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1 IntrodutionEver sine its invention supersymmetry has been an important subjet in high-energyphysis beyond the standard model. It is onsidered to be a neessary ingredient tobridge the gap between the sale of eletroweak symmetry breaking and the muh largeruni�ation sale. Nowadays, supersymmetri theories over the whole range from su-persymmetri lassial mehanis [1℄, quantum mehanis [2, 3℄, salar and gauge �eldtheories [4℄ to string- and M -theory [5℄. They allow for the onstrution of low-energye�etive ations, as for the N = 2 Seiberg-Witten model [6℄ or the formulation of ertainduality relations, like in the original Maldaena onjeture for gauge theories withN = 4extended supersymmetry [7℄.The non-perturbative e�ets in supersymmetri theories, and in partiular, the dynam-ial breaking of supersymmetry are a subjet of intensive studies. At present time thelattie formulation is the only tool for systemati investigations of suh e�ets, and lat-tie simulations provide the means of doing reliable alulations in the strong-ouplingregime or near a phase transition point. After the pioneering work of Dondi and Nio-lai [8℄ there has been an ongoing e�ort into formulating, understanding and simulatingsupersymmetri theories on the lattie [9, 10, 11, 12℄. Reent lattie results, e.g. on thebreaking of supersymmetry, have been obtained in [13, 14, 15℄.A ommonly aepted guiding priniple in any good lattie alulation is to build in asmany of the symmetries of the ontinuum model as possible, suh that the lattie resultsrespet these symmetries identially. However, often these are oniting requirementsand not all symmetries an be inorporated on the lattie. This in turn introdues subtlelattie artifats into the formalism, whih one may not get rid of in the ontinuum limit.For example, lattie regularizations of supersymmetri theories generially break largeparts of supersymmetry, and it is a nontrivial problem to reover supersymmetry inthe ontinuum limit. However, there are disretizations with highly nonloal derivativeoperators, for whih supersymmetry is manifestly realized [8, 11℄. Alternatively, for two-dimensional models one an disretize only spae (time remains ontinuous) suh that asubalgebra of the N = 1 supersymmetry algebra,fQ�; Q�g = 2(�0)��P�remains intat [9, 10, 16℄. That subalgebra then determines the spetral properties ofthe super-Hamiltonian H. The fermion doubling for naive lattie derivatives [17, 18℄is another apparently unrelated notorious example of suh lattie artifats. For bosonsthere is no suh problem. However, if we try to preserve part of supersymmetry thenthe fermioni mirror states lead to doublers in the bosoni setor as well.In this paper we study ontinuum and lattie versions of two-dimensional Wess-Zumino(WZ) models. Similar to the original four-dimensional theory [19℄, these models ontainsalar and fermion �elds oupled by a Yukawa term. A partiular version possessesN = 2 supersymmetry and has been the subjet of analyti [20, 21℄ and numerial [22℄studies. 2



In setion 2 we onsider the o�-shell formulation for a general lass of ontinuum mod-els and derive the supersymmetry transformations and Noether urrents. Partiularemphasis is put on the form of the entral harges [23℄.In setion 3 we turn to the lattie version of the models. We show that for real andantisymmetri lattie derivatives the N = 1 algebra an be represented on free �elds.The loal left- and right-derivatives are not antisymmetri and the antiommutator ofthe orresponding superharges does not yield the disretized Hamiltonian for the freemodel. If we insist that supersymmetry is realised on free �elds without fermion andboson doubling then we must allow for nonloal derivatives on the lattie. One partiularsuh derivative, the SLAC operator, is introdued in this setion. The numerial resultsfor this operator onerning supersymmetry in lower-dimensional systems are in exellentagreement with ontinuum results. In setion 4 we show how to derive the models withN = 1 andN = 2 supersymmetry on a spatial lattie by a suitable dimensional redutionof a high-dimensional Eulidean Dira operator. In the proess of redution the Diramatries and oordinates turn into Majorana spinors and salar �elds on the lattie.We ount and onstrut the normalisable eigenstates of H with zero energy both in theweak and strong-oupling limits. In partiular we �nd that the N = 2 models with �2qinteration admit qN suh states if N is the number of spatial lattie sites.In setion 4 we bridge the gap between strong- and weak-oupling regimes for modelswith N = 1 and N = 2 supersymmetry with the help of powerful methods from operatortheory. Using a theorem by Kato we prove that the zero modes in the strong-ouplinglimit survive for intermediate ouplings as long as the oupling onstant of the leadingterm in the potential does not vanish. We omment on what we expet to happen in theontinuum limit of theN = 2 models, where only q of the qN zero modes survive [24℄. Wealso omment on reent lattie simulations of the two dimensional Wess-Zumino modelby Bearia et al. [25℄. Some tehnial details onerning the nonloal SLAC operatorand the proof that the transition from strong to intermediate ouplings is governed bya relative ompat perturbation are relegated to the appendix.2 Wess-Zumino Models in 1 + 1 DimensionsIn the o�-shell formulation two-dimensional parity invariant Wess-Zumino models on-tain a set of, say d, triples, eah ontaining a real salar �, Majorana spinor  andauxiliary �eld F . In a Majorana representation for the Cli�ord algebraf�; �g = 2��� ; with 0�y0 = �; � = diag(1;�1); (1)the Majorana spinors are real.The supersymmetry algebra is spanned by N Hermitian spinorial superharges Q(I),I = 1; : : : ;N , by the Hermitian two-momentum P� and by the (anti-)symmetri matrix
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of Hermitian entral harges ZIJS (ZIJA ) and has the formfQ(I)� ; �Q(J)� g = 2 �ÆIJ =P�� + iÆ��ZIJA + i���ZIJS � ; � = 01; (2)with spinor index � = 1; 2.In omponent �elds the Lagrangian of the models with N = 1 supersymmetry reads [26℄L = 12���a���a � F aW;a+12F aFa + i2 � a =� a � 12W;ab � a b; (3)where the superpotential W depends on the dimensionless salar �elds �1; : : : ; �d. Wedenoted the derivative of W with respet to �a by W;a and employed the Einstein sum-mation onvention. For Wess-Zumino models the target spaes are Rd with Eulideanmetri Æab.Now we onsider the most general linear o�-shell supersymmetry transformation of the�elds. Sine (�a;  a; F a) have mass dimensions (0; 12 ; 1) respetively, suh transforma-tions have the form [26℄ Æ��a = ��(A )a;Æ� a = i=� (B�)a�+ (CF )a�; (4)Æ�F a = i��=� (D )a;where, for example, (A )a = Aab b. The onstant matries A;B;C;D must be real forthe supersymmetry variations to be Hermitian �elds. The requirement that L transformsinto a divergene implies the following algebrai relations for these matries and the realsymmetri matrix W 00 = (W;ab ),A+BT = 0; D + CT = 0; (5)ATW 00 +W 00C = 0; W 00AT + CW 00 = 0: (6)It follows thatÆL = �� ��V � +� with � = �12W;ab ���Aad d� � � b �:Free models have quadrati superpotentials and � is identially zero. For interatingmodels we may exploit the Fierz identity( � a b)(  d) + ( � a d)( b ) + ( � a )( d b) = 0to prove that � vanishes, providedW 00A = ATW 00 (7)holds true. Then the ation is left invariant by the transformations (4) and the orre-sponding onserved Noether urrent readsJ� = (���� �������)a (A )a � i(CW 0)a� a; W 0 = (�W=��a) : (8)4



In what follows, employing (5), we express the matries B and D in terms of A and C.We onsiderN supersymmetries (4) with matries (AI ; CI) and denote the orrespondingsupersymmetry transformations by Æ(I)� . For all pairs (AI ; CI) the onditions (6) and(7) must hold for the Lagrangian to be invariant. These onditions severely restrit theform of the superpotentialW . We also demand that two supersymmetry transformationslose on translations (later we shall omment on the possibility of entral harges)� Æ(I)�1 ; Æ(J)�2 �� = 2iÆIJ(��2��1)���; (9)and this puts further restritions on the matries. For the salar and the auxiliary �eldthe ondition (9) readAIATJ +AJATI = CTI CJ + CTJ CI = 2ÆIJ1 and AICJ �AJCI = 0: (10)In partiular all matries are orthogonal, suh that the two onditions in (6) oinide.Atually, the last relation implies that the algebra (9) is realized on the Majorana �eldsas well.The transformation Æ(I)� is generated by the Noether harge orresponding to J�I in (8),Q(I) = Z dx �(� � �0�)a(AI )a � i(CIW 0)a0 a� ; �a = _�a; (11)where we have set (d�a=dx) = �0.Canonial struture: The anonial struture is more transparent in the on-shell for-mulation. This is obtained from the o�-shell one by replaing Fa by W;a. The nontrivialequal time (anti)ommutators between the salar �elds, their onjugated momentum�elds �a = _�a and the Majorana �elds readf a�(x);  b�(y)g = Æ��ÆabÆ(x� y) and [�a(x); �b(y)℄ = iÆabÆ(x � y): (12)The Hamiltonian is the Legendre transform of the Lagrangian,H = Z dxH; H = 12� � � + 12�0 � �0 + 12W 0 �W 0 + 12 yhF ; (13)where, for example, � �� = �a�a. We have introdued the Hermitian Dira-Hamiltonian(hF)ab = �i��xÆab + 0W;ab� (h0F)ab + 0W;ab : (14)The ation is invariant under spaetime translations generated by Noether hargesP0 = H and P1 = Z dx �� � �0 + i2 � 0 0� ; (15)and under supersymmetry transformations (4) generated by the above superhargesQ(I).By using the relations (6,10) one proves that the Q(I) satisfy the super-algebra (2) withentral harges ZIJA = 0 and ZIJS = �Z �0 � �AICJ�W 0; (16)5



where we have negleted ambiguous surfae terms ontaining the Majorana �elds only.Note, that the integrand is a total derivative, sine the integrability onditions for theexistene of a potential U(�(x)) with�0 � (AICJ)W 0 = dUdx = U 0 � �0is that AICJW 00 is a symmetri matrix. But this follows from the ondition (6).In most expliit alulations we hoose the Majorana representation0 = �2; 1 = i�3 and � = 01 = ��1 (17)suh that the superalgebra takes the simple formfQ(I)1 ; Q(J)1 g = 2 �HÆIJ +ZIJS � ;fQ(I)2 ; Q(J)2 g = 2 �HÆIJ �ZIJS � ; (18)fQ(I)1 ; Q(J)2 g = 2 �P1ÆIJ + ZIJA � :N = 1 supersymmetry: There is always at least one solution to the onstraints (5,6,7)and (10) for an arbitrary superpotential W , namelyA1 = �B1 = �C1 = D1 = 1: (19)Solving for the auxiliary �eld, Fa =W;a, the on-shell transformations take the formÆ(1)� � = �� ; Æ(1)�  = ��i=���W 0� �; (20)and the orresponding superharge readsQ(1) = Z dx �� � �0� + iW 00� �  : (21)For vanishing spinors the only non-trivial entral harge isZS = Z dx dWdx : (22)N = 2 extended supersymmetry: We assume that the model (3) admits a seondsupersymmetry besides the solution (19). The onditions (10) implyA2 = �C2 = I; I = �IT ; I2 = �1: (23)The matrix I de�nes a omplex struture and exists for all target spaes Rd with evendimension d. The onditions in (6) and (7) on the superpotential both redue toIW 00 +W 00I = 0; (24)6



whih means that the superpotential is a harmoni funtion of the salar �elds, in agree-ment with the general analysis in [26℄. On-shell, the seond supersymmetry has theform Æ(2)� � = ��I ; Æ(2)�  = �i=� I�� IW 0� �; (25)and is generated by the Noether-superhargeQ(2) = Z dx �� � �0� � iW 00� � (I ): (26)For vanishing spinor �elds the entral harges readZIJA = 0 and �ZIJS � = �3 Z dx dWdx � �1 Z dx dUdx ; (27)where U is the imaginary part of the analyti funtion F (�1+i�2) = W + iU with realpart W .For the models with N = 2 supersymmetry there exists a onise formulation in whihtwo real salars are ombined to a omplex salar, and two Majorana spinors are om-bined to a Dira spinor. For example, for the target spae R2 we set� = 1p2 ��1 + i�2� ;  = 1p2 � 1 + i� 2� : (28)The harmoni superpotential is the real part of a holomorphi funtion,W (�; ��) = F (�) + �F ( ��); (29)and the on-shell Lagrangian takes the formL = ������y + i � =� � 12 jF 0j2 � F 00 � P+ � �F 00 � P� ; (30)where F 0 is the derivative of F with respet to the omplex �eld � and we have introduedthe hiral projetors P� = 12(1+ �): (31)Along with the real salar �elds one ombines the orresponding onjugate momentum�elds to a omplex momentum, � = (�1�i�2)=p2, suh that[�(x); �(y)℄ = iÆ(x � y) and f �;  y�g = Æ�� : (32)The omplex superharge takes the formQ = 12 �Q(1) + i�Q(2)� = �� � ��0 + iF 00�P+ + ��� + �0 + i �F 00�P� : (33)and satis�es the antiommutation relationsfQ;Qg = 0 and fQ; �Qg = =P + �Z11S �Z12S : (34)7



Higher supersymmetries: Next we show that with the absene of entral hargesthere is no third linear o�-shell supersymmetry besides (20) and (25). To be ompat-ible with the �rst transformation in (20), the orthogonal matries A3 and C3 must beantisymmetri and of opposite sign. The onditions (10) between the seond and thirdsupersymmetry imply [I;A3℄ = fI;A3g = 0;whih is impossible for orthogonal matries I and A3. We onlude that the models (3)admit at most two linear o�-shell supersymmetries.Let us mention that, if we allow for entral harges in the superalgebra, there existfurther supersymmetries. But the orresponding models are massive free models. Theyan be derived by a dimensional redution of the free N = 2 model in 4 dimensions.3 Lattie Formulations of Wess-Zumino ModelsAs ultraviolet-uto� we disretize spae, introdue a spatial lattie with N equidistantsites and hoose periodi boundary onditions. The time is kept ontinuous suh thattime translations remain symmetries generated by the Hamiltonian. Following [9℄ we tryto preserve at least that subalgebra of (2) whih involves H.The �elds of the supersymmetri model in the Hamiltonian formulation are disretizedas follows,(�a(x); �a(x);  a(x)) �! (�a(n); �a(n);  a(n)) ; n = 1; : : : ; N; (35)where the lattie spaing has been set to one. On a spae-lattie the derivative beomesa di�erene operator the partiular hoie of whih is left open for the moment being.We de�ne the lattie Hamiltonian as square of the disretized superharge Q1. Forinterating theories it onsists of the disretized Hamiltonian of the ontinuum theoryplus a lattie ounterpart of the entral harge.On-shell the N = 1 model ontains d 2 f1; 2; : : : g Hermitian salar �elds �a(n) and dMajorana spinors  a(n) on N lattie sites (n = 1; : : : ; N). The �elds obey the non-trivialanonial (anti-)ommutation relations[�a(n); �b(n0)℄ = iÆabÆ(n; n0) and f a�(n);  b�(n0)g = ÆabÆ��Æ(n; n0): (36)We hoose a Majorana representation suh that the  a are Hermitian two omponentspinors.When we put the superharge on a spae-lattie, we must hoose the lattie derivativein the term �Z �0� = Z �� 0 = iZ �h0F 8



in (11). Sine we do not want to speify � at this point we make the general ansatz forthe Hermitian Dira-Hamiltonianh0F = iÆab� 0 ���y 0� ; with ��y = �y� � �4 (37)and a real � with orret ontinuum limit. � must be real, sine it should map Majoranaspinors into Majorana spinors. Let us de�ne its symmetri and antisymmetri parts�S = 12(� + �y); �A = 12 (� � �y) with [�A; �S℄ = 0; �2A � �2S = 4: (38)The last two properties follow from our assumption [�; �y℄ = 0 in (37). Sineh0F (17)= �i��A � 0�S; (39)hirality is preserved for massless fermions if � = �A is antisymmetri, in whih aseh0F = �i��A. Thus, if � is antisymmetri and loal then, aording to some long-standing no-go theorems there is fermion doubling. There are many suh theorems, andwe mention only two, one due to Nielsen and Ninomiya [17℄ and a later elaboration dueto Friedan [18℄. No-go theorems are notorious in that people �nd a way around them,and following Friedans work, L�usher [27℄ and others did so. Below we irumvent theno-go theorems by using a nonloal and antisymmetri derivative.However, most lattie derivative are not antisymmetri in whih ase h0F ontains amomentum dependent mass term �0�S. Suh a hirality violating term has been in-trodued by Wilson [28℄ to raise the masses of the unwanted doublers to values of orderof the uto�, thereby deoupling them from ontinuum physis.As disretized superharge (21) we takeQ(1) = (�;  ) + i(�; h0F ) + i(W 0; 0 ): (40)A areful alulation yields the following antiommutation relations,12fQ(1)� ; Q(1)� g = (=P0)�� � i(1)��(W 0; �A�)� Æ��(W 0; �S�) (41)with energy and momentum2P0 = (�; �)� (�;4�) + �W 0;W 0�+ ( ; hF ) ;2P1 = 2��A�; ��� � ; �h0F � ; hF = h0F + 0W 00: (42)To arrive at these results one uses the identity(�; ��) + i(�y 1;  1) = (��; �) � i( 1; �y 1);whih holds for any real di�erene operator �. The superalgebra an be rewritten as12fQ(1); �Q(1)g = =P + i�(W 0; �A�)� 0(W 0; �S�): (43)9



The last term is absent in the superalgebra (2) and breaks Lorentz ovariane expliitly.This lattie artifat originates in the Wilson term �0�S in (39). This term must vanishin the ontinuum limit. One may wonder whether there exist other improvement termswe ould add to a loal �i��A in order to avoid the fermion doubling. However, sinefor Majorana fermions the terms( ; �S ); ( ; 1�S ); ( ; ��S )are onstant or zero, all terms but 0�S do not show up in the right hand side of (42)and we obtain the same result as if we had hosen hF = �i��A. Hene only the Wilsonterm � 0�S an be used to avoid the fermion doubling. This argument does not applyto theories with several Majorana fermions and in partiular to models with extendedsupersymmetry.Models with N = 2 supersymmetry ontain the seond superharge in (26), the lattieversion of whih readsQ(2) = (�; I ) + i(�; h0FI )� i(W 0; 0I ); (44)and satis�es the same antiommutation relations as Q(1), up to a sign hange of the lasttwo terms in (43). The antiommutator of two lattie harges reads12fQ(I); �Q(J)g = ÆIJ =P + i�ZIJS +ZIJL ; (45)where the `would-be' entral hargesZIJS = �IJ3 (W 0; �A�)� (�1)IJ(U 0; �A�) (46)approah the entral harges (27) of the ontinuum model. To arrive at (45) one needsthe harmoniity of the superpotential whih in turn implies the existene of a funtionU(�) with IW 0 = U 0, and this funtion enters the entral harges. However, sine theLeibniz rule never holds on the lattie, the integrands W 0 � �A� and U 0 � �A� in (46) arenot just total derivatives as in the ontinuum and as a onsequene the terms ZIJS arenot entral to the algebra. The annoying termsZIJL = �(�3)IJ0(W 0; �S�) + (�1)IJ �0(U 0; �S�)� i(�; I�S�)� i2( ; I�S )� (47)in (45) are pure lattie artifats and vanish for antisymmetri lattie derivatives.Free Wess-Zumino model (N = 1): For simpliity we onsider the free model withsalars of equal mass. The superpotential reads W = 12m�a�a and with W 0 = m� the`would-be' entral harge vanishes,(W 0; �A�) = m(�; �A�) = 0: (48)As Hamiltonian we hoose the square of the superharges,H = 12fQ1; Q1g = 12fQ2; Q2g = P0 �m(�; �S�);2P0 = (�; �) + ��; (�4+m2)��+ ( ; hF ) ; (49)10



where the Dira-Hamiltonian for the non-interating model is justhF = �i��A + 0(m� �S) with h2F = (�4+m2 � 2m�S)12 (50)and �4 = ��y. For antisymmetri derivatives the pure lattie artifats ontaining �Svanish and with 2P1 = fQ1; Q2g we obtain the familiar algebrafQ�; Q�g = 2(�0)��P�; [Q�; P�℄ = 0; [P0; P1℄ = 0: (51)We onlude that the N = 1 superalgebra in 1 + 1 dimensions an be represented as afree Wess-Zumino model on a spae lattie.3.1 Lattie DerivativesAt this point some words about lattie derivatives are in order. At �rst instane onemay think that the loal right- and left derivatives(�Rf)(n) = f(n+ 1)� f(n) and (�Lf)(n) = f(n)� f(n� 1) (52)are ideal andidates for a lattie derivative. With respet to the `2-salar produt of twolattie funtions, (f; g) = NXn=1 f(n)g(n); (53)the adjoint of the left-derivative is minus the right-derivative, �yL = ��R. Both derivativesshare the property that (1; �Rf) = (1; �Lf) = 0. But the orresponding momenta p̂L =�i�L and p̂R = �i�R are not Hermitian and possess omplex eigenvalues,�k(p̂R) = ��k(p̂L) = 2eipk=2 sin pk2 ; with pk = 2�k=N; and k = 1; : : : ; N:If we insist on a Hermitian momentum we ould hoose the antisymmetri derivativeoperator �R+L = 12(�R + �L) = ��TR+L (54)whih is used in many lattie alulations. The N real eigenvalues of p̂R+L read�k(p̂R+L) = sin pk = Re (�k(p̂R)) ;and waves with the shortest wavelength, that is with pk at the boundary of the �rstBrillouin zone, are zero modes of �R+L. Hene, by trying to preserve the hermitiity ofp̂ in this naive way immediately introdues spurious zero modes that are responsible for
11



the fermion doubling problem.
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A third alternative for the lattie mo-mentum is the Hermitian and nonloalSLAC operator p̂SLAC = �i�SLAC intro-dued by Drell, Weinstein and Yankielow-iz [29℄ with real eigenvalues pk. This op-erator has no spurious mirror states in the�rst Brillouin zone. The eigenvalues ofp̂SLAC are eigenvalues of the momentumoperator in the ontinuum and the di�er-ene between the lattie and ontinuumresults are minimized. In the �gure on theleft we have plotted the eigenvalues of thevarious lattie operators. The real partsof the eigenvalues of p̂R and p̂L are justthe eigenvalues of p̂R+L. The eigenvaluesof p̂R+L are twofold degenerate. The SLACoperator has the same dispersion relationas the momentum in the ontinuum.Besides �R; �L; �R+L and �SLAC there are many other loal and nonloal andidates for lat-tie derivatives with the orret naive ontinuum limit. However, it is easy to see that nolinear di�erene operator will obey the Leibniz rule. Many problems in supersymmetrilattie theories are exatly due to this fat, see [8℄.In order to better understand the dependeny of the spetrum and doubling phenomenonon the lattie derivative we onsider the following one-parameter interpolating family ofultra-loal di�erene operators�� = 12(1 + �)�R + 12(1� �)�L = �S + �A; (55)with symmetri and antisymmetri parts�S = 12�(�R � �L) = 12��R�L and �A = 12(�R + �L) = �R+L: (56)When the parameter � varies from 1 to �1, then �� interpolates between �R and �L.For � = 0 we obtain the antisymmetri operator �A in (52).The 2N eigenvalues of the Hermitian Dira-Hamiltonian (50) depend on the deformationparameter as follows,�k(�) = �N�k(�) = �qm2 + 4�(�+m) sin2(12pk) + (1��2) sin2(pk); (57)where pk = 2�k=N and k runs from 0 to N�1. For the extreme ases � = 0; 1 we obtain
12
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�k�SLAC�R��+�R+L m = 0

k

the eigenvalues�k(0) = �qm2 + sin2(pk)with multipliity 4 and�k(1) = �qm2 + 4(1 +m) sin2(12pk)with multipliity 2. This should be om-pared with the eigenvalues on the ontin-uous interval of 'length' N ,�k = �qm2 + p2k (58)with multipliity 2. One an show that for� greater then �+ or less then ��, where4�� = ��pm2 + 8�m� ;all eigenvalues have the same multipliity as in the ontinuum. In partiular, for masslessfermions there are no doublers for �2 > 1=2. However, for � 2 [��; �+℄ some eigenvalueshave multipliity four. In the above �gure we have plotted the positive eigenvalues of hFfor � = 0; 1; �+. For omparison we have depited the positive eigenvalues of hF for thenonloal SLAC derivative(�SLAC)n 6=n0 = (�)n�n0 �=Nsin ��(n� n0)=N� and (�SLAC)nn = 0: (59)Despite being nonloal the SLAC derivative has many advantages as ompared to theloal operators �R; �L or �R+L: it is antisymmetri suh that for massless fermions hiralsymmetry is preserved. By onstrution the 2N real eigenvalues of hF = �i��SLAC+0mare idential to the 2N lowest eigenvalues of the ontinuum operator on the interval of`length' N , (58). For this reason �SLAC has been alled ideal lattie operator in theliterature. We do not expet that unwanted nonloal ounterterms [30℄ are requiredfor the two-dimensional supersymmetri Wess-Zumino models. This is ertainly thease for the �nite models with extended supersymmetry. For the model with N = 1supersymmetry the same should be true sine it does not ontain gauge �elds whihouple to high momentum modes at the edge of the Brillouin zone. Indeed, in [31℄ is hasbeen laimed that �SLAC approahes an ultra-loal operator when N tends to in�nity,exept for a border matrix. In the appendix we give a detailed analysis of this interestingoperator.
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3.2 On the Quality of Lattie Derivatives in Supersymmetri QMIt is enlightening to retreat to quantum-mehanial systems and study the superhargesQ = � 0 AAy 0� ; with A = � +W; Ay = �y +W; (60)and in partiular the quality of lattie approximations for di�erent lattie derivatives �in A. The superharge squares toQ2 = �AAy 00 AyA� ; (61)with isospetral disretized Shr�odinger operatorsAAy = ��y + �W +W�y +W 2AyA = �y� + �yW +W� +W 2: (62)They have idential spetra, up to possible zero modes. If the Leibniz rule held on thelattie, if � was antisymmetri and if we ould replae �W by W 0+W�, then we would�nd the super-Hamiltonian of supersymmetri quantum mehanis in the ontinuum,H = ���y +W 0 +W 2 00 �y� �W 0 +W 2� : (63)The di�erene between Q2 and H is the analog of the last two terms in (43) and thedi�erene in their spetra is a good measure for the suitability of the hosen lattiederivative as regards supersymmetry and the speed with whih the ontinuum limit isapproahed. In the following �gure we have plotted the eigenvalues of Q2 and H for� = �SLAC, denoted by Q2SLAC and HSLAC and for � = �R, denoted by Q2naiv and Hnaiv.We took the superpotentialW = �x2 whih gives rise to the supersymmetri anharmoniosillator.The lowest 57 eigenvalues of Q2 and H are almost idential for the SLAC derivatives andthe lowest 90 eigenvalues of HSLAC agree with the exat values (alulated on a muh�ner grid). These results learly demonstrate the high preision of the SLAC derivativein low-dimensional supersymmetri systems. It does not matter whether we disretisethe superharge or the super-Hamiltonian as long as we hoose the SLAC derivative.After this detour to quantum mehanis we now return to supersymmetri �eld theories.4 From the Dira Operator to the Lattie N = 1 WZ ModelIn this setion we relate the superharges and Hamiltonians of two-dimensional Wess-Zumino models on a spatial lattie to suitable Dira operators. We shall use the resultsin [32℄ on the (extended) supersymmetries of i =D in arbitrary dimensions, speialized to14
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Figure 1: Eigenvalues of Q2 and H for the SLAC derivative and the right-derivative forN = 180 lattie points, length L = 30 and � = 1.at spae and perform a dimensional redution suh that the superharges of the lattiemodels an be related to the redued i =D.To see how Dira operators relate to multi-dimensional supersymmetri matrix-Shr�odin-ger operators we generalize the redution of the two-dimensional Dira equation to theNiolai-Witten operator to higher dimensions. For that purpose we dimensionally reduethe Eulidean operatori =D = i��D� ; D� = �� + iA� ; ��y = ��; � = 1; : : : ; 2N; (64)from the produts of ylinders,M = R� : : : �R| {z }N-times �S1 � : : : � S1| {z }N-times = RN � TN (65)to the fatorRN . We take x1; : : : ; xN as oordinates onRN and �1; : : : ; �N as oordinateson the torus TN , respetively. We dimensionally redue by assuming that the Abeliangauge potential is independent of the angles �n. Then the Dira operator ommuteswith the (angular)momenta �i��n and we may set ��n = 0.4.1 Redution to Models with N = 1If we further set A1(x) = � � � = AN (x) = 0 and de�ne �n = N+n, then the square of theredued Dira operator takes the form� =D2 � 2H = pnpn +A�nA�n � i�n� �m�nA �m; where pn = 1i ��xn : (66)15



Note that the redued operator H ontains no �rst-derivative terms. It an be identi�edwith the Hamiltonian of a two-dimensional N = 1 WZ-model on a spatial lattie, if weset xn = �(n); pn = �(n) and ��n��n� = p2 (n): (67)It follows with (17) that ( ; 0 ) = �i�n��n holds true. If we further assume that thenon-vanishing omponents of A� have the formA�n = ���y��(n) +W 0(�(n)) with �y = �S � �A; (68)then we �nd � 1p2 i =D = (�;  1) + (W 0;  2)| {z }A0 �(�; � 2)| {z }A1 = Q(1)1 (69)with Q(1) in (40). We onlude that the Hamiltonian readsH = P0 + (W 0; �A�)� (W 0; �S�); (70)with P0 from (42). Thus we have proved that the super-Hamiltonian of the N = 1Wess-Zumino model on a lattie with N sites is just the square of the Dira operator in2N dimensions, dimensionally redued from RN � TN to RN .4.2 Ground State of the Free ModelFor the massive non-interating model we have 2W = m�2. The orresponding Hamil-tonian is the sum of two ommuting operators, of the bosoni partHB = 12 (�; �) + 12(�;A2�); A2 = �4+m�S +m2; (71)and the fermioni oneHF = 12( ; hF ); hF = �i��A + 0(m� �S): (72)We assume that the parameters are suh that A2 is positive. Near the ontinuum limitthis is always the ase if the physial mass is positive. The ground state wave funtion(al)of the supersymmetri Hamiltonian fatorizes,	0 = 	B	F with HB	B = EB	B and HF	F = EF	F:We hoose the �eld representation for the salar �eld, suh that�(n) = 1i ���(n) and 	B = 	B(�): (73)16



The bosoni fator 	B is Gaussian	B =  � exp ��12(�;A�)� and EB = 12 trA: (74)Here A is the positive root of the positive and Hermitian A2 in (71). For the family ofoperators in (55) the trae of A is just half the sum of the positive eigenvalues in (57).To �nd 	F we introdue the (two-omponent) eigenfuntions vk of hF with positiveeigenvalues. Sine the Hermitian matrix hF is imaginary the vk annot be real and wehave hFvk = �kvk () hF�vk = ��k�vk (�k > 0): (75)The eigenvetors are orthogonal with respet to the Hermitian salar produt,(vk; vk0) = Xn;�=1;2 �vk�(n)vk0�(n) = Ækk0 and (�vk; vk0) = 0: (76)Now we expand the Majorana spinors in terms of this orthonormal basis, (n) = NXk=1��kvk(n) + �yk�vk(n)� ; where �k = (vk;  ); �yk = (�vk;  ) (77)are one-omponent omplex objets with antiommutation relationsf�k; �k0g = 0 and f�k; �yk0g = Ækk0: (78)Inserting the expansion (77) into HF yieldsHF = 12 Xk:�k>0�k ��yk�k � �k�yk� : (79)It follows that the ground state of HF is the Fok vauum whih is annihilated by allannihilation operators �1; : : : ; �N and has energyEF = �12 Xk:�k>0 �k: (80)Sine h2F = 12 
A2 we onlude, that the positive eigenvalues of hF are idential to theeigenvalues of A suh that E = EB +EF = 0:Sine 	0 is normalizable for A > 0 we see that the Hamiltonian admits a supersymmetriground state for all hoies of the lattie derivative �, provided A is positive.
17



4.3 Ground State for Strong CouplingIn the extreme ase of very strong self-oupling of the salar �eld we may neglet thederivative term in the superharge (69) [9℄. ThenQ andH are the sum of N idential andommuting quantum mehanial operators, eah de�ned on a given lattie site. Hene,the ground state is a produt state, 	0(�) = 
n 0(�n). The operators on a �xed lattiesite readQ(1)1 = 1i  1 ��� +  2W 0(�) and H = � �2��2 +W 02 � i 1 2W 00: (81)A normalizable zero-energy state is annihilated by Q(1)1 , 0(�) = e�i 1 2W (�)!0; (82)where !0 is a onstant two-omponent spinor. It is well-known [33℄ and follows at onefrom (82) that supersymmetry is unbroken if p inW = 1p��p +O(�p�1); � 6= 0; (83)is even and it is broken if p is odd. Note that �i 1 2 is Hermitian and has eigenvalues�1 and that for even p the state  0 is normalisable ifi sign (�) 1 2!0 = !0 or ( 1 � i sign (�) 2)!0 = 0:To summarize, for even p the N = 1 Wess-Zumino model on the spatial lattie hasalways exatly one normalizable zero mode in the strong-oupling limit. For � > 0 thisprodut state has the form	0(�) = exp � NXn=1W (�n)!
0; � 1(n)� i 2(n)�
0 = 0; 8 n: (84)In partiular, for �4-models supersymmetry is broken in the strong-oupling limit where-as it is unbroken for �6-models.5 From the Dira Operator to the Lattie N = 2 WZ ModelIt is known, that on at spaetime the Eulidean Dira operator admits two supersym-metries if the �eld strength ommutes with an antisymmetri and orthogonal matrix I,whih de�nes a omplex struture [32℄. The two real superhargesQ1 = 1p2 i ��D� and Q2 = 1p2 i I����D� (85)
18



form the superalgebra 12fQi; Qjg = ÆijH: (86)They an be ombined to a nilpotent omplex hargeQ = 1p2 (Q1 + iQ2) (87)and its adjoint Qy, in terms of whih the supersymmetry algebra takes the formH = 12fQ;Qyg; Q2 = Qy2 = 0 and [Q;H℄ = 0: (88)To obtain N = 2 lattie models on N sites we onsider the Dira operator onM = R� : : :�R| {z }2N-times �S1 � : : :� S1| {z }2N-times = R2N � T 2N (89)in ontrast to the 2N -dimensional spae in (65). Sine the �eld strength ommutes withthe omplex struture I it is very onvenient to introdue the orresponding omplexoordinates on M ,zn = xn + ix�n = xn + i�n; �n = 2N + n; n; �n 2 f1; : : : ; 2Ng; (90)and fermioni annihilation and reation operators, n = 12 ��n + i��n� ;  yn = 12 ��n � i��n� with f n;  ymg = Æmn: (91)The ondition that F�� ommutes with the omplex struture I implies the existene ofa real superpotential �(z; �z), suh that [32℄Q = 2ie�� 2NXn=1 n ��zn! e�:5.1 Redution to Models with N = 2Again we perform a dimensional redution by assuming that � does not depend on theompat variables �n, � = � �x1; : : : ; x2N� (92)and that the angular momenta ��n vanish. In the setor with vanishing angular momentathe omplex harge simplify toQ = e��Q0e�; where Q0 = i 2NXn=1 n ��xn ; (93)19



sine the omplex zn-derivative beomes the real xn-derivative in this setor. Thisdimensional redued superharge and its adjoint generate the superalgebra (88) withsupersymmetri matrix-Shr�odinger operatorH = 12fQ;Qyg = �12�+ 12(r�;r�) + 12��| {z }HB �X ny�;nm m| {z }HF : (94)For example, for � = ��r this is just the Hamiltonian of the supersymmetrized Hydrogenatom whih has been introdued and solved in [34℄. It is evident from the representations(93) and (94) that Q dereases and Qy inreases the eigenvalue of the number operatorN =X ny n (95)by one and H ommutes with N . The eigenvalues of N are 0; 1; : : : ; 2N .As before, we interpret the 2N oordinates xn and annihilation operators  n as valuesof two salar and one Dira �eld on a one-dimensional lattie with N lattie sites. Morepreisely, we make the following identi�ations for n = 1; 2; : : : ; N ,�(n) = �x2n�1x2n � ; �(n) = �p2n�1p2n � ; (n) = � 2n�1 2n � ;  y(n) = � y 2n�1 y2n � : (96)The free superharge (93) takes the formQ0 = i NXn=1 (n) ���(n) ; Qy0 = NXn=1 y(n) ���(n) : (97)The remaining task is to �nd a superpotential � giving rise to interating lattie Wess-Zumino models. Sine � should be real we use a representation for the two-dimensional-matries suh that i� and 0 are real,0 = �3; 1 = i�1; � = ��2; (98)in order to obtain a real Dira-Hamiltonian,hmF = �i�� +m0 = �m ��� �m� :As explained above, � need not be anti-Hermitian in whih ase we takehmF = �m ��y �m� = �i��A +m0 � i1�S with (hmF )2 = (�4+m2)12; (99)suh that hmF is real and Hermitian. Note that the term ontaining �S is not a momentumdependent mass term as in (39). We have been lead to a di�erent type of Wilson term20



as ompared to the N = 1 model sine we have hosen a di�erent representation forthe -matries. The earlier Majorana representation (17) is not useful in the presentontext, sine it would lead to a omplex � in (93).The term HF in (94) must ontain the free Dira-Hamiltonian and this ondition implies� �2�m���(n)���(n0) = (hmF )��;nn0 ; �; � = 1; 2; n; n0 = 1; 2; : : : ; N: (100)Hene we expet that the real funtion�m = �12(�; hmF �); (101)is the superpotential for a N = 2 supersymmetri model. For these models we use thefollowing inner produts(�; ~�) =X�;n ��;n ~��;n and ( ; ~ ) =X�;n  y�(n) ~ �(n); (102)for salar doublets and Dira spinors, respetively. The orresponding superhargeQ = ie��mQ0 e�m = iXn  (n)� ��� � hmF �� (103)and its adjoint give rise to the following super Hamiltonian,HB = �12(�; �) + 12��; (�4+m2)��; HF = ( ; hmF  ): (104)Note that the superpotential �m is a harmoni funtion, 4�m = 0, and thus there is noonstant ontribution to HB. The harges and Hamiltonian at on funtion(al)s in theHilbert spae of the N = 2 lattie modelsH = h
 � � � 
 h| {z }N�times ; where h = L2(R2)
C4 (105)is the Hilbert spae for the degrees of freedom on one lattie site.Now we turn to interating models by replaing the mass term in�m = �12(�; h0F�) +Xn f��(n)�; f(�) = 12m(�22 � �21);given by the quadrati harmoni funtion f , by an arbitrary harmoni funtion f(�) ofthe two variables �1 and �2,� = �12(�; h0F�) +X f��(n)�; where �f = 0: (106)The superharge and its adjoint are alulated asQ = e��Q0e� and Qy = e�Qy0e�� (107)21



with Q0 and Qy0 from (97). After some algebra one �nds for the bosoni part of H =12fQ;Qyg the formulaHB = 12(�; �) � 12(�;4�) + 12 ��f��; �f���+� �g��1 ; �y�1��� �g��2 ; ��2� (108)where the harmoni funtions f and g are the real and imaginary parts of an analytifuntion, suh that �f��1 = �g��2 and �f��2 = � �g��1 : (109)For the fermioni part of the Hamiltonian one obtainsHF = ( ; h0F )� � ; 0�(�) � ; �(�) = f;11(�)� i�f;12(�): (110)The last term ontains the Yukawa oupling between salar and Dira �elds. Note thatthe last two terms in (108) an be rewritten asZ = ���g��; �A��+��g��; �3�S�� : (111)In the ontinuum limit the �rst term on the right beomes a surfae term ommutingwith the superharges and the seond term, whih is a lattie artifat, must vanish. Thusit is natural to set HB +HF = P0 + Z (112)and interpret the �rst termP0 = 12(�; �) � 12(�;��) + ( ; h0F ) + 12 ��f��; �f���� � ; 0�(�) � (113)as energy and the seond term as `would be' entral harge Z in (111). This agrees withour interpretation for solitoni on�gurations saturating the BPS-bound. To see thatmore learly we onsider the energy of a purely bosoni stati solution,E = P0 = �12(�;��) + 12 ��f��; �f��� : (114)From the very onstrution it is evident, that there is a BPS-bound. One just adds thenon-negative operator HB in (108) to the non-negative operator one gets when hangingthe signs of f and g and �nds E � jZj: (115)For example, a ubi superpotential f + ig = ��3=3 leads to a �4-models withP0 = 12(�; �)� 12 (�;��) + ( ; h0F ) + 12�2 (�; �)2 � � ; 0�(�) � : (116)22



It ontains a salar and pseudosalar Yukawa interation with�(�) = 2�(�1 + i��2):The would-be entral harge is ubi in the salar �elds and readsZ = 2���1�2; �y�1�� ���21 � �22; ��2� : (117)Before turning to the disussion of the ground state we note, that the onserved numberoperator N =Xn  y(n) (n) (118)leads to a deomposition of the Hilbert spae (105) in orthogonal subspaes labelled bythe fermion number,H = H0 �H1 � � � � � H2N�1 �H2N ; N ��Hp = p1: (119)The nilpotent superharge Q dereases N by one, Qy inreases it by one and the super-Hamiltonian ommutes with N ,[N;Q℄ = �Q; [N;Qy℄ = Qy and [N;H℄ = 0: (120)We all the subspae Hp p-partile setor. The states in the zero-partile setor areannihilated by Q and those in the 2N -partile setor by Qy.5.2 Ground State of the Free ModelThe Hermitian lattie Dira-Hamiltonian hmF in (99) is real and an be diagonalized byan orthogonal matrix S,hmF = S�1DS; D = diag(d1; d2; : : : ; d2N ): (121)We rotate the �eld-variables with S,� = S�; � = S and �y = S y:The new �elds still obey the standard antiommutation relations, e.g.f�y�(n); ��(m)g = Æ��Ænm; (122)and the transformed superharges readQ = i�� ��� �D�� and Qy = i�y� ��� +D�� (123)23



and show, that the new degrees of freedom deouple. Hene the ground state must havethe produt form 	0 = exp��12X jdaj�2a� j
i (124)and the superharges at on this state as follows,Q	0 = 2i Xa: da>0 da�a�a	0 ; Qy	0 = �2i Xa: da<0 da�ya�a	0: (125)This way we arrive at the following onditions for this state to be invariant,da > 0 =) �aj
i = 0 and da < 0 =) �yaj
i = 0: (126)This leads to the unique normalizable ground state (124) withj
i = Yda<0 �yaj0i: (127)whih is annihilated by the superharges and hene has vanishing energy. There are Npositive and N negative eigenvalues of hmF suh that the invariant vauum state lies inthe middle setor HN in the deomposition (119) of the Hilbert spae. All fermionistates with negative energies are �lled. This is just the Dira-sea �lling presription.Note that our result is the lattie version of the ontinuum result for the ground state,	0 = exp��12 Z ��p�4+m2��� j
i:5.3 Ground States for Strong CouplingIn the strong-oupling limit we may neglet the spatial derivatives suh that the super-harges and the Hamiltonian beomes the sum of N ommuting operators, eah de�nedon one lattie site [21℄. The operators on a given site take the formQ = i (r+rf) ; H = �124+ 12(rf;rf)�  yf 00 : (128)Now we expliitly onstrut the ground state for the harmoni superpotentialf(�) = �p Re�p; � = �1 + i�2 = rei�; (129)whih gives rise to a supersymmetri anharmoni osillator on the Hilbert spae h =L2(R2)�C4. The bosoni part of H readsHB = �124+ V with V = 12�2r2p�2; (130)
24



and its fermioni partHF = �(p�1) y��Re�p�2 Im�p�2Im�p�2 Re�p�2� (131)It is useful to note that H ommutes with the operatorJ = L+ S; S = �s y�2 ; s = 12(p� 2) (132)and that the ground state must reside in the two-dimensional setor with partile numberN =  y = 1, sine the restrition of HF to the zero- and two-partile setors vanishand HB > 0. The one-partile setor is spanned by the following two eigenstates of S,j"i = � y1 � i y2� j0i and j#i = � y1 + i y2� j0i (133)with eigenvalues 1 and �1, respetively. Here j0i denotes the Fok-vauum whih isannihilated by the annihilation operators  �. Diagonalising J in this setor leads to theansatz  0j(�) = Rj+(r)ei(j�s)� j"i+Rj�(r)ei(j+s)� j#i; (134)where the J -eigenvalue j is integer for even p and half-integer for odd p. Inserting intoQ j = Qy j = 0 yields the following oupled system of �rst order di�erential equationsfor the radial funtionsR0j�(r)� s� jr Rj�(r) + �rp�1Rj�(r) = 0:The square integrable solutions are Bessel funtionsRj�(r) =  rp�1K 12� jp ��p rp� with j 2 f�s;�s+ 1; : : : ; s� 1; sg: (135)The number of supersymmetri ground states of the models with �2p�2 self-interationis just p� 1. The (p� 1)N normalizable invariant eigenstates are	0;j1;:::;jN = NOn=1 0jn(�n) 2 h1 � � � � � hN : (136)For example, for the N = 2 model with �4 interation there exist 2N normalizable zeromodes in the strong-oupling limit. This number diverges in the thermodynami limit.On the other hand, there is exatly one normalisable zero mode when one swithes o�the self-interation. This disrepany between the number of supersymmetri groundstates in the weak and strong-oupling regimes beomes even more puzzling when onetakes into aount ertain rigorous theorems on the stability of suh states under analytiperturbations disussed in the following setion. The zero modes in (136) with radialfuntions (135) have been onstruted previously in [21, 33℄ and [35℄.25



6 From Strong to Weak Couplings6.1 Perturbation Theory and Zero ModesLet us reall a well known result for perturbation theory of zero modes in supersymmetriquantum mehanis [33℄. We onsider the N = 1 ase and denote the single Hermitiansuperharge by Q0,Q20 = H0; f�; Q0g = 0; �y = �; �2 = 1: (137)In addition, we de�ne the projetion operatorsP� = 12(1� �) (138)whih projet on the �1 eigenspaes of �. These eigenspaes are denoted by HB=F. Inthe following we assume that there are no zero modes in HF and at least one zero mode	0 in the bosoni setor HB. We perturb the operator Q0 by an operator �Q1 with realparameter �, Q(�) = Q0 + �Q1, where fQ1;�g = 0. We want to solve the eigenvalueequation Q(�)	(�) = �(�)	(�);with �(0) = 0 and 	(0) = 	0. We onsider the following formal power series in �,	(�) = 	0 + 1Xk=1 �k	k; �(�) = 1Xk=1 �k�k:Proposition: Under the assumptions above one has �(�) = 0 and �	(�) = 	(�) in thesense of formal power series.Proof by indution: To order �0 the proposition holds. Let us assume it holds up toorder �j�1. To order �j we obtain the equationQ0	j +Q1	j�1 = �j	0: (139)Taking the salar produt with 	0 yields�j = (	0; Q1	j�1):Sine � squares to 1 and antiommutes with the perturbation we �nd�j = (�2	0; Q1	j�1) = �(�	0; Q1�	j�1) = �(	0; Q1	j�1) = ��j ;whih proves that �j = 0. Furthermore, withQ0�	j = ��Q0	j = �Q1	j�1 = �Q1	j�1 = Q0	j ;26



we onlude Q0P�	j = 0;where we used the projetion operator P� introdued in (138). As P�	j is a zero modeof Q0 it follows by assumption that it resides in HB. But as P� projets onto HF,we onlude P�	j = 0 or 	j 2 HB. This then proves our statement. Note that thestatement has been proved in the sense of formal power series only. In ase �(�) is notanalyti at � = 0 the result above maybe misleading.6.2 The N = 1 CaseIn what follows, we ompare the strong-oupling results with the usual perturbationtheory around minima of the potential.In the ase deg(W ) = p even, supersymmetry is never broken, neither in the strong-oupling limit nor in perturbation theory. For even p there is at least one minimum ofthe potential V = 12(W 0)2 with V = 0. The quadrati approximation of the potential atthe ritial points yields for eah minimum one normalizable zero mode similar to theground state of the free model. In ontrast to the strong-oupling limit there may bemore than one perturbative zero mode, but they always ome in an odd number. Thedi�erene of bosoni and fermioni zero modes is �1 as in the strong-oupling limit.In the ase deg(W ) = p odd, the di�erene between the strong-oupling limit and per-turbation theory is more severe. Supersymmetry is broken in the strong-oupling limitbut it may be unbroken in perturbation theory. Let us onsider an expliit example,W (�) = g22 �3 + g0�: (140)Perturbation theory for g0 < 0 predits one bosoni and one fermioni zero mode (un-broken supersymmetry), and broken supersymmetry for g0 > 0. The strong-ouplinglimit states that supersymmetry is broken for all g0.In Appendix B.1 we provide the rigorous proof that �A1 with A1 given in (69) is ananalyti perturbation of A0 in (69). This implies that all eigenvalues are analyti fun-tions of the parameter �. Assume now that in a �nite range of the parameter � thereis a ground state with energy zero. As an analyti funtion whih vanishes in some�nite range is identially zero, the number of zero modes hanges at most at isolatedpoints of the parameter spae of �. Furthermore, in the strong-oupling limit, we haveeither bosoni or fermioni zero modes. In subsetion 6.1 we have proved that under thisassumption a zero mode always remains a zero mode. We onlude that, generially,the number of zero modes is given by the number of zero modes in the strong-ouplinglimit. Generially, sine for ertain disrete values of � the number of zero modes ouldbe enhaned. Moreover, as the index also depends analytially on the parameter �, weare able to alulate this index in the strong-oupling limit.27



In the ontinuum and in�nite-volume limit these arguments may break down, as theestimates neessary for proving analytiity (see Appendix B.1) may not be valid anymore.In the unbroken ase we an de�nitely onlude that the theory is still unbroken in theontinuum and in�nite-volume limit. Suppose we know that for any �nite lattie thereis at least one ground state with zero energy. As the limit of zero is again zero thismode survives in the limit. In the ase of broken supersymmetry a non-zero energyeigenstate may beome a zero mode in the ontinuum and in�nite-volume limit, andsupersymmetry may get restored in this limit although it is broken for all �nite latties.Indeed, for negative g0 in our example above, the salar �eld has a non-vanishing vauumexpetation value and therefore the fermioni �eld  aquires a non-zero mass. As thereis no massless Goldstone fermion, supersymmetry has to be unbroken in this ase [3℄.Let us summarize. On a �nite lattie, the strong-oupling limit gives the orret numberof zero modes of the full problem. There is only one zero mode in the ase wheredeg(W ) = p is even, and otherwise there is no zero mode. Variations of the parametersin the superpotential of power less than p do neither hange the number of zero modesnor the index. For example, in the model with superpotential given in (140), it isimpossible to have two phases of broken and unbroken supersymmetry (depending onthe value of the parameter g0) on a �nite lattie. The numerial simulations in [25℄ maybe interpreted as hinting towards suh a phase transition in the ontinuum theory.6.3 The N = 2 CaseSimilar to the ase N = 1, we prove in Appendix B.2 that the index in the strong-oupling limit is the same as for the full problem. This implies that we have at least(p � 1)N zero modes for the theory on �nite latties. For the ontinuum theory in a�nite volume, it was shown using methods of onstrutive �eld theory that the N = 2Wess-Zumino model is ultraviolet �nite and that the index is given by p� 1 [24℄. Thisseems to be in ontradition with our result, as the (p � 1)N zero modes exist for all�nite latties and, by the same arguments as for the N = 1 model, remain zero modesin the ontinuum limit.We suggest the following solution for this problem. Remember that our lattie Hamilto-nian H ontains not only the disretized version of the ontinuum Hamiltonian P0 butalso the entral harge Z, i.e. H = P0 + Z: (141)Furthermore, both P0 and Z ontain the lattie derivative whih ouples �elds at di�erentlattie sites. If we hoose in the strong-oupling limit a zero mode that varies from lattiepoint to lattie point, both P0 and Z may beome very large but will, nevertheless, addup to zero. In the ontinuum limit the energy P0 may be in�nite in whih ase thisrapidly varying zero mode is only a lattie artifat. On the other hand, if we hoosethe same zero mode for eah lattie site, then P0 as well as Z should be zero in the28



ontinuum limit. Thus, there are exatly p � 1 suh modes. We are planning to testthis proposal in a perturbative alulation of P0 and Z. The results will be presentedelsewhere.7 ConlusionsIn this paper we have related Dira operators de�ning supersymmetri quantum me-hanial systems in high-dimensional spaes [32℄ to Wess-Zumino models on a spatiallattie in 1 + 1 dimensions. After a very partiular dimensional redution the squareof i =D an be identi�ed with the super-Hamiltonians of lattiized Wess-Zumino models.This way we disovered a natural onnetion between disretized supersymmetri �eldtheories and supersymmetri quantum mehanis.We have realled the ontinuum formulation of Wess-Zumino models and disussed theirlattie versions. For the ase of simple (N = 1) and extended (N = 2) supersymmetry,we have derived the orresponding Dira operators. Furthermore, all ground states forthe free massive models and the interating theories in the limit of strong oupling havebeen onstruted.Di�erent realizations of lattie derivatives have been disussed and their properties { inpartiular from the point of view of supersymmetri quantum mehanis { have beenanalyzed. Our results on the number of zero modes do not depend on the partiularlattie derivative, as long as some mild assumptions are ful�lled.Employing powerful theorems from funtional analysis we were able to relate the strongand weak oupling regions. For N = 1 it turns out that generially the number of zeromodes is determined by the strong-oupling limit. There is a single (no) zero mode, ifthe degree of the superpotential is even (odd). For N = 2 we �nd at least (p� 1)N zeromodes, where p is the degree of the superpotential and N the number of lattie sites.This number is far o� the orret ontinuum result, whih predits p� 1 zero modes, aserious problem whih has been observed earlier in [21℄.We have explained this paradox as follows: the lattie Hamiltonian H does not only on-tain the ontinuum Hamiltonian P0 but also additional terms whih (for antisymmetrilattie derivatives) are to be interpreted as a lattie version of the entral harge Z. Onthe lattie, P0 and Z anel pairwise for the huge number of zero modes under disus-sion, even though neither P0 nor Z is zero in the ontinuum limit, exept for exatlyp� 1 of the modes.Our Dira operators learly deserve further studies. For instane, the appliation of(standard) index theorems to the ase at hand should reveal new information about the�eld theories. We also plan to extend our results to Dira operators on urved manifolds,whih an be reinterpreted as nonlinear �-models from the �eld theory point of view.
29



AknowledgementsWe thank Hans Triebel for very useful disussions on aspets of funtional analysis andFalk Brukmann and Ivo Sahs for useful onversations. A.K. aknowledges support bythe Studienstiftung des Deutshen Volkes.A The SLAC OperatorIn this appendix we introdue and disuss the nonloal SLAC derivative. It an be usedto de�ne hiral fermions without fermion-doubling.First we onsider real valued salar �elds on the spatial lattie. They maybe interpretedas wave funtions of a quantum mehanial system with Hilbert spae RN , equippedwith the salar produt (�; �) = NXn=1 ��(n)�(n):Although the �elds are real it is useful to embed them in the spae of omplex valuedlattie �elds. For a normalised funtion we interpret j�(n)j2 as probability for �nding the'partile' at the lattie site n. Expetation values of funtions of the 'position' operatorn̂ are hf(n̂)i� =X ��(n)f(n)�(n): (142)We want to derive a similar formula for expetation values of funtions of the momentumoperator. For that aim we Fourier transform the wave funtion as follows~�(pk) = 1pN N 0Xn=�N 0 e�ipk n�(n); where N 0 = 12 (N�1); pk = 2�N k: (143)The inverse Fourier transformation reads�(n) = 1pN N 0Xk=�N 0 eipk n ~�(pk); n = �N 0; : : : ; N 0: (144)We have hosen the symmetri summation to end up with a real di�erene operator. Forperiodi �elds nmust be integer and this is the ase for spae latties with an odd numberof sites. For a normalized � the Fourier transform ~� is normalized as well and we mayinterpret j~�(pk)j2 as probability for �nding the 'momentum' pk. With this interpretationwe obtain hf(p̂)i� = N 0Xk=�N 0 f(pk) j~�(pk)j2 =Xnn0 ��nf(p̂)nn0�n0 (145)30



with matrix elements f(p̂)nn0 = 1N N 0Xk=�N 0 eipk(n�n0)f(pk):With the help of the generating funtionZ(x) = N 0Xk=�N 0 eipkx = sin(�x)sin(�x=N) ; (146)we an alulate all matrix elements of f(p̂). Now we are ready to de�ne the real,nonloal and antisymmetri lattie operator �SLAC = ip̂. The matrix elements aref(�SLAC)nn0 = 1N f � ddx�Z(x)���x=n�n0 : (147)As expeted �SLAC is a Toeplitz matrix with elements(�SLAC)nn0 = (�)n�n0 �=Nsin ��(n� n0)=N� ; for n 6= n0; (148)and the elements on the diagonal vanish, (�SLAC)nn = 0.B Analytiity of PerturbationIn the following we onsider operators on the Hilbert spaeH = L2(Rd;ddx)
CD (149)for D 2 N with normkfk2 = DXi=1 kfik2L2 ; f = (f1; : : : ; fD) 2 H: (150)Here, k � kL2 denotes the familiar L2-norm.B.1 The N = 1 CaseFor the Wess-Zumino model on the lattie with N = 1 supersymmetry we take D = 2N ,d = N (N = number of lattie points) and onsider the (unperturbed) operator (69)A0 = NXn=1 ��i 1(n)�n +  2(n)W 0(xn)� : (151)31



We reall that W is a polynomial of degree deg(W ) = p > 1 and  �(n) are HermitianD �D�matries obeying the Cli�ord algebraf �(n);  �(n0)g = 2Æ��Æ(n; n0); �; � = 1; 2; n; n0 = 1; 2; : : : ; N: (152)The operator A0 with domain of de�nitionD(A0) = C1 (RN )
CDis essentially self-adjoint, where we write C1 (RN ) for the C1-funtions with ompatsupport in RN . A simple alulation using (152) shows(A0)2 =Xn ���n�n +W 0(xn)W 0(xn)� i 1(n) 2(n)W 00(xn)� :Closure of the Operator A0To determine the losure �A0 of the operator A0 we have to �nd the losure of its domainD(A0) with respet to the normkfk2A0;a = akfk2 + kA0fk2; a > 0: (153)Note that these norms are equivalent for all a > 0. Using the abbreviation�p = 1 + jxjp�1; (154)we an prove the followingLemma: There exist onstants a; b1; b2 > 0 suh thatkf 0k2 + b1k�pfk2 � kfk2A0;a � kf 0k2 + b2k�pfk2 (155)holds for all f 2 D(A0).In the Lemma we used the short hand notation kf 0k2 =Pm k�mfk2.Proof: First, we show that only the degree deg(W ) = p is important for terms likePn kW 0(xn)fk2 with f 2 D(A0). Indeed, we �ndXn kW 0(xn)fk2 � Na1k�pfk2; a1 = W 0(xn)�p 21 ; (156)where k � k1 denotes the supremum norm. The fator N arises from the sum over n, asa1 does not depend on n. Similar we obtaink�pfk2 =  �pp1 +PnW 02(xn)q1 +XW 02(xn) f2� a2 �kfk2 +X kW 0(xn)fk2� ; a2 =  �pp1 +PW 02(xn)21 : (157)32



Now, it is easy to prove the seond inequality in (155),akfk2 + kA0fk2 (156)� kf 0k2 + akfk2 +Na1k�pfk2 +Xn kfk kW 00(xn)fk� kf 0k2 + (a+Na1 +Na3)| {z }b2 k�pfk2; (158)with a3 = W 00(xn)�p 1. We used that the matrix-norm of  �(n) is one, sine its eigen-values are �1. In the last inequality we made use of kfk � k �pfk whih holds for allf 2 D(A0).The other inequality in (155) is more diÆult to prove. With (157) we getakfk2 + kA0fk2 � kf 0k2 + 1a2 k�pfk2 + (a� 1)kfk2 �X kfk kW 00(xn)fk: (159)In order to obtain a positive onstant b1 in our lemma we must be rather areful withour estimates for the last term in (159). We introdue a ball of radius R and split f intotwo parts, f = f<+f>, where f< has its support inside the ball f> outside the ball. Weobtain Xn kfk kW 00(xn)fk =X�kf<k kW 00(xn)f<k+ kf>k kW 00(xn)f>k� ; (160)where the terms ontaining both f< and f> vanishes. Let us now onsider the two termsseparately. First, we obtainX kf>k kW 00(xn)f>k � Na4(R)k�pfk2; a4(R) = W 00(xn)�p 1;> ; (161)where we have introdued the supremum norm k � k1;> = supjxj>Rfj � jg. For large R wehave a4(R) � 1=R suh that a4 gets arbitrarily small for big balls. Seond, we obtainX kf<k kW 00(xn)f<k � Na5(R)kfk2; a5(R) = kW 00(xn)k1;<; (162)with k � k1;< = supjxj<Rfj � jg. For R!1 we have a5(R)!1. Altogether, we �ndakfk2 + kA0fk2 � kf 0k2 + (a� 1�Na5(R)) kfk2 + (1=a2 �Na4(R))| {z }b1 k�pfk2: (163)In a �rst step we hoose R large enough suh that b1 is positive. In a seond step wehoose a large suh that the onstant in front of kfk2 is positive as well. This �nishesthe proof of our lemma.Sine all norms kfk2b � kf 0k2 + b k�pfk2 (164)33



are equivalent for b > 0, the Lemma implies that these norms are equivalent to thenorms kfk2A0;a in (153). Therefore, the losure of D(A0) with respet to the norm (153)oinides with the losure with respet to k � kb. This losure is given byD( �A0) = �f 2W 12 (RN )
CD : k�pfk <1	 �W 12 (RN ; �2p)
CD: (165)Here W 12 (RN ) is the Sobolev spae with �rst weak-derivative in L2.PerturbationLet us perturb the operator A0 by the operator A1 in (69),A1 = � NXm;n=1xm (�)mn  2(n): (166)The operator A1 is self-adjoint with D(A1) = L2(RN ; ~�)
CD � D( �A0), with ~�-weightedLebesgue measure, where ~�(x) = (1 + jxj)2. From the following Lemma we will deriveuseful information about the nature of the perturbation.Lemma: For all � 2 R and arbitrarily small � > 0 there exists a C� > 0 suh thatk�A1fk � �kA0fk+ C�kfk; 8f 2 D( �A0): (167)Proof: We prove the inequality for all f 2 D(A0). Then it holds for all elements in thelosure as well. As before we split f = f< + f>. First, we notek�A1f<k � j�jN2a(R) kfk; a(R) = kxnk1;< �maxfj�mnj : m;n = 1; : : : ; Ng: (168)For R!1 the onstant a(R) tends to in�nity. Next, we havek�A1f>k (155)� j�jN2b(R) ( kfk+ kA0fk) ;b(R) =  xn�p(x)1;> �maxfj�mnj : m;n = 1; : : : ; Ng (169)for some positive onstant . For big R the onstant b(R) tends to zero. We hoose theball big enough suh that j�jN2b(R) = � and set C� = � + j�jN2a(R). Note that thelatter onstant may beome huge.Self-adjointnessWe did prove that �A0 is a self-adjoint operator. Clearly �A1 is symmetri on D( �A0).Furthermore, (167) shows that �A1 is �A0-bounded with relative bound less than one.The famous Kato-Rellih Theorem, see Theorem X.12 in [36℄, states that under theseonditions the operator Q1(�) = A0 + �A1 (170)is self-adjoint with domain D( �A0). We onlude that Q1(�) is a family of self-adjointoperators with ommon domain of de�nition D( �A0).34



Analytiity of EigenvaluesIn the following we prove that Q1(�) is an analyti family in the sense of Kato for allreal �. We have seen that Q1(�) is self-adjoint for real �. For a self-adjoint and analytifamily it is known that the eigenvalues depend analytially on the parameter �, see forexample Theorem XII.13 in [36℄.For an arbitrary real �0 the perturbation �0A1 is �A0-bounded with arbitrary smallrelative bound (167). Then, it is easy to see that A1 is Q1(�0)-bounded. It followsthat for small � the operators Q1(�0 + �) form an analyti family of type (A) [36℄ andtherefore also an analyti family in the sense of Kato. But as �0 2 R is arbitrary, wehaven proved that Q1(�) is analyti for all real �.Atually, the ited Theorem XII.13 [36℄ above is only valid for isolated eigenvalues with�nite degeneray or equivalently for eigenvalue in the disrete spetrum. In the followingwe prove that the spetrum of Q1(�) is disrete by proving this statement for its square,H(�) = Q1(�)2. H(�) is self-adjoint with domain of de�nition given byD (H(�)) � �f 2 D( �A0) : Q1(�)f 2 D( �A0)	= W 22 (RN ; �0)
CD; �0(x) = �1 + jxj2p�2�2 (171)and it is semibounded H(�) � 0: (172)Suh operators possess entirely disrete spetra if and only if its resolvent is a ompatoperator, see Theorem XIII.64 in [36℄. In the following we prove that H(�) has ompatresolvent for all � 2 R.We must prove that the image of a bounded subset of the Hilbert spae, sayff 2 H : kfk < 1g; (173)is mapped to a preompat set under the map (H � z)�1 for some z in the resolvent ofH. The image is given by fg 2 D(H) : k(H � z)gk < 1g: (174)As earlier we split g into g> and g< and obtain for large enough radii R the inequalitykgk � kg<k + �. For a ompat ball B = fx 2 RN : jxj � Rg we have Sobolev'sembedding theorem and there is an �-net gj 2W 22 (K; �0), j = 1; : : : ; N� with kg<�gjk < �for one j 2 f1; : : : ; N�g. We extend the gj by zero to the region outside the ball andobtain kg � gjk � 2� (175)for any g in the image of the unit ball under (H � z)�1 and a spei� j 2 f1; : : : ; N�g.We onlude that there is a 2�-net of the image and therefore the image is preompat.This ompletes our proof. 35



Stability of the IndexWe have shown that the eigenvalues are analyti funtions of the parameter � on thewhole real axis. It follows at ones that the index { the di�erene of bosoni zero modesand fermioni zero modes { is also an analyti funtion and, as the index only takes oninteger values, is onstant.An alternative and elegant proof of this statement an be given with the help of thetheorem that a relatively ompat perturbation does not hange the index [37℄. Indeed,inequality (167) implies that our perturbation is relatively ompat1.B.2 The N = 2 CaseAfter the detailed investigation of the N = 1 ase we shorten our disussion for N = 2.In what follows we onsider the real part of the omplex superharge in (107)B0 = NXn=1 �i 11(n)�xn � i 21(n)�yn + 2Xa=1 a2 (n)W;a(xn; yn)! (176)in the strong-oupling limit. For N = 2 supersymmetry the  a� are D-dimensionalHermitian matries obeying the Cli�ord algebra, with D = 22N . The funtion W (x; y)is harmoni and and thus is the real part of an analyti funtion F (x+iy). As in hapter2 we use the notation W;1 (x; y) = �xW (x; y) and W;2 (x; y) = �yW (x; y). As domain ofde�nition we take D(A0) = C1 (R2N )
CD; D = 22N ; (177)suh that B0 is essentially self-adjoint. We introdue the potentialK(x; y) =Xa W;2a (x; y): (178)For large radii r only the leading power of W is relevant. Therefore, we may onsiderthe partiular ase W (x; y) = �pRe zp (179)for whih we �nd K(x; y) = �rp�1 !1 in all diretions for r!1.The perturbation ontains the lattie derivative,B1 = 2NXm;n=1�xm(�)mn 22(n) + ym(�y)mn 12(n)� :Replaing in the estimates for the ase with N = 1 supersymmetry the potentialW 0(xn)by K(xn; yn) leads to analogous results in the N = 2 ase. Again all eigenvalues areanalyti funtions of the parameter � and in partiular the index does not depend onthis parameter.1We thank H. Triebel for the proof of this statement.36
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