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Abstract
We determine effective lattice actions for the Polyakov loop using inverse
Monte Carlo techniques.

1 Introduction

As there are different notions of effective actions let us start right away with the definition we will employ
throughout this presentation: Given an action S = S[U ] for some ‘microscopic’ degrees of freedom U
we define an action for ‘macroscopic’ degrees of freedom X ≡ X[U ] via the functional integral

e−Seff [X] =

∫

DU δ(X −X[U ]) e−S[U ] . (1)

Hence we ‘integrate out’ U in favor of X which will guarantee that the actions S and Seff have the
same matrix elements for the remaining degrees of freedom X . Typical examples of such effective
actions are obtained if X corresponds to low-energy degrees of freedom, like in chiral perturbation
theory. Alternatively, X may represent some order parameter (field) as is common in Ginzburg-Landau
theory, for instance.

While this is all fairly straightforward in principle one encounters difficulties in practice: in gen-
eral, the U -integration cannot be done analytically. Fortunately, there is a particularly elegant way out,
encoded in the ‘effective field theory’ program. There, one argues that the effective action Seff [X] should
have the same symmetries as the ‘parent’ action S[U ] which suggests the ansatz

Seff [X] =
∑

k

λk Sk[X] , (2)

representing a systematic expansion in symmetric operators Sk of increasing mass dimension (multiplied
by inverse powers of the cutoff). The parameters λk are then fixed via ‘phenomenology’.

Alternatively, one may try to ‘do the U -integration numerically’ on a lattice. However, on a lattice
one can only calculate expectation values. So the question arises: How can one find effective actions
from the latter? The answer is given in the next section.

2 Inverse Monte Carlo

Inverse Monte Carlo (IMC) avoids the functional integration in (1) by a detour consisting of three basic
steps: first, generate configurations U (i), i = 1, . . . , N , via standard MC procedures. Second, calculate
the configurations

{

X(i)
[

U (i)
]}

and compute the expectation values 〈O[X]〉S = N−1
∑N

i=1O
[

X(i)
]

.
Note that the X variables are distributed according to exp(−S), i.e. the parent action. Third, in the IMC
step proper, determine the effective couplings λk via Schwinger-Dyson equations (SDEs) [1, 2]. The
latter step requires some explanations.

Generically, the target space (where the X variables ‘live’) will have some isometry leaving the
metric invariant, L̂X gab(X) = 0, L̂ denoting the relevant Lie derivative. This entails an invariance of
the functional measure, DX ≡ ∏

dX
√

g(X), leading to path integral identities that can be cast into the
SDEs

∑

k

〈F L̂XSk〉Sλk = 〈L̂XF 〉S , (3)
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where the ansatz (2) has been utilised. The former constitute an (overdetermined) linear system for the
λk which can be solved numerically. The arbitrary function F [X], if properly chosen, can be used to fine-
tune the associated numerics. An expensive (!) check of the solution can (and should) be done by testing

the equality of the matrix elements calculated with both the parent and daughter actions, 〈O〉Seff

?
= 〈O〉S .

3 Polyakov-Loop Dynamics

In [3, 4] we have considered some particular examples of effective actions for the Polyakov loop based
on suggestions in [5, 6, 7].

3.1 Generalities

At the risk of boring the experts we briefly review the physics of the Polyakov loop. This quantity is all-
important for finite temperature Yang-Mills theory as it constitutes a gauge invariant order parameter for
the confinement-deconfinement phase transition. The Polyakov loop is a traced holonomy (or Polyakov
line),

Lx[U ] ≡ 1

NC
trF Px[U ] , Px[U ] ≡

Nt
∏

t=1

Ut,x;0 . (4)

Introducing the Wilson coupling by β = 2NC/g
2 the theory assumes its confinement phase for β < βc

with 〈L〉 = 0 and its deconfinement phase for β > βc with nonvanishing expectation value, 〈L〉 6= 0. The
latter phase is characterised by a spontaneously broken centre symmetry generated by transformations
under which L transforms nontrivially, Lx → z Lx, z ∈ Z(NC).

The critical behaviour is characterised by the Svetitsky-Yaffe conjecture [8, 9] which states that
the effective theory describing finite-T SU(NC) Yang-Mills theory in d+ 1 dimensions is a Z(NC) spin
model in d dimensions with short-range interactions. For SU(2) this is well established on the lattice via
comparison of critical exponents [10, 11].

For gauge group SU(2), which we consider henceforth, L is a real number between−1 and 1. This
target space is somewhat nonstandard so that its isometry is not obvious. We therefore generalise to the
group-valued variable, P ≡ P µσµ ∈ SU(2). As SU(2) ∼= S3 its isometry is clearly an O(4) symmetry
generated by ‘angular momenta’ Mµν . Gauge invariance invariance then implies that the effective action
can only depend on the zeroth component of P, Seff [P] ≡ Seff [P 0] ≡ Seff [L]. Restricting our identities
to P 0 = L results in the following SDEs for the ansatz (2),

∑

k

〈(1 − L2
x
)GSk,x〉λk = 〈(1− L2

x
)G,x − 3LxG〉 , (5)

where G,x ≡ ∂G/∂Lx etc. Again, the functional G is useful for fine-tuning. An optimal choice is to
use the derivatives of the effective action, G ∈ {Sl,y}, which are the operators appearing in the equation
of motion for L. In this case the SDEs become relations between two-point functions of the Polyakov
loop L. Again, they represent an exact, overdetermined linear system for the couplings λk. We still have
not decided upon the concrete form of the effective action. This is somewhat of a problem, as the former
is only mildly constrained by centre symmetry. The additional fact that L is dimensionless allows for a
plethora of operators Sk. Certainly, a further guiding principle is needed.

3.2 Effective Action from Character Expansion

Recall that any (gauge invariant) function on SU(NC) can be expanded in terms of an adapted ‘Fourier’
basis, the group characters for representation R, χR[U ] ≡ trR U , with U ∈ SU(NC). For SU(2) we use
the notation χp with p = 2j and j = 1

2 , 1,
3
2 , . . . , denoting ‘color spin’. The lowest characters are the

polynomials χ1 = 2L, χ2 = 4L2−1, χ3 = 8L3−4L, . . .. If we impose Z(2) symmetry and reducibility
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Fig. 1: The MF predictions for the VEVs of the Polyakov loop L̄ = χ̄1/2 (left) and the adjoint character χ̄2 (right) as a function

of the couplings λ11 and λ22.

of product representations we obtain the following systematic expansion for the effective action (see also
[6, 12]),

Seff [χ] =
∑

〈xy〉

∑

pq
p−q even

λpq χp[Lx]χq[Ly] +
∑

x

∑

p even

λp0 χp[Lx] . (6)

This action is a Z(2)-symmetric sum over higher and higher SU(2) representations including both
nearest-neighbour (NN) hopping and potential terms. Before determining this action numerically it is
worthwhile to study its consequences in mean-field approximation (MFA).

3.3 Mean-Field Approximation

If we restrict ourselves to the fundamental and adjoint representations (p = 1, 2) and to hopping terms
only we end up with the effective action (6) truncated such that it contains only couplings λ11 and λ22.
This action will be denoted T2 and implies a MF potential

VMF(λ, χ) ≡ −d
∑

p=1,2

λppχp
2 − log z(λ, χ)

where z is the single-site partition function. The two MF (or gap) equations are ∂VMF/∂χp = 0,
p = 1, 2, the solution of which yields the vacuum expectation values (VEVs) χ̄p of the characters. The
latter are displayed in Fig. 1. The behaviour of L̄ as a function of the coupling λ11 implies the typical
second-order phase transition (for λ22 sufficiently large). Interestingly, the adjoint character χ̄2 displays
discontinuous behaviour as a function of λ22 (for λ11 sufficiently large). This behaviour, however, is
located off the ‘physical region’ marked by the arrows. These point towards the couplings obtained by
numerically matching to the Yang-Mills action via IMC. This is our next topic.

3.4 Inverse Monte Carlo

We have simulated SU(2) Yang-Mills theory on a 4×203 lattice for Wilson coupling β ranging between
1.2 and 3.5. The critical coupling is βc = 2.30. The associated ensembles have been matched to effective
actions Sp with representations p ≤ 3, hence including up to five character terms and, accordingly, five
effective couplings. Some results are presented in Fig. 2.

We see that both fundamental and adjoint couplings (λ11 and λ22) jump near the critical β. The
effect of including potential terms and higher representations (S2, S3) is rather mild and visible mainly
in the broken phase (β > βc). The linear behaviour of λ11 there is predicted by perturbation theory [13].
Finally, the MF critical coupling for an Ising type effective action S1 (λ11 only) is λ11c = −1/2d =
−0.17 is off by only a few percent.

To check the quality of our effective actions we have simulated them using the IMC values for the
couplings and compared simple matrix elements namely the two-point functions (see Fig. 3).
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Fig. 2: Effective couplings determined via IMC. Left: fundamental coupling λ11, Right: adjoint coupling λ22. Different

symbols correspond to different truncated actions, S1, . . . , S3, see text. Dashed lines for small β are strong-coupling results.
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Fig. 3: Two-point functions for β = 2.2 (left) and β = 3.0 (right).

We note that in the symmetric phase (β = 2.2) the data for different truncations lie on top of each
other and reproduce the Yang-Mills values. In the broken phase (β = 3.0), however, the situation is
different. Including higher representations leads to improvement but in particular the Yang-Mills plateau
value (hence 〈L〉) is not reproduced.

To remedy this fault we have performed a brute-force calculation by also including next-to-nearest
neighbour (NNN) interactions and a total of 14 different operators [3]. We find that generically the effec-
tive couplings decrease with the representation label p (as above) and the distance of the sites connected
by the operators. A comparison of the two-point functions now yields a near-perfect match (see Fig. 4).
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Fig. 4: Two-point functions for β = 2.2 (left) and β = 2.4 (right) using 14 NN and NNN operators (“sim”).

4 Summary and Outlook

We have seen that inverse Monte Carlo based on Schwinger-Dyson equations can be a powerful method
to numerically determine effective actions. Applying it to the Polyakov loop dynamics in SU(2) yields
Z(2)-symmetric effective actions Seff [L] describing the confinement-deconfinement phase transition in
quite some detail. The matching to Yang-Mills is reasonable if NN character interactions are used and
becomes near-perfect if one includes NNN interactions. Obvious extensions of this work will be to
go to SU(3) and to analyse explicit symmetry breaking terms (mimicking ‘fermions’). A study of the
continuum limit will necessitate to renormalise the lattice Polyakov loop.
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