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Abstract. A large class of potentials can be solved algebraically by using supersymmetry 
and shape invariance. In this paper we apply operator transformations (f transformations) 
to these algebraically solvable problems to obtain a larger class of solvable potentials-the 
Natanzon class of potentials which are not shape invariant. The important condition 
(which is independent of supersymmetry) for finding new potentials from old ones using 
operator transformations is that the resulting Schrodinger equation has a potential which 
does not depend on the state. As a special case of the f transformation we rederive the 
previously known connection between the 3~ harmonic oscillator, the hydrogen atom and 
the Morse potential. We also discuss the lack of commutivity of SUSY and theftransforma- 
tions. 

1. Introduction 

In the pioneering work of Infeld and Hull [ 11 the conditions for the algebraic solution 
of the bound-state problem were presented. These conditions, namely factorisability 
and shape invariance, were later rediscovered in the context of supersymmetric quantum 
mechanics [2] by Gendenshtein and others [3,4]. The conditions are met by a wide 
class of solvable potentials-Coulomb, harmonic oscillator, Morse, Eckart, Poschl- 
Teller, Rosen-Morse, etc. Recently we have shown how to extend these results to the 
calculation of the S matrix [ 5 ] .  In the course of our studies we found that the Natanzon 
class [ 6 ]  of solvable potentials were not directly solvable by the above approach since 
the general class was not shape invariant [7]. 

Related to the above work, but from a different perspective, there has been some 
recent work on the algebraic solution of potential problems using potential groups 
[8,9]. There it was shown how an underlying potential group relating potentials of 
different strengths allows for an algebraic solution of the above potentials as well as 
the Natanzon potential. 

In this paper we would like to show that, if we start off with a shape-invariant 
potential which is algebraically solvable, we can find new exactly solvable potentials 
which include the Natanzon class of potentials by considering operator transformations 
(f transformations) applied to the shape-invariant potentials. These operator transfor- 
mations are a general method of obtaining new solvable potentials from already solvable 
potentials and do not depend on supersymmetry. We will show that thesef transforma- 
tions in general do not preserve shape invariance; nor do they take supersymmetric 
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partner potentials into new supersymmetric partner potentials. The wavefunctions for 
the new potential are related to wavefunctions of the old potential whose parameters 
are a function of the energy eigenvalues of the new potential. 

2. Review of SUSY, factorisation and shape invariance 

In this section we review how the eigenspectrum and eigenstates of a class of one- 
dimensional Hamiltonians can be derived algebraically using SUSY and shape invari- 
ance. A more technical discussion of this problem not relying on supersymmetry is 
found in Infeld and Hull [l]. 

All Hamiltonians with a ground state To with energy Eo can be factorised: 

H , Y y ) =  [-d2/dr2+ Vl(r, u , ) ]Tkl)= (A:A,+Eb")W',"= E ( ' ) 9 ( ' )  n n  (2 . l a )  

where 

A:=+,+  W(r, a,)  

VI = W'( r, a,)  - 8, W( r, a,) + Ed" 

8, = d/dr. 

A, = d, + W( r, a,) (2.lb) 

(2.lc) 

(2.ld) 

The a, are the parameters describing the potential, n labels the states, n = 0, 1, . . . , and 
n = 0 denotes the ground state. The superpotential W( r, a,)  is given by 

(2. le)  W(r, a,) = +,(In Thl)(r, a , ) ) .  

For simplicity let us set E y )  = 0. Then the partner Hamiltonian 

H2 = A,A: = -d2/dr2+ V2 (2.2a) 

v2= W2(r, a,)+d,W(r, U , )  (2.26) 

gives the same spectrum as H ,  = A:A, but with the ground state missing, i.e. 

(2.3) 

ytf, ( r )  = (E -1'2AtW(n2)( r) .  (2.4) 

EL21 = E ( ' )  EA1) = 0 n + l .  

In addition the eigenfunctions with the same energy are related: 

The degeneracy in the two spectra is due to a supersymmetry. We define the super 
Hamiltonian H and the supercharges Q and Qt: 

These operators are the two-dimensional representation of the sl( 1/ 1) superalgebra: 

[Q, HI =[Q' ,  HI = o  (0, 0') = H {Q,  Q)={Q' ,  Q + > = O .  (2.6) 
The fact that the supercharges commute with H gives rise to the energy degeneracy. 

Clearly this process can be continued. Using factorisation H2 can also be written 
as A:A2 + AE, and the partner Hamiltonian of this can be constructed. This produces 
a ladder of potentials, Vn [ 1,3,4]. If the partner potentials are 'shape invariant' [ l ,  31 
in that V, has the same functional form as VI but different parameters except for an 
additive constant: 

( 2 . 7 ~ )  V2(r, a,) = V1(r, a') + C(a,> 
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then the full ladder is shape invariant: 

V,,(r, a , ) =  V,(r ,  an)+E( , ' l ,  (2.7b) 

and the energy spectrum and eigenfunctions of the original potential can be determined 
algebraically: 

( 2 . 8 ~ )  

(2.8b) 

3. Operator transformations (f transformations) and new potentials from old 

We now ask the question whether by knowing the solution of one Schrodinger equation 
we can determine the solutions to other Schrodinger equations. For convenience, we 
will call our initial coordinates r and our final coordinates x. Although the use of 
operator transformations does not rely at all on supersymmetry, we will start with two 
Hamiltonians HI and H2 given in (2.1) and (2.2) which are partners under the 
supersymmetry operation so that we can also study the question of whether these 
operator transformations commute with supersymmetry and whether they transform 
shape-invariant potentials into shape-invariant potentials. 

Thus, starting with H1 and H2 we make a change of coordinates r -$ x, defined by 

f = dx/dr. (3.1) 

After the coordinate transformation, we introduce new operators and wavefunctions: 

( 3 . 2 ~ )  B = f 1'2Atf -'I2 = -fa, ++(a, In f) + W 

(3.2b) 

( 3 . 2 ~ )  

(3.2d) 

We now obtain the equations 

f -2( BB - E :))+ = 0 f -2( BB - E "))$ L2) = 0 (3.3) 

which are not yet in the form of an eigenvalue problem. To obtain a new eigenvalue 
problem we must add to both sides of this equation [9]. We then find a new 
related pair of Schrodinger equations: 

f i p p  = &py(l) n fi*y?) = & " ) 9 ( 2 )  n (3.4u) 

where 

1 fi, = 7 (&I - E ',I) + E yj  (3.4b) 

(3.4c) 

f 

f 
1 fi 2 -  -_  2 ( B B - E i 2 ' ) + ~ ' , 2 ' .  
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In order for fi to correspond to a well defined potential it must not depend explicitly 
on E. In general this requires that the parameters a that describe the strength of the 
superpotential W(r,  a )  of H must now depend on E. Thus every energy eigenvalue in 
the transformed Hamiltonian fi corresponds to a different set of parameters of the 
original shape-invariant potential. We call this combination of coordinate transforma- 
tion and adding terms to the original equation an operator transformation. We can 
write the two related Schrodinger equations as follows: 

[ -d2/dx2+ ( I /  f '){ta?(lnf) -a[d,(ln f )I2 + W 2  

(3.5b)  

(3 .5c)  

If we assume that the transformation f = dx/dr  is energy independent then we obtain 
the following conditions for I? to be independent of E : 

VI -E',"+ = GI ( 3 . 6 ~ )  

V2 - E '," + E '," f = G, ( 3 . 6 b )  

where G is independent of E,  and we have used ( 2 . 1 ~ )  and (2.2b). 
In order to satisfy (3 .6)  several conditions must be true. First, the form of the 

transformation f( r )  is fixed-one requires that f' must have the same form as V apart 
from a constant: 

f 2 =  Vl(r, b , )+v  (3.7) 

(here b, stands for the parameters controlling the shape of the potential VI). Second, 
in order for P to be state independent, the wavefunctions for each E,  are related to 
the solutions of the original potential problem V with the parameters specifying V 
being a function of U. Third, from (3 .6)  and (3.7) we can determine E,  in terms of E,,. 
These points will be made clear when we implement (3.6) and (3.7) for particular 
choices o f f  starting with some solvable shape-invariant potentials. 

Next we want to address the question of whether these f transformations preserve 
shape invariance and whether they preserve suqersymmetry. To do this we must first 
factorise fi, and find its partner Hamiltonian H,, : 

( 3 . 8 ~ )  fi, = A'A + &A,) 
where 

A=&+@ (3 .8b)  

and the transformed superpotential is 

Note that 

B = f2. ( 3 . 8 d )  
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The transformed potential is 

The supersymmetric partner Hamiltonian is 

f i s s  = AAt + &p 
with corresponding 

(3.9) 

(3.10) 

(3.11) 

From (3.11) we see that the transformed potential is not, in general, shape invariant. 
The condition for shape invariance is clearly that the sum of the last three terms on 
the right-hand side of (3.11) have the same strucJura1 form as ?'. 

We can also compare the partner potential V,, with the f-transformed partner of 
VI, V 2 .  We obtain 

d2 W 
f V s , ( x , a l , f ) =  ?2(x ,a1 ,  f ) - ~ l n f - 2 ( a , I n f ) - + ~ $ ~ ) - ~ b " .  (3.12) 

We see that f transforms, in general, do not commute with SUSY. The condition for 
the commutivity is that the sum of the last four terms on the right-hand side of (3.12) 
is zero. 

4. Natanzon potentials as f transforms of the generalised Poschl-Teller potential 

The generalised Poschl-Teller potential is given by 

d2 p ( p - 1 )  a ( a + l )  
H 1 -  - A ~ A = - - +  dr2 sinh'r - cosh2 r + (a-m2 

where 

W = a  tanh r-,L3 coth r. 

Its energy eigenvalues are 

(4.1) 

(4.2) 

E',"= (a - p ) ' - ( a  - p  -2r1)~  (4.3) 

where n are all non-negative integers less than ( p  - a) /2 .  Its supersymmetric partner 
is 

+ ( a  - P ) 2  d2 P ( P + l ) _ a ( a  -1) 
2 -  dr2 sinh2r cosh2 r 

H - A A + = - - +  

with eigenenergies 

E',~' = ( a  - p ) 2  - (a - p  -2n -2)2 

so that 
E:)  = E ( ' )  

n + l *  

(4.4) 
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If we transform this pair of potentials the condition on the transformation function 
is given by (3.6) and (3.7): 

A 

where A, B, C are constants. The transformed potential becomes 

(4.7a) 

(4.7b) 

Solving equation ( 3 . 6 ~ )  gives an implicit expression for the eigenvalues 

[ ( y + 4)' -A&(,)] - [ ( 6  - 1)' - B&(,1)] - (g - C&(,I)) I / *  = 2n + 1 ( 4 . 8 ~ )  

and determines the state-dependent a, p :  
a,  = [( y +f)'- 

pn = [(6 -4)2- B&y]'/2+4. 

(4.8b) 

( 4 . 8 ~ )  

The potentials (4.7) are the Natanzon potentials [6] which are the most general 
potentials which have hypergeometric functions as eigenfunctions. From (3.11) we 
see that these potentials are, in general, not shape invariant, but are the operator 
transform of a shape-invariant potential, a result proved very tediously in [7]. Hence, 
although the Natanzon potentials are not shape invariant, they are an operator trans- 
form of a shape-invariant potential. 

5. Transformed harmonic oscillator 

Starting from the 3~ harmonic oscillator, we can use the results of the previous section 
to understand very simply the well known connection between the harmonic oscillator, 
Coulomb potential and Morse potential [lo-131, as well as obtaining another class of 
Natanzon potentials. We start from the radial Schrodinger equation for the three- 
dimensional oscillator. The ground-state wavefunction (here p denotes the angular 
momentum) 

(5.1) IC, - r ~ + l  e - a r 2 / 2  
0 -  

yields W = a r  - ( p  + l ) / r  so that the two partner Hamiltonians are 

HI = A'A = -8; + p ( p  + 1 )/ r2 + a 'r2 - 2 a ( ,B + $) 

H2 = AA'= -d:+(p + 1)(p + 2 ) / r 2 + a 2 r 2 - 2 a ( p  +&). 

(5.20) 

(5.2b) 

For the tower of Hamiltonians we have the shape-invariance relationship: 

H , ( p )  = H I @  + n - 1 ) + 4 a ( n - l ) .  (5.3) 

E, = 4an. (5.4) 

This tells us from our previous discussion that, for HI, 

Next we want the most general transformation that maps the harmonic oscillator into 
another energy-independent potential. That is, we need to have 

W2 -a, W - 4an + enf' = G. ( 5 . 5 )  
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We see that the most general form for f and G consistent with this is 

f * = A/ r 2 +  Br2+ C G = D / r 2 +  Er2+ F. (5.6) 

(5.7) 

For A - F  to be energy independent we get from (3.6) the conditions (for H , )  

p ( p + l ) + ~ , , A = D  f f 2 +  &,,B = E - 2 a ( p + 1) - 4an + E,C = F. 

These conditions lead to the most general Natanzon potentials which are solvable by 
a confluent hypergeometric function. Again, using (3.11) we see these potentials are 
not shape invariant in general. 

In order to make the transformation explicitly invertible there are two simple 
choices for f: One is 

f( r)  = r = dx/dr  x = r 2 / 2 .  (5.8) 
This mapping is the well known mapping between the harmonic oscillator and the 
Coulomb potential [lo]. Using (5.8) we find that 

F = r-2[ - i r -2+ a2r2 - 2 a ( p  +;I + p ( p  + l ) / r 2  -4an + E,r2] (5.9) 

= $x-’[p(p + 1) -3 -ix-’[4an + 2a(p +$)I + ( a 2 +  E , , ) .  (5.10) 

Thus we obtain the Coulomb potential with the identification 

p = 211-4 (5.11a) 

4an + 2 a ( p + ;) = 2Ze2 (5.11b) 

CY2+&,, = y. (5 .11~)  

The mapping to the Coulomb potential shows us that, for each energy eigenvalue n 
and angular momentum 1, a harmonic oscillator of different strength is needed: 

a ( (  n ) = ~ e ’ [ 2 ( I + n + l ) ] - ’ .  (5.12) 

This leads to the well known result that the energy eigenvalues of the Coulomb potential 
problem are giv2n by 

(5.13) 

The Coulomb potential can also be cast into SUSY form starting from the ground-state 
wave function: 

(5.14) 

4a(Z+ n + 1) = 2ze2  

E, = y - $z2e4(  1 + 1 + n)-2. 

qf 0 -  - f ‘ /2* 0 - - XIt1 e-ax 

where here y = a ( l , n = O ) .  
The superpotential is 

W, = - ( I  + I ) /  x + fZe’/  ( I + I) .  (5.15) 

The partner Hamiltonians are 

A , = d / d x +  W, (5.16) 

H f =  -d2/dx2+ l ( I +  1)/x’-2e2/x+$Z2e4(1+ 1)-2 (5.17) 

H:= -d2/dx2+(I+ 1)(1+2)/x2-Ze2/x+$Z2e4(I+ 1)-’. (5.18) 

We see that the usual SUSY for the Coulomb potential relates potentials with the same 
Z but with angular momentum differing by one. On the other hand, the Hamiltonian 
we obtain by operator transforming the SUSY partner of the harmonic oscillator is 
fi2= -d2/dx2+iX-2[(p + 1)(p  +2)  - : ] - ; x - ’ [ ~ c Y ~ + ~ c x ( ~  + ~ ) ] + ( c x * + E , ) .  (5.19) 
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Using the parameter identification of (5.1 l ) ,  this corresponds to a Coulomb problem 
with angular momentum I + $  and charge Z+ = Z[  1 - ; ( I +  1 + n)- '] .  Thus we see that 
only every other Hamiltonian in the infinite sequence of shape-invariant harmonic 
oscillator Hamiltonians gets mapped into an integer-valued angular momentum of the 
related Coulomb problem. The charges get changed as also noted by Haymaker and 
Rau [13]. Also note that the SUSY partner of the Coulomb potential is not the 
transformed partner of the oscillator problem. In order to solve the Coulomb problem 
one does not need to know anything about the transformed partner. 

If we take the other special integrable case, where 

d x l d r  = f = 2/6r = e (xS) /2  (5.20) 

we obtain the two related Schrodinger equations: 

GI = -d2/dx2+E,+iS2(p+4)2+ia2S2 e2SX-ESxS2cx(n+;p+q) ( 5 . 2 1 ~ )  

I?2 = -d2/dx2 + E ,  + iS2 (p  +;)' +$a2S2 e2Sx - ~ ' ~ S ' c x (  n +$p +$), (5.21b) 

The Morse potential and its usual SUSY partner can be defined (apart from a constant) 
as follows. 

Let W,(x) = A  - B eSx. Then we have 

f i k  = -d2/dx2+A2+ B2 e2"-2B(A*;S) eSx. (5.22) 

We eliminate the energy dependence in (5.21) by choosing 

y = E, + iS2(P +;y* 
Comparing with the Morse potential we want to choose 

B = aS/2. 

For I?l we have the identification 

(5.23) 

(5.24) 

n +&3 +;) = (A16 -4). (5.25) 

This leads to p being a function of n: 

p +;= 2[A/6 - ( n  + l ) ]  (5.26) 

yielding the usual result 

E, = y-[A-(n  + l)SI2.  (5.27) 

The potential obtained from the SUSY partner of the harmonic oscillator I?' can be 
seen to have the parameter A given by A - 612, whereas the SUSY partner I?& has the 
parameter A given by A +  S. This again shows that there is no relationship between 
these two partner potentials. These simple examples show the simplicity of the f 
transformation and show the lack of commutivity of the f transform with supersym- 
metry. 

6. f transform of the ID harmonic oscillator 

If we start with the superpotential W( r )  corresponding to a shifted harmonic oscillator: 

W( r )  = $or - b - -cO<r<oO (6.1) 
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then we have that 
1 2 2  V l ( r ) = s w  r -bwr+bZ-;w.  

The eigenvalues of this potential are 

E, = nw (6.3) 
and the eigenfunctions are shifted harmonic oscillator wavefunctions: 

*,,(?) = N,H,,(w’/~?) exp( -+wr“)  ?= r - 2 b l w .  (6.4) 
From (3.7) we find that the most general form of the coordinate transformation f is 
given by 

f = Ar2+ Br+ C. (6 .5)  
The simplest explicitly integrable case is B = C = 0 so that 

f = dx/dr  = A112r 

or 
r = ( ~ x ) ” / A ” ~  x =+A’l2r2, 

? (x )  has support in the interval 0 < x < 00. In terms of r we have 

? ( r ) = ( A r Z ) - ’ [  - 2 r - 2 + b 2 - ( n + i ) w - b w r + b r 2 ( w 2 + 4 E , , A ) ] .  (6.8) 
For ? to be independent of n we clearly need 

E,  = -w2 /4A .  (6.9) 
We can then write in terms of x :  

? (x )  = - 3 / 1 6 ~ ~ + ( b ~ - w / 2 - n w ) / 2 x A ’ / ~ -  ~ w / ~ ~ ~ ~ A ~ ~ ~ x ’ ~ ~  

= - 3 / 1 6~ + CY / x - p / x ’/ (6.10) 

The requirement that a and /3 are independent of n then tells us that, for each 
we need to relate ? to a harmonic oscillator with different shape 

( n + + ) w 3 + 2 a ~ 1 / 2 w 2 = 2 ~ 3 / 2 p 2  (6.1 1 a )  

where a, p are independent of n. 

eigenvalue of 
parameters w and b. Specifically we find w is the solution to the cubic equation: 

and b satisfies 

b = 2 1 / 2 A 3 / 4 P / w .  

For the special case a = 0 this leads to 

(6.11b) 

w =[2A3/ ’P2 / (n+$)] ’ /3  b = ( 2 A 3 / 2 P 2 ) 1 / 6 ( n + 1 ) 1 / 3  
(6.12) 

E ,  = - $ [ 2 p 2 / ( n  +f)p3.  
The wavefunctions $ , ( x )  are obtained from ( 3 . 2 ~ ) .  Using 

f 1/2 = ~ ‘ / 8 ( 2 ~ )  1/4 (6.13) 

(6.146) 



3716 F Cooper, J N Ginocchio and A Wipf 

7. Conclusions 

In this paper we have shown how to use operator transformations (f transformations) 
to obtain new solvable potentials from already known solvable potentials. We showed 
how starting from known shape-invariant potentials such as the Poschl-Teller potential 
and the harmonic oscillator potential we could obtain the wavefunctions and eigen- 
values of a more general class of potentials-the Natanzon potentials. We also showed 
that these f transformation do not, in general, preserve shape invariance nor do they 
commute with supersymmetry operations. 
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