Application of (5) and (6) then

yields
c = 3 + 24g23π hj = 1

hψ0
=

1

2
+

1

16π
g21 −

1

16π

2πg22
2π + g22

− ig1g3
2

h
ψ

†

1

= (hψ0
)†

h̄ψ0
=

1

16π
g21 −

1

16π

2πg22
2π + g22

− ig1g3
2

.

(8)

The classical results for the λ- and φ fields are not modified. The central

extension of the Kac-Moody algebra and the corresponding charges of the

fermionic fields are the same as in the original Thirring model [4]. In the

Thirring model limit g3=0 and g1=g2=g, the different contributions in (8)

add up to give the known anomalous dimension appearing in the Thirring

model [4]. The last classical term is a peculiar feature of the solution. For

the conformal weights to be real we must choose an imaginary g3.

Let us now quantize the system on a sphere. The presence of the length

scale breaks the conformal invariance and gives rise to finite size effects.

An effective method to compute finite size effects has been developped in

[7]. It is based on the following observation: Any conformal transformation

z → w(z) is a composition of a diffeomorphism (defined by the same w) and

a compensating Weyl transformation gµν → e2σgµν with

e2σ =
dw(z)

dz

dw̄(z̄)

dz̄
, z = x0 + ix1. (9)

Therefore, chosing a diffeomorphism invariant regularization one has for the

effective action Γ

0 = δΓDiff = δΓConf − δΓWeyl. (10)

Integrating the conformal anomaly we end up with

δΓ =
g23
4

∫ √
gR 1

∆
(R− 8π

V
)− 3

24π

∫

√

ĝR̂σ +
3

24π

∫

√

ĝσ∆̂σ. (11)

Now we can see why the finite size conjecture generally fails to be true,

although it holds for theories without background charge on domains with

boundaries [7]. Take the simple case of a dilatation w(z) = az. Then, the

conformal angle is a constant σ=log a and (R− 8π/V )=0. The first term
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in (11) vanishes and the finite size effect does not depend on g23 . It is given

by

δΓ = − 3

24π
log a

∫

√

ĝR̂ = − log a (12)

and does not lead to the correct central charge c in (8) which depends on

g3. Thus we have disproved the conjecture. On other Riemannian surfaces

one would find similar results.

To investigate the thermodynamics of (1) we quantize the model on a

flat torus [8] with coordinates such that xµ ∈ [0, L] and

gµν ≡
(

|τ |2 τ1
τ1 1

)

,

where τ=τ1+iτ0 is the Teichmueller parameter. Furthermore we introduce a

chemical potential for the conserved U(1)-charge. Two new features appear

which will have important consequences below:

1.) In the euclidean theory the chemical potential is equivalent to a constant

imaginary gauge potential [9]. Therefore one has to give a sensible definition

for fermionic determinants in complex gauge potentials.

2.) In order to recover the Thirring model on the torus one has to add con-

stant (harmonic) contributions hµ to the auxillary field. Hence we complete

the action (1) by adding g0
2π
L
hµj

µ + ( 2π
L
)2hµh

µ, where jµ=ψ†γµψ, to the

Lagrangean in (1).

In order to compare our results with previous ones in the literature [10,11]

we allow for twisted boundary conditions for the fermions

ψ(x0 + L, x1) = −e2πi(α0+β0γ5)ψ(x0, x1)

ψ(x0, x1 + L) = −e2πi(α1+β1γ5)ψ(x0, x1),
(13)

where γ5=σ3. αi and βi represent vectorial and chiral twists, respectively.

In fact, the chiral twists are equivalent to chemical potentials. For the scalar

field we impose periodic boundary conditions. As a first step in computing

the partition function Z of our model, we determine the fermionic determi-

nant. Due to the scaling property

/D = γνDν = eig1λ+g2γ5φ /̂D e−ig1λ+g2γ5φ, where

/̂D = γµ
(

∂µ − 2πi

L
[g0hµ + µµ]

)

,

µµ = −i τ0L
2π

µ δµ0,

(14)



6 I. Sachs, A. Wipf and A. Dettki

the dependence of det(i /D) on λ and φ can be found integrating the chiral

anomaly [12] to be

det(i /D) = det(i /̂D) exp
( 1

2π

∫ √
gφ△φ

)

. (15)

Using standard grassmann integration rules [8,10] one further obtains

det i /̂D =
∏

n

λ+nλ
−
n , (16a)

where

λ+n =
2π

τ0L
[τ̄(

1

2
+ a1 + β1 + n1)− (

1

2
+ a0 + β0 + n0)]

λ−n =
2π

τ0L
[τ(

1

2
+ a1 − β1 + n1)− (

1

2
+ a0 − β0 + n0)],

aµ =αµ − hµ − µµ.

(16b)

One may be tempted so identify

det(D+D−) ∼
∏

λ+nλ
−
n and detD+ detD− ∼

∏

λ+n
∏

λ−m (16c)

and thus conclude that the determinant is a product, f(τ)f̄(τ), that is fac-

torizes into holomorphic and anti-holomorphic pieces. However, the infinite

product (16a) must be regularized and the two expressions in (16c) may

differ. To continue we recast the infinite product in the form

∞
∏

λ+nλ
−
n =

∏

n∈Z2

(2π

L

)2

gµν(
1

2
+ cµ + nµ)(

1

2
+ cν + nν) (17a)

where

cµ = aµ + iηµ
νβν , ; (ηµ

ν) = − 1

τ0

(

τ1 −|τ |2
1 −τ1

)

. (17b)

The point is that for real cµ, that is for vanishing chiral twists βµ and

chemical potential the zeta function defined by

ζ(s) =
∑

n

(

λ+n λ
−
n

)−s
(17c)

has a well defined analytic continuation to s<1 via the Poisson resumma-

tion. However, for complex cµ the Poisson resummation is not applicable

and ζ ′(0) cannot be calculated by direct means. To circumvent these dif-

ficulties we note that the infinite product (17c) defining the ζ-function for

s> 1 is a meromorphic function in c. Thus we may first continue to s < 1
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for real cµ and then continue the result to complex values. In this way we

end up with

det(i /̂D) =
1

|η(τ)|2Θ
[−c1
c0

]

(0, τ)Θ̄
[−c̄1
c̄0

]

(0, τ). (18)

It can be shown that this determinant is gauge invariant, i.e. invariant

under αµ → αµ+1, but not invariant under chiral transformatins, βµ →
βµ+1, as expected. Furthermore it transforms covariantly under modular

transformations τ → τ +1 and τ → −1/τ . The result (18) also follows with

operator methods and differs from previous results in the literature [10]. In

particular there is no holomorphic factorization.

Having determined the fermionic determinant we are left with the in-

tegration over the auxillary fields φ, λ and h. These are Gaussian and one

finds

Z

N0
=

1

|η(τ)|2

√

2π + g22
2π + g20

Θ
[ u

w

]

(Λ) , (19.a)

where [13]

Θ
[ u

w

]

(Λ) =
∑

n∈Z2

eiπ(n+u)Λ(n+u)+2πi(n+u)w (19.b)

is the theta function with characteristics

u = −
(

1
1

)

(α1 + iη ν1 βν) and w =

(

1
−1

)

(α0 + iη ν0 βν − µ0) (19.c)

and covariance

Λ =

(

τ 0
0 −τ̄

)

+ i
πg20τ0
2π + g20

(

g20 −4π − g20
−4π − g20 g20

)

. (19.d)

In (19.a) we have divided by the partition function N0 for non-interacting

auxillary fields, so the number of degrees of freedom is the same as in the

original Thirring model. In the Thirring model limit g2=g0 and the square-

root in (19a) disappears.

To investigate the thermodynamics of the model we must choose τ =

iβ/L, where β is the inverse temperature. Then

Ω = − 1

β
log

Z

N0
(20)

is the grand canonical potential. In the zero temperature limit the saddle

point approximation to the theta function in (19.a) becomes exact. For
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vanishing chiral twists and chemical potential this yields the the ground

state energy

E0(L, α1, β1=0) = − π

6L
+

2π

L

2π

2π + g20

(

α1 − [
1

2
+ α1]

)2
, (21)

in agreement with [11]. Only for anti-periodic boundary conditions, that is

for α1=0, does this Casimir energy coincide with the corresponding result

for free fermions. For g20≥4π the Casimir force is always attractive whereas

for g20<4π it can be attractive or repulsive, depending on the value of α1.

For small twists and chemical potential the grand potential becomes

Ω(β → ∞) = − π

6L
+

2π

L

2π

2π + g20
α2
1, (22)

and hence, is independent of chemical potential and chiral twist. Here we

disagree with [11]. The discrepancy is due to the breakdown of holomorphic

factorization, a property which has been presupposed in [11]. In order to

show that the result (22) is physically reasonable we note that for massless

fermions the Fermi energy is just µ and at T = 0 all electron states with

energies less then µ and all positron states with energies less then −µ are

filled. The other states are empty. Since dΩ/dµ is the expectation value

of the electric charge in the presence of µ we conclude that it must jump

if µ crosses an eigenvalue of the first quantized Dirac Hamiltonian h. For

vanishing twists the eigenvalues of h are just En=(n− 1
2
)π/L. Indeed, from

(22) one finds that the electric charge

〈Q〉 = dΩ

dµ
= 2

[1

2
+
µL

2π

]

= 2n for En ≤ µ < En+1 (23.a)

jumps at these values for µ. Further observe, that in the thermodynamic

limit L→ ∞ the density

Ω

L
→ − 2π

2π + g20

µ2

2π
, (23.b)

reduces for g0=0 to the standard result for free electrons.

Let us now discuss the equation of state. Using the transformation prop-

erties of the theta functions under modular transformations [13] the pressure

is given for L→ ∞ and small twists by

βp =
π

6β
− 2π

β

2π

2π + g20

(

α0 + i
βµ

2π

)2
. (24.a)
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In particular it becomes independent on the chiral twist β0 in agreement

with the earlier result that for small twists Ω is independent of β1. For the

thermal boundary conditions α0=0, we are lead to the following equation

of state

p(β, µ, α0=0) =
π

6β2
+
µ2

2π

2π

2π + g20
, (24.b)

which for small β0 relates the pressure to the chemical potential and tem-

perature. This result is consistent with the renormalization of the electric

charge which is conjugate to the chemical potential. It shows in particular

that the thermodynamic behaviour of the Thirring model is not just the one

of free fermions as has been claimed in [14]. Indeed, the zero point pressure

is multiplied by a factor 2π/(2π + g20). This modification arises from the

coupling of the current to the harmonic fields. It can not be seen if only

the local part of the auxillary field is considered, which is the case if one

quantizes the model on the infinite Euclidean space.
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