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Sine the gauge invariant P (~x) is a funtional of A0 only, we seek a gauge �xing whereA0 is as simple as possible. In an earlier paper [4℄ we onsidered an Abelian projetionwhere the gauge-�xed A0 is time-independent and diagonal. The �xing hinges on thediagonalization of the path ordered exponential P(~x). In the topologially non-trivialsetors the gauge �xed potential has unavoidable singularities [5, 6℄. These singularities,whih an be interpreted as magnetially harged `defets', our at points (or loops andsheets) where P(~x) has degenerate eigenvalues. For SU(2) this happens when P(~x) = �1l.Assoiated with the gauge �xing proedure one an de�ne an Abelian magneti potentialAmag [5℄ on T3. This allows us to preisely de�ne the magneti harge of any defet.With the gauge group SU(2) the possible magneti harges are quantized. While the totalmagneti harge on T3 is zero, the total magneti harge of P(~x) = 1l defets is equal to theinstanton number q [7, 4, 8℄. The relationship between magneti harge and the instantonnumber was onsidered earlier in a di�erent ontext by Christ and Jakiw [9℄ and Grosset.al [10℄.In this letter we extend our results to SU(N) and show that the defets sit on theGribov horizon. Now the magneti potential Amag, and hene the magneti harge QMare diagonal matries. We �nd that there are N types of basi defets orresponding tothe N boundary faes of the fundamental domain for the gauge �xed A0. For a basidefet, QM is an integer multiple of a �xed matrix. Muh as in the SU(2) analysis thereis a simple linear relation between the total magneti harge of a given type of defet andthe instanton number q. We again have overall magneti harge neutrality on T3.We view the four torus as R 4 modulo the lattie generated by four orthogonal vetorsb�; � = 0; 1; 2; 3. The Eulidean lengths of the b� are denoted by L� (we may identifyL0 with the inverse temperature �). Loal gauge invariants suh as tr F��F�� are periodiwith respet to a shift by an arbitrary lattie vetor. However, the gauge potential A hasto be periodi only up to gauge transformations. In order to speify boundary onditionsfor A on the torus one requires a set of SU(N) valued transition funtions U�(x), whihare de�ned on the whole of R 4. The periodiity properties of A are as followsA(x+ b�) = U�1� (x)A(x)U�(x) + iU�1� (x)dU�(x); � = 0; 1; 2; 3 :It follows at one, that the path ordered exponential P(x0; ~x) in (1) has the followingperiodiity propertiesP(x0+L0; ~x) = P(x0; ~x)P(L0; ~x) ; P(x0; ~x+ bi) = U�1i (x0; ~x)P(x0; ~x)Ui(0; ~x) : (2)In the presene of matter in the de�ning representation5 the transition funtions U�(x)satisfy the oyle onditions [3℄U�(x)U�(x+ b�) = U�(x)U�(x+ b�) : (3)Under a gauge transformation the pair (A;U) is mapped to5For the more general twisted ase, see [11, 12℄ 2



AV (x) = V �1(x)A(x)V (x) + iV �1(x)dV (x) ; UV� (x) = V �1(x)U�(x)V (x+ b�) : (4)The integer-valued instanton numberq = 116�2 ZT4 tr F ^ F; (5)is fully determined by the transition funtions [13℄. In partiular, if we take all U� to bethe identity or equivalently a periodi gauge potential then q = 0. Aordingly, if we are todesribe the non-perturbative setors, one must onsider non-trivial transition funtions.For a given q we only require one set of transition funtions. If we have two sets with thesame instanton number then they are gauge equivalent [13℄. In every instanton setor wean hoose transition funtions with the following properties [4℄U0 = 1l; Ui(x0=0; ~x) = 1l ; i = 1; 2; 3; so that Ui(x + b0) = Ui(x) : (6)The ondition that U0 = 1l is simply the statement that the gauge potentials are periodi intime. With (2) and (3) one obtains periodiity of P(~x) in the three spatial diretions. Theproperties of the transition funtions (6) imply that the instanton number is the windingnumber of the map P(~x) : T3 ! SU(N), i.e.q = 124�2 ZT3 tr (P�1dP)3; (7)where P = P(~x), and T3 = fx 2 T4jx0 = 0g. This an be dedued by performing thegauge transformation V (x0; ~x) = P(x0; ~x) whih transforms the transition funtions toUV0 = P(~x) ; UVi = 1l and applying the well known formula for the instanton number interms of the transition funtions [13℄.Now we follow [14, 15, 16, 4℄ and seek a gauge transformation for whih the gaugetransformed A0 is time-independent and diagonal. Consider the time-periodi gauge trans-formation V (x0; ~x) = P(x0; ~x)P�x0=�(~x)W (~x);where P(x0; ~x) is the path ordered exponential (1), and W (~x) diagonalizes P(~x),P(~x) = W (~x)D(~x)W�1(~x): (8)It follows at one that the gauge transformed A0,AV0 = � i� logD(~x); (9)is indeed time-independent and diagonal. Whereas P(~x) is smooth the fators W (~x) and3



D(~x) in the deomposition (8) are in general not. The lassi�ation and impliations ofthese singularities are investigated below.The deomposition (8) is not unique. In a �rst step we assign to P a unique diagonalD(~�) = diag�e2�i�1 ; e2�i�2 ; : : : ; e2��N�1 ; e2�i�N� (10)in its onjugay lass. This is unique if we demand~� 2 F ; where F = f~� 2 RN j�1 � �2 � � � � � �N � �1 � 1; NXi=1 �i = 0g: (11)This means that the entries of D(~�) are ordered on the irle. The onjugay lasses are inone-to-one orrespondene with the points ~� in the fundamental domain F . This domainis a simplex. At its extremal points all but one of the N inequalities in (11) beomeequalities. The extremal point where the only inequality is �� > ��+1, where we have set�N+1 � �1 � 1, is at~�(�) = � �z }| {1; : : : ; 1; 0 : : : ; 0�� �N �1; : : : ; 1�; � = 1; : : : ; N:The orresponding D is a enter element of SU(N):D(~�(�)) = exp (2�i�(�)) = e�2�i�=N 1l; � = 1; : : : ; N: (12)We have introdued �(�) = diag� �z }| {1; : : : ; 1; 0 : : : ; 0�� �N 1l: (13)The f�(1); : : : ; �(N�1)g are the fundamental weights and �(N) = 0. For example, for SU(3)the fundamental domain F is an equilateral triangle, see �g.1, and for SU(4) a tetrahedron.On the boundary fae opposite to extremal point ~�(�) the inequality �� � ��+1 in (11)beomes an equality. We all this (N�2)-dimensional fae the �-plane. If ~� lies on several�-planes, then D(~�) and hene P has several oiniding eigenvalues, see below. From nowon we shall assume that the argument ~�(~x) of D lies in the fundamental domain. Then (8)assigns a unique ~�(~x) to eah P(~x). We shall see that the singularities (so-alled defets)in the deomposition (8) our at points ~x for whih ~�(~x) is on the boundary of F .The diagonalizing matrix W (~x) in (8) is determined only up to right-multipliation withan arbitrary matrix ommuting with D(~x)W (~x) �! W (~x)V (~x) ; V (~x)D(~x)V �1(~x) = D(~x): (14)At eah point the residual gauge transformations V (~x) form a subgroup of SU(N) whihontains the maximal Abelian subgroup UN�1(1) of SU(N). At points where it is just this4
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Figure 1: The fundamental domain F for SU(3). The extremal points of the simplex Forrespond to the enter elements.subgroup we an smoothly diagonalize the Polyakov loop operator. However, at pointswhere it is H � U l(1) ; H non-Abelian ; rank (H) + l = N � 1 ; (15)the Polyakov loop P(~x) has degenerate eigenvalues and there are obstrutions to diagonal-izing it smoothly [4, 5, 6℄. It is onvenient to de�ne the defet manifoldD = f~x 2 T3jresidual gauge group at ~x 6= UN�1(1)g (16)on whih the residual gauge symmetry is non-Abelian. A defet Dp is understood to be aonneted subset of D. In the neighbourhood of a defet the diagonalization is in generalnot smoothly possible and the gauge �xing will be singular.Now we lassify the various defets arising in our gauge �xing. There is a defetwhenever P(~x) has degenerate eigenvalues, i.e. when ~�(~x) is on the boundary of F . When~�(~x) lies on only one �-plane forming the boundary of F then exatly two eigenvaluesoinide. We all this a basi �-defet. Its residual gauge symmetry group SU(2)�UN�2(1)is minimally non-Abelian. There are N types of basi �-defets. If a defet lies on several,say k, �-planes, the non-Abelian part H of the residual gauge group has rank k. H isgenerated by the SU(2)-subgroups assoiated to the �-planes on whih the defet lies.Away from the defets W (~x) in (8) is unique up to a residual Abelian gauge transfor-mation (14):W (~x) �!W (~x)V (~x) with V (~x) = e�i�(~x) 2 UN�1(1) on D := T3 n D : (17)If we append to eah point in D the set of all diagonalizing matries W (~x) we obtain aUN�1(1) prinipal bundle over D. If we an �nd a smooth global setion in this bundle thenthe diagonalization is smoothly possible outside of the defets, see also [17℄. To investigatethe struture of the bundle we employ the Abelian UN�1(1) gauge potential, Amag(~x),5



obtained by projeting the pure gauge AW = iW�1dW onto the Cartan subalgebra,Amag(~x) := (AW ) ;where the subsript  denotes the diagonal part of AW (~x). This Abelian potential issingular at the defets and on Dira strings joining the defets. Under a residual gaugetransformation (17) the gauge potential transforms asAmag �! Amag + i(V �1dV ) = Amag + d� on D :Sine AW is pure gauge, the �eld strength orresponding to Amag is given byFmag = dAmag = i(AW ^ AW ) ; (18)and it is invariant under residual Abelian gauge transformations.A defet may arry N�1 quantized magneti harges [18℄. For eah defet these hargesform a matrix QM in the Cartan subalgebra,QM = 12� ZS Fmag : (19)Here S is a surfae surrounding the defet. The harge matrixQM must satisfy the followingquantization ondition e2�iQM = 1l for eah defet. (20)This is just the standard magneti harge quantization ondition of Goddard et.al [19℄.If a defet Dp divides D into disonneted parts, e.g. a losed wall whih may extendover the whole torus T3, some omments are in order. In this ase the surfae Sp surround-ing the wall Dp onsists of several onneted parts. If the wall defet does not extent overT3 every part of Sp has no boundary and we get the above quantization ondition, see also[20℄. If the wall-defet extends over T3 then eah part of Sp also extends over T3. Butsine Fmag is periodi on T3 the integral of Fmag over eah part of Sp is again quantized,sine we get no ontributions to the magneti harge from the `boundary' of the torus.Depending on the residual gauge symmetry in the defets we get di�erent types ofmagneti monopoles. This is most elegantly expressed if we introdue the simple roots andthe lowest root,�(j) = diag( j�1z }| {0; : : : ; 0; 1;�1; 0 : : : 0) and �(N) = diag(� 1; 0; : : : ; 0; 1):The simple roots are dual to the fundamental weights introdued earlier,tr (�(i) � �(j)) = Æij; i; j 2 f1; : : : ; N�1g:We have seen that to eah basi �-defet there is an assoiated residual symmetry groupSU(2). The root �(�) generates the diagonal subgroup of this SU(2). Below we shall seethat a basi �-defet has magneti harge 6



QM = m�(�) with m 2 Z; � 2 f1; : : : ; Ng: (21)If a defet lies on two or more �-planes then QM is an integer ombination of the orre-sponding �(�),QM = NX�=1m��(�); m� 2 Z; m� = 0 if defet is not on �-plane. (22)The m� are not overdetermined beause a defet an maximally lie on N � 1 of the �-planes. The harge matrix QM lies in the Cartan-subalgebra of the non-Abelian part H ofthe residual symmetry group assoiated to the defet.We shall also prove the following relation between the instanton number and the mag-neti harges of defets of one type:q = � X�-defetsm� : (23)Sine (23) is valid for all types of defet it is immediately obvious that for jqj > 0 everytype of defet must be present. For example, in the ase q = �1 the total magneti hargeof a given type of defet is unity. The simplest (i.e. minimal) way of ahieving this wouldbe to have exatly one monopole of eah type. One is tempted to speulate whether thisminimal monopole ontent is always ahieved for minimal ation on�gurations, i.e. self-dual solutions. Indeed, in the reent onstrution of the general q = 1 aloron solutions(i.e. instantons on S1 � R 3) [21℄ eah instanton has exatly N monopole `onstituents'.Sine the magneti �eld strength Fmag lives on the ompat manifold T3 it follows that wehave overall magneti harge neutrality:Xall defetsQM = 0 : (24)This also follows immediately from (21) and (23); in that it is apparent that the totalmagneti harge must be proportional to PN�=1 �(�) = 0.To derive the results (21,23) we assume that inside a defet the residual gauge groupis uniform. This assumption is made to avoid the ompliation of `defets within defets'.Our arguments are based on the observation thattr (P�1dP )3 = dA(�); � = 1; : : : ; N (25)where the 2-forms areA(�) = �6 tr hAW ^ AW �logD � 2�i�(�)�i + 3 tr hAWD�1 ^ AWDi : (26)These forms are smooth outside the defets, beause they are invariant under the residualAbelian gauge transformations (17). However, A(�) an smoothly be ontinued into all but7



the �-defets [22℄.Now we make use of (25) to relate the magneti harges of the �-defets to the instantonnumber. Away from suh defets A(�) is regular. Now we surround eah �-defet with alosed surfae S and pik a two form A(�) whih is smooth inside S, see �g.2. Sine adefet an not lie on all faes onstituting the boundary of F there is always at least onesuh regular two form with � 6= �. With (7,25) the instanton number reads
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Figure 2: We must hoose two forms A(�p) whih are regular inside losed 2-surfaes Spontaining �-defets Dp. Shown are 3 topologially distint defets: a point-, ring- andwall-defet.q = 124�2 Zoutside dA(�) + 124�2 Xp ZBp dA(�p) = 124�2 Xp ZSp (A(�p) �A(�)); (27)where, sine the 2-forms are periodi on T3, we get no ontributions from the `boundaryof the torus'. Using (26) we obtainA(�) �A(�) = 12�i tr �AW ^ AW (�(�) � �(�))� :Sine the magneti �eld Fmag is the projetion to the Cartan of iAW ^ AW we �ndA(�) �A(�) = 12�tr �Fmag (�(�) � �(�))� (28)and end up with q = XDp tr �QM (�(�p) � �(�))�; (29)where we used (19). The sum extends over all �-defets.Let us have a loser look at the ontribution8



tr �QM (�(�) � �(�))� (30)of a given basi �-defet with minimal non-Abelian entralizer. Then all A(�) with � 6= �are regular at the defet and (30) must not depend on �(�). By noting that the fundamentalweights are dual to the simple roots we see at one that QM must be proportional to �(�).With the quantization onditions (20) we arrive atQM = m� �(�) m� 2 Z:With (29) a basi �-defet ontributes �m� to the instanton number.A non-basi defet on the �-plane must also lie on one of the other boundary-planes,say the �-plane. Then we must not take the orresponding singular A(�) in (27) or �(�)in (30). We see that QM may be an integer linear ombination of �(�) and �(�). If thedefet lies on several �-planes (22) holds. The representation (22) for the magneti hargeis unique. Note that the results (22,23) are also orret in the presene of wall defets.In [15, 4℄ it has been shown that the (singular) gauge �xingA0 = (A0(~x))an be supplemented by additional gauge �xing onditions on the diagonal parts of A1; A2and A3. This gauge an be ahieved and is unique. One an show [23℄ that �eld dependentpart of the Fadeev-Popov determinant assoiated to these onditions isdet D0jH?; D0 = �0 � i[A0; : ℄: (31)Here H? is the spae orthogonal to the Cartan subalgebra. With (9,10) our gauge �xedA0 is diagonal and time-independent,A0 = � i� logD(~x) = 2�� diag (�1(~x); : : : ; �N(~x));and ~�(~x) lies in the fundamental domain F . WithD0 = D�0�0(D��0 D�0)D��0; �0 = x0=�:the eigenvalue problem D0 = � on the spae of time-periodi funtions results in thefollowing simple equation for � = D��0 D�0:�0� = ��; with boundary onditions �(x0 + �) = D�1(~x)�(x0)D(~x):Now it is not diÆult to prove [14, 24℄ thatdet D0jH? = C Y1�i<j�N sin2 f�(�i(~x)� �j(~x))gwith a �eld-independent onstant C. It is just the redued Haar measure of SU(N) [25℄.On the basi defets where either two �'s are equal or �1��N = 1 the Fadeev-Popov9



determinant has a root of multipliity 2. More generally, on a (non-basi) defet wherethe residual symmetry group is H � U l(1) the determinant has a root of multipliitydim (H) � rank (H). In partiular, at the enter elements the determinant has a root ofmultipliity N(N � 1). In other words, the multipliity of the Fadeev-Popov determinantat a defet is equal to the number of non-diagonal generators of the residual gauge groupat this defet. For a given ~x the orresponding zero modes � of D0jH? are just the elementsin H \ H?.Sine the Fadeev-Popov determinant vanishes on the boundary of F we onlude, thatthe defets lie on the Gribov horizon. However, although the boundary of F has ommonpoints with the Gribov horizon they are not the same. Beause of the gauge �xing ondi-tions on the spatial omponents of the gauge potential the fundamental domain is smaller(has lower dimension) than the domain bounded by the horizon.Aknowledgements: We are grateful to Falk Brukmann, Thomas Heinzl and JanPawlowski for helpful disussions. T.T. is indebted to Antonio Gonzalez-Arroyo for sharinghis insights during a visit.Referenes[1℄ K.G. Wilson, Phys. Rev. D10 (1974) 2445.[2℄ A.M. Polyakov, Phys. Lett. 72B (1978) 477; L. Susskind, Phys. Rev. D20 (1979) 2610.[3℄ G. 't Hooft, Nul. Phys. B153 (1979) 141; Ata Phys. Austria CA Suppl. XXII (1980)1063; Phys. Sr. 24 (1981) 841.[4℄ C. Ford, U.G. Mitreuter, T. Tok, A. Wipf and J.M. Pawlowski, Annals Phys. 269(1998) 26.[5℄ G. 't Hooft, Nul. Phys. B190 (1981) 455.[6℄ A.S. Kronfeld, G. Shierholz and U.J. Wiese, Nul. Phys. B293 (1987) 461.[7℄ H. Reinhardt, Nul. Phys. B503 (1997) 505.[8℄ O. Jahn and F. Lenz, Phys. Rev. D58 (1998) 085006.[9℄ N. Christ and R. Jakiw, Phys. Lett. 91B (1980) 228.[10℄ D.J. Gross, R.D. Pisarski and L.G. Ya�e, Rev. Mod. Phys. 53 (1981) 43.[11℄ U.G. Mitreuter, J.M. Pawlowski and A. Wipf, Nul. Phys. B514 (1998) 381.[12℄ A. Gonzalez-Arroyo, Yang-Mills Fields on the 4-dimensional torus. Part I: ClassialTheory, preprint FTUAM-97/18, hep-th/9807108.10
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