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tWe investigate the Abelian proje
tion with respe
t to the Polyakov loop operatorfor SU(N) gauge theories on the four torus. The gauge �xed A0 is time-independentand diagonal. We 
onstru
t fundamental domains for A0. In se
tors with non-vanishing instanton number su
h gauge �xings are always singular. The singularitiesde�ne the positions of magneti
ally 
harged monopoles, strings or walls. These mag-neti
 defe
ts sit on the Gribov horizon and have quantized magneti
 
harges. Werelate their magneti
 
harges to the instanton number.In the absen
e of dynami
al fermions the relevant observables for 
on�nement studies areprodu
ts of Wilson-loops [1℄. At �nite temperature T = 1=� the gauge potentials in thefun
tional integral are periodi
 in Eu
lidean time i.e.A(x0 + �; ~x) = A(x0; ~x) ; A(x) = A�(x) dx�and one may use Polyakov loops [2℄P (~x) = tr (P(�; ~x)); where P(x0; ~x) = P exp "i Z x00 d�A0(�; ~x)# (1)as order parameters for 
on�nement. Below we set P(�; ~x) � P(~x).We shall follow the strategy put forward by G. 't Hooft [3℄ who 
onsidered Yang-Millstheories on a Eu
lidean spa
e-time torus T4. The torus provides a gauge invariant in-frared 
ut-o�. Its non-trivial topology gives rise to a non-trivial stru
ture in the spa
e ofYang-Mills �elds whi
h yields additional information on the possible phases of Yang-Millstheories.1Supported by the Deuts
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Sin
e the gauge invariant P (~x) is a fun
tional of A0 only, we seek a gauge �xing whereA0 is as simple as possible. In an earlier paper [4℄ we 
onsidered an Abelian proje
tionwhere the gauge-�xed A0 is time-independent and diagonal. The �xing hinges on thediagonalization of the path ordered exponential P(~x). In the topologi
ally non-trivialse
tors the gauge �xed potential has unavoidable singularities [5, 6℄. These singularities,whi
h 
an be interpreted as magneti
ally 
harged `defe
ts', o

ur at points (or loops andsheets) where P(~x) has degenerate eigenvalues. For SU(2) this happens when P(~x) = �1l.Asso
iated with the gauge �xing pro
edure one 
an de�ne an Abelian magneti
 potentialAmag [5℄ on T3. This allows us to pre
isely de�ne the magneti
 
harge of any defe
t.With the gauge group SU(2) the possible magneti
 
harges are quantized. While the totalmagneti
 
harge on T3 is zero, the total magneti
 
harge of P(~x) = 1l defe
ts is equal to theinstanton number q [7, 4, 8℄. The relationship between magneti
 
harge and the instantonnumber was 
onsidered earlier in a di�erent 
ontext by Christ and Ja
kiw [9℄ and Grosset.al [10℄.In this letter we extend our results to SU(N) and show that the defe
ts sit on theGribov horizon. Now the magneti
 potential Amag, and hen
e the magneti
 
harge QMare diagonal matri
es. We �nd that there are N types of basi
 defe
ts 
orresponding tothe N boundary fa
es of the fundamental domain for the gauge �xed A0. For a basi
defe
t, QM is an integer multiple of a �xed matrix. Mu
h as in the SU(2) analysis thereis a simple linear relation between the total magneti
 
harge of a given type of defe
t andthe instanton number q. We again have overall magneti
 
harge neutrality on T3.We view the four torus as R 4 modulo the latti
e generated by four orthogonal ve
torsb�; � = 0; 1; 2; 3. The Eu
lidean lengths of the b� are denoted by L� (we may identifyL0 with the inverse temperature �). Lo
al gauge invariants su
h as tr F��F�� are periodi
with respe
t to a shift by an arbitrary latti
e ve
tor. However, the gauge potential A hasto be periodi
 only up to gauge transformations. In order to spe
ify boundary 
onditionsfor A on the torus one requires a set of SU(N) valued transition fun
tions U�(x), whi
hare de�ned on the whole of R 4. The periodi
ity properties of A are as followsA(x+ b�) = U�1� (x)A(x)U�(x) + iU�1� (x)dU�(x); � = 0; 1; 2; 3 :It follows at on
e, that the path ordered exponential P(x0; ~x) in (1) has the followingperiodi
ity propertiesP(x0+L0; ~x) = P(x0; ~x)P(L0; ~x) ; P(x0; ~x+ bi) = U�1i (x0; ~x)P(x0; ~x)Ui(0; ~x) : (2)In the presen
e of matter in the de�ning representation5 the transition fun
tions U�(x)satisfy the 
o
y
le 
onditions [3℄U�(x)U�(x+ b�) = U�(x)U�(x+ b�) : (3)Under a gauge transformation the pair (A;U) is mapped to5For the more general twisted 
ase, see [11, 12℄ 2



AV (x) = V �1(x)A(x)V (x) + iV �1(x)dV (x) ; UV� (x) = V �1(x)U�(x)V (x+ b�) : (4)The integer-valued instanton numberq = 116�2 ZT4 tr F ^ F; (5)is fully determined by the transition fun
tions [13℄. In parti
ular, if we take all U� to bethe identity or equivalently a periodi
 gauge potential then q = 0. A

ordingly, if we are todes
ribe the non-perturbative se
tors, one must 
onsider non-trivial transition fun
tions.For a given q we only require one set of transition fun
tions. If we have two sets with thesame instanton number then they are gauge equivalent [13℄. In every instanton se
tor we
an 
hoose transition fun
tions with the following properties [4℄U0 = 1l; Ui(x0=0; ~x) = 1l ; i = 1; 2; 3; so that Ui(x + b0) = Ui(x) : (6)The 
ondition that U0 = 1l is simply the statement that the gauge potentials are periodi
 intime. With (2) and (3) one obtains periodi
ity of P(~x) in the three spatial dire
tions. Theproperties of the transition fun
tions (6) imply that the instanton number is the windingnumber of the map P(~x) : T3 ! SU(N), i.e.q = 124�2 ZT3 tr (P�1dP)3; (7)where P = P(~x), and T3 = fx 2 T4jx0 = 0g. This 
an be dedu
ed by performing thegauge transformation V (x0; ~x) = P(x0; ~x) whi
h transforms the transition fun
tions toUV0 = P(~x) ; UVi = 1l and applying the well known formula for the instanton number interms of the transition fun
tions [13℄.Now we follow [14, 15, 16, 4℄ and seek a gauge transformation for whi
h the gaugetransformed A0 is time-independent and diagonal. Consider the time-periodi
 gauge trans-formation V (x0; ~x) = P(x0; ~x)P�x0=�(~x)W (~x);where P(x0; ~x) is the path ordered exponential (1), and W (~x) diagonalizes P(~x),P(~x) = W (~x)D(~x)W�1(~x): (8)It follows at on
e that the gauge transformed A0,AV0 = � i� logD(~x); (9)is indeed time-independent and diagonal. Whereas P(~x) is smooth the fa
tors W (~x) and3



D(~x) in the de
omposition (8) are in general not. The 
lassi�
ation and impli
ations ofthese singularities are investigated below.The de
omposition (8) is not unique. In a �rst step we assign to P a unique diagonalD(~�) = diag�e2�i�1 ; e2�i�2 ; : : : ; e2��N�1 ; e2�i�N� (10)in its 
onjuga
y 
lass. This is unique if we demand~� 2 F ; where F = f~� 2 RN j�1 � �2 � � � � � �N � �1 � 1; NXi=1 �i = 0g: (11)This means that the entries of D(~�) are ordered on the 
ir
le. The 
onjuga
y 
lasses are inone-to-one 
orresponden
e with the points ~� in the fundamental domain F . This domainis a simplex. At its extremal points all but one of the N inequalities in (11) be
omeequalities. The extremal point where the only inequality is �� > ��+1, where we have set�N+1 � �1 � 1, is at~�(�) = � �z }| {1; : : : ; 1; 0 : : : ; 0�� �N �1; : : : ; 1�; � = 1; : : : ; N:The 
orresponding D is a 
enter element of SU(N):D(~�(�)) = exp (2�i�(�)) = e�2�i�=N 1l; � = 1; : : : ; N: (12)We have introdu
ed �(�) = diag� �z }| {1; : : : ; 1; 0 : : : ; 0�� �N 1l: (13)The f�(1); : : : ; �(N�1)g are the fundamental weights and �(N) = 0. For example, for SU(3)the fundamental domain F is an equilateral triangle, see �g.1, and for SU(4) a tetrahedron.On the boundary fa
e opposite to extremal point ~�(�) the inequality �� � ��+1 in (11)be
omes an equality. We 
all this (N�2)-dimensional fa
e the �-plane. If ~� lies on several�-planes, then D(~�) and hen
e P has several 
oin
iding eigenvalues, see below. From nowon we shall assume that the argument ~�(~x) of D lies in the fundamental domain. Then (8)assigns a unique ~�(~x) to ea
h P(~x). We shall see that the singularities (so-
alled defe
ts)in the de
omposition (8) o

ur at points ~x for whi
h ~�(~x) is on the boundary of F .The diagonalizing matrix W (~x) in (8) is determined only up to right-multipli
ation withan arbitrary matrix 
ommuting with D(~x)W (~x) �! W (~x)V (~x) ; V (~x)D(~x)V �1(~x) = D(~x): (14)At ea
h point the residual gauge transformations V (~x) form a subgroup of SU(N) whi
h
ontains the maximal Abelian subgroup UN�1(1) of SU(N). At points where it is just this4
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Figure 1: The fundamental domain F for SU(3). The extremal points of the simplex F
orrespond to the 
enter elements.subgroup we 
an smoothly diagonalize the Polyakov loop operator. However, at pointswhere it is H � U l(1) ; H non-Abelian ; rank (H) + l = N � 1 ; (15)the Polyakov loop P(~x) has degenerate eigenvalues and there are obstru
tions to diagonal-izing it smoothly [4, 5, 6℄. It is 
onvenient to de�ne the defe
t manifoldD = f~x 2 T3jresidual gauge group at ~x 6= UN�1(1)g (16)on whi
h the residual gauge symmetry is non-Abelian. A defe
t Dp is understood to be a
onne
ted subset of D. In the neighbourhood of a defe
t the diagonalization is in generalnot smoothly possible and the gauge �xing will be singular.Now we 
lassify the various defe
ts arising in our gauge �xing. There is a defe
twhenever P(~x) has degenerate eigenvalues, i.e. when ~�(~x) is on the boundary of F . When~�(~x) lies on only one �-plane forming the boundary of F then exa
tly two eigenvalues
oin
ide. We 
all this a basi
 �-defe
t. Its residual gauge symmetry group SU(2)�UN�2(1)is minimally non-Abelian. There are N types of basi
 �-defe
ts. If a defe
t lies on several,say k, �-planes, the non-Abelian part H of the residual gauge group has rank k. H isgenerated by the SU(2)-subgroups asso
iated to the �-planes on whi
h the defe
t lies.Away from the defe
ts W (~x) in (8) is unique up to a residual Abelian gauge transfor-mation (14):W (~x) �!W (~x)V (~x) with V (~x) = e�i�(~x) 2 UN�1(1) on D
 := T3 n D : (17)If we append to ea
h point in D
 the set of all diagonalizing matri
es W (~x) we obtain aUN�1(1) prin
ipal bundle over D
. If we 
an �nd a smooth global se
tion in this bundle thenthe diagonalization is smoothly possible outside of the defe
ts, see also [17℄. To investigatethe stru
ture of the bundle we employ the Abelian UN�1(1) gauge potential, Amag(~x),5



obtained by proje
ting the pure gauge AW = iW�1dW onto the Cartan subalgebra,Amag(~x) := (AW )
 ;where the subs
ript 
 denotes the diagonal part of AW (~x). This Abelian potential issingular at the defe
ts and on Dira
 strings joining the defe
ts. Under a residual gaugetransformation (17) the gauge potential transforms asAmag �! Amag + i(V �1dV )
 = Amag + d� on D
 :Sin
e AW is pure gauge, the �eld strength 
orresponding to Amag is given byFmag = dAmag = i(AW ^ AW )
 ; (18)and it is invariant under residual Abelian gauge transformations.A defe
t may 
arry N�1 quantized magneti
 
harges [18℄. For ea
h defe
t these 
hargesform a matrix QM in the Cartan subalgebra,QM = 12� ZS Fmag : (19)Here S is a surfa
e surrounding the defe
t. The 
harge matrixQM must satisfy the followingquantization 
ondition e2�iQM = 1l for ea
h defe
t. (20)This is just the standard magneti
 
harge quantization 
ondition of Goddard et.al [19℄.If a defe
t Dp divides D
 into dis
onne
ted parts, e.g. a 
losed wall whi
h may extendover the whole torus T3, some 
omments are in order. In this 
ase the surfa
e Sp surround-ing the wall Dp 
onsists of several 
onne
ted parts. If the wall defe
t does not extent overT3 every part of Sp has no boundary and we get the above quantization 
ondition, see also[20℄. If the wall-defe
t extends over T3 then ea
h part of Sp also extends over T3. Butsin
e Fmag is periodi
 on T3 the integral of Fmag over ea
h part of Sp is again quantized,sin
e we get no 
ontributions to the magneti
 
harge from the `boundary' of the torus.Depending on the residual gauge symmetry in the defe
ts we get di�erent types ofmagneti
 monopoles. This is most elegantly expressed if we introdu
e the simple roots andthe lowest root,�(j) = diag( j�1z }| {0; : : : ; 0; 1;�1; 0 : : : 0) and �(N) = diag(� 1; 0; : : : ; 0; 1):The simple roots are dual to the fundamental weights introdu
ed earlier,tr (�(i) � �(j)) = Æij; i; j 2 f1; : : : ; N�1g:We have seen that to ea
h basi
 �-defe
t there is an asso
iated residual symmetry groupSU(2). The root �(�) generates the diagonal subgroup of this SU(2). Below we shall seethat a basi
 �-defe
t has magneti
 
harge 6



QM = m�(�) with m 2 Z; � 2 f1; : : : ; Ng: (21)If a defe
t lies on two or more �-planes then QM is an integer 
ombination of the 
orre-sponding �(�),QM = NX�=1m��(�); m� 2 Z; m� = 0 if defe
t is not on �-plane. (22)The m� are not overdetermined be
ause a defe
t 
an maximally lie on N � 1 of the �-planes. The 
harge matrix QM lies in the Cartan-subalgebra of the non-Abelian part H ofthe residual symmetry group asso
iated to the defe
t.We shall also prove the following relation between the instanton number and the mag-neti
 
harges of defe
ts of one type:q = � X�-defe
tsm� : (23)Sin
e (23) is valid for all types of defe
t it is immediately obvious that for jqj > 0 everytype of defe
t must be present. For example, in the 
ase q = �1 the total magneti
 
hargeof a given type of defe
t is unity. The simplest (i.e. minimal) way of a
hieving this wouldbe to have exa
tly one monopole of ea
h type. One is tempted to spe
ulate whether thisminimal monopole 
ontent is always a
hieved for minimal a
tion 
on�gurations, i.e. self-dual solutions. Indeed, in the re
ent 
onstru
tion of the general q = 1 
aloron solutions(i.e. instantons on S1 � R 3) [21℄ ea
h instanton has exa
tly N monopole `
onstituents'.Sin
e the magneti
 �eld strength Fmag lives on the 
ompa
t manifold T3 it follows that wehave overall magneti
 
harge neutrality:Xall defe
tsQM = 0 : (24)This also follows immediately from (21) and (23); in that it is apparent that the totalmagneti
 
harge must be proportional to PN�=1 �(�) = 0.To derive the results (21,23) we assume that inside a defe
t the residual gauge groupis uniform. This assumption is made to avoid the 
ompli
ation of `defe
ts within defe
ts'.Our arguments are based on the observation thattr (P�1dP )3 = dA(�); � = 1; : : : ; N (25)where the 2-forms areA(�) = �6 tr hAW ^ AW �logD � 2�i�(�)�i + 3 tr hAWD�1 ^ AWDi : (26)These forms are smooth outside the defe
ts, be
ause they are invariant under the residualAbelian gauge transformations (17). However, A(�) 
an smoothly be 
ontinued into all but7



the �-defe
ts [22℄.Now we make use of (25) to relate the magneti
 
harges of the �-defe
ts to the instantonnumber. Away from su
h defe
ts A(�) is regular. Now we surround ea
h �-defe
t with a
losed surfa
e S and pi
k a two form A(�) whi
h is smooth inside S, see �g.2. Sin
e adefe
t 
an not lie on all fa
es 
onstituting the boundary of F there is always at least onesu
h regular two form with � 6= �. With (7,25) the instanton number reads
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Figure 2: We must 
hoose two forms A(�p) whi
h are regular inside 
losed 2-surfa
es Sp
ontaining �-defe
ts Dp. Shown are 3 topologi
ally distin
t defe
ts: a point-, ring- andwall-defe
t.q = 124�2 Zoutside dA(�) + 124�2 Xp ZBp dA(�p) = 124�2 Xp ZSp (A(�p) �A(�)); (27)where, sin
e the 2-forms are periodi
 on T3, we get no 
ontributions from the `boundaryof the torus'. Using (26) we obtainA(�) �A(�) = 12�i tr �AW ^ AW (�(�) � �(�))� :Sin
e the magneti
 �eld Fmag is the proje
tion to the Cartan of iAW ^ AW we �ndA(�) �A(�) = 12�tr �Fmag (�(�) � �(�))� (28)and end up with q = XDp tr �QM (�(�p) � �(�))�; (29)where we used (19). The sum extends over all �-defe
ts.Let us have a 
loser look at the 
ontribution8



tr �QM (�(�) � �(�))� (30)of a given basi
 �-defe
t with minimal non-Abelian 
entralizer. Then all A(�) with � 6= �are regular at the defe
t and (30) must not depend on �(�). By noting that the fundamentalweights are dual to the simple roots we see at on
e that QM must be proportional to �(�).With the quantization 
onditions (20) we arrive atQM = m� �(�) m� 2 Z:With (29) a basi
 �-defe
t 
ontributes �m� to the instanton number.A non-basi
 defe
t on the �-plane must also lie on one of the other boundary-planes,say the �-plane. Then we must not take the 
orresponding singular A(�) in (27) or �(�)in (30). We see that QM may be an integer linear 
ombination of �(�) and �(�). If thedefe
t lies on several �-planes (22) holds. The representation (22) for the magneti
 
hargeis unique. Note that the results (22,23) are also 
orre
t in the presen
e of wall defe
ts.In [15, 4℄ it has been shown that the (singular) gauge �xingA0 = (A0(~x))

an be supplemented by additional gauge �xing 
onditions on the diagonal parts of A1; A2and A3. This gauge 
an be a
hieved and is unique. One 
an show [23℄ that �eld dependentpart of the Fadeev-Popov determinant asso
iated to these 
onditions isdet D0jH?; D0 = �0 � i[A0; : ℄: (31)Here H? is the spa
e orthogonal to the Cartan subalgebra. With (9,10) our gauge �xedA0 is diagonal and time-independent,A0 = � i� logD(~x) = 2�� diag (�1(~x); : : : ; �N(~x));and ~�(~x) lies in the fundamental domain F . WithD0 = D�0�0(D��0 D�0)D��0; �0 = x0=�:the eigenvalue problem D0 = � on the spa
e of time-periodi
 fun
tions results in thefollowing simple equation for � = D��0 D�0:�0� = ��; with boundary 
onditions �(x0 + �) = D�1(~x)�(x0)D(~x):Now it is not diÆ
ult to prove [14, 24℄ thatdet D0jH? = C Y1�i<j�N sin2 f�(�i(~x)� �j(~x))gwith a �eld-independent 
onstant C. It is just the redu
ed Haar measure of SU(N) [25℄.On the basi
 defe
ts where either two �'s are equal or �1��N = 1 the Fadeev-Popov9



determinant has a root of multipli
ity 2. More generally, on a (non-basi
) defe
t wherethe residual symmetry group is H � U l(1) the determinant has a root of multipli
itydim (H) � rank (H). In parti
ular, at the 
enter elements the determinant has a root ofmultipli
ity N(N � 1). In other words, the multipli
ity of the Fadeev-Popov determinantat a defe
t is equal to the number of non-diagonal generators of the residual gauge groupat this defe
t. For a given ~x the 
orresponding zero modes � of D0jH? are just the elementsin H \ H?.Sin
e the Fadeev-Popov determinant vanishes on the boundary of F we 
on
lude, thatthe defe
ts lie on the Gribov horizon. However, although the boundary of F has 
ommonpoints with the Gribov horizon they are not the same. Be
ause of the gauge �xing 
ondi-tions on the spatial 
omponents of the gauge potential the fundamental domain is smaller(has lower dimension) than the domain bounded by the horizon.A
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