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1 IntrodutionA long standing and yet unsolved problem is to explain olor on�nement in QCD. Animportant �rst step in this diretion would be to prove the on�nement of stati quarks.Indeed, this has been onviningly demonstrated by many lattie studies [1℄. However, itwould be desirable to study this phenomenon with less reliane on numeris, sine MonteCarlo simulations do not have the logial transpareny of mathematial derivations. Therelevant observables are produts of Wilson-loop operators [2℄. When one has periodiityin Eulidean time (ie. �nite temperature) then one may use a Polyakov loop [3℄ operator,ie. the Polyakov loop is a losed, periodi time-like Wilson loop.Sine the Lagrangian inludes massless �elds and one is interested in the infrared be-haviour of the theory, it is sensible to implement some kind of infrared uto�. It iswell-known for example that in supersymmetri theories with massless modes, the non-renormalisation \theorems" fail in the absene of an infrared regulator [4℄. One possibilityis to use a Wilsonian e�etive ation [5℄ whih by de�nition inludes a momentum spaeinfrared ut-o� on the quantum utuations. An alternative proedure is to simply work onsome ompat Eulidean spae. Of these, the four torus, T 4, is the most attrative. Whendealing with T 4, one automatially inludes the �nite temperature ase (S1 � lR3), andunphysial urvature e�ets are absent. On T 4 one also maintains translational invariane,and thus any relevant supersymmetry.We assume that our gauge �elds are periodi in timeA�(x0 + �; ~x) = A�(x0; ~x): (1.1)In the quantum theory, we may interpret � as the inverse temperature, see for example[6℄. The Polyakov loop operator P (~x) is de�ned as the following trae of a path orderedexponential of A0P (~x) = Tr � (P(�; ~x)) ; where P(x0; ~x) = P exp "i Z x00 d�A0(�; ~x)# ; (1.2)and � is the representation of the gauge group whih ats on the fermions. The Polyakovloop is invariant under gauge transformations whih are periodi in time4. The two-pointfuntion e��F (~x;~y) = hP (~x)P y(~y)i� (1.3)yields the free energy F (~x; ~y) in the presene of a heavy quark at ~x and a heavy an-tiquark at ~y. In the on�ning low-temperature phase F (~x; ~y) inreases for large sep-arations5 of the quark-antiquark pair and thus hP (~x)P y(~y)i ! 0. In the deon�ning4On an de�ne a Polyakov loop operator whih is invariant under all gauge transformations, ie. P (~x) =Tr �U0(x0 = 0; ~x)P(�; ~x)�, U0(x0; ~x) being the time transition funtion (see setion 2). However, sine wealways work with time periodi objets, ie. U0 = 1l, de�nition (1.2) is suÆient for our purposes.5We assume that the three spatial edge lengths of our torus are muh larger than ��1QCD1



high-temperature phase the free energy reahes a onstant value for large separations andhP (~x)P y(~y)i ! onstant 6= 0. Inferring the luster property we see that hP i� vanishes inthe on�ning phase but not in the deon�ning one. In other words, it is an order parameterfor on�nement.Note that the Weyl gauge, A0 = 0, is not ompatible with time-periodiity. Yet westill would like A0 to be as simple as possible, sine we are interested in observables onlydepending on A0. On the two dimensional torus, T 2, one an perform an Abelian projetion[7℄ with respet to the Polyakov loop operators and gauge �x in suh a way that A0 is inthe Cartan subalgebra and is independent of time, while preserving the time periodiityof A1. In this gauge one has a remarkable anellation between part of exp(�S) and theFadeev-Popov determinant. This simpli�es the alulation of the partition funtion and theexpetation value of the Polyakov loop order parameter, and avoids zero mode ambiguities[8℄. In this paper we address the question of to what extent the gauge �xing used in [8℄an be generalised to QCD on the four torus. The gauge �xing proedure hinges on thediagonalisation of the path ordered exponential, P(�; ~x), whose trae is the Polyakov loop.It is onvenient that P(�; ~x) be periodi in the spatial variables. Yet unless we are inthe perturbative setor, the gauge �elds themselves are neessarily non-periodi. This nonperiodiity is haraterised by a set of group-valued transition funtions. We introduea set of non-Abelian transition funtions whih failitate a periodi P(�; ~x) even in thenon-perturbative setors. Unlike the well known Abelian transition funtions introduedby 't Hooft [9℄, our transition funtions enompass all instanton setors, thus solving theproblem of �nding smooth transition funtions for the odd instanton setors of SU(2)gauge theory.In ontrast to the two dimensional ase the diagonalisation proedure has unavoidablesingularities. The singularities an be interpreted as Dira strings [10℄ joining magnetiallyharged \defets". Here we understand defets as points, loops (not to be onfused with theDira strings!), sheets and lumps where P(�; ~x) has degenerate eigenvalues. The loationsof the defets are gauge invariant and may be viewed as additional \olletive oordinates"assoiated to the gauge �xing. The simplest ase (and probably the most relevant for theQCD path integral) is where one only has point defets (whih an be viewed as magnetimonopoles). Here the �nal gauge �xed potential has very simple periodiity properties, andthe topologial harge is ompletely �xed by the network of monopoles and Dira strings(see also [11℄). We also onsider the more general ase where one has extended defets.The outline of this paper is as follows. In setion two we reall some basi fats aboutgauge �elds on the torus, inluding the standard Abelian transition funtions. Our new setof non-Abelian transition funtions (whih inludes the odd setor of SU(2)) is presentedin setion 3. We also explain how one an use the Polyakov loop itself to de�ne a di�erentset of non-Abelian transition funtions. Next, in setion 4 we elaborate our gauge �xingproedure, and study the speial ase where one has no defets. In setion 5 we disuss theproblem of defets, and show how they ontribute to the instanton number. Conventionsand some tehnial results are olleted in three appendies.2



2 Gauge �elds on T 4We view the four torus as lR4 modulo the lattie generated by four orthogonal vetorsb�; � = 0; 1; 2; 3. The Eulidean lengths of the b� are denoted by L� (we may identify L0with the inverse temperature �). Loal gauge invariants suh as TrF��F�� are periodi withrespet to a shift by an arbitrary lattie vetor. However, it follows that gauge �elds haveto be periodi only up to gauge transformations. In order to speify boundary onditionsfor gauge potentials A� on the torus one introdues a set of transition funtions U�(x),whih are de�ned on the whole of lR4. The periodiity properties of A� are as followsA�(x + b�) = U�1� (x)A�(x)U�(x) + iU�1� (x)��U�(x); � = 0; 1; 2; 3 (2.1)where the summation onvention is not applied. The transition funtions U�(x) have tosatisfy the oyle ondition6U�(x)U�(x+ b�) = U�(x)U�(x + b�): (2.2)Under a gauge transformation, V (x), the pair (A;U) is mapped toAV� (x) = V �1(x)A�(x)V (x) + iV �1(x)��V (x); UV� (x) = V �1(x)U�(x)V (x+ b�):(2.3)We de�ne the (integer valued) topologial harge or instanton number as followsq = 132�2 ZT 4 �����TrF��F��: (2.4)The integrand in (2.4) an be written as a total derivative. Using Stokes theorem we getq = 124�2 X� ZB� �����Tr h(U�1� ��U�)(U�1� ��U�)(U�1� ��U�)i� 18�2 X�;� ZB�� �����Tr h(U�1� ��U�)(��U�(x + b�)U�1� (x + b�))i ; (2.5)with B� = fx 2 T 4jx� = 0g; B�� = fx 2 T 4jx� = x� = 0g:(see also [12℄). That is q is fully determined by the transition funtions. In partiular,if we take all the transition funtions to be the identity (i.e. we assume the gauge �eldsare periodi in all diretions) then the instanton number is zero. Aordingly, if we are to6One an onsider the more general possibility U�(x)U�(x+b�) = Z��U�(x)U�(x+b�) where the twistsZ�� lie in the entre of the group. In this paper we onentrate on the untwisted ase, ie. Z�� = 1l, whihis appropriate if the matter �elds are in a fundamental representation of the gauge group.3



desribe the non-perturbative setors, one must onsider non-trivial transition funtions.For a given q we only require one set of transition funtions. If we have two sets oftransition funtions with the same instanton number then they are gauge equivalent [12℄.For SU(N), N > 2, one an write down a set of very simple Abelian transitionfuntions, whih inlude all possible values of q. For SU(2), the situation is rather peuliar,in that there exist Abelian transition funtions for the even instanton number ase, butfor odd q, the transition funtions are neessarily non-Abelian.Consider the following set of transition funtionsU0 = U2 = 1l; U1(x) = e2�iH1�2 ; U3(x) = e2�iH3�0 ; (2.6)where H1; H3 2 L, with L being the disrete lattie in the Cartan subalgebra H;L � nH 2 Hje2�iH = 1lo (2.7)and we have introdued the dimensionless oordinates�� = x�=L�; � = 0; 1; 2; 3: (2.8)These transition funtions satisfy the oyle ondition (2.2), and using (2.5), the instantonnumber assoiated with these transition funtions is simplyq = TrH1H3: (2.9)Now, if we take H3 to be proportional to H1 it is easy to see that q is always even. To getan odd harge one must take non-parallel H's. For example, in SU(3) onsiderH1 = 0B� 1 0 00 �1 00 0 0 1CA and H3 = 0B� 0 0 00 �1 00 0 1 1CA :In this ase q = 1. However, for SU(2) H1 and H3 must be parallel sine the Cartansubalgebra is one dimensional. Hene, within this lass of transition funtions one isrestrited to even topologial harges. Although the transition funtions (2.6) are not themost general Abelian transition funtions, it is easy to see that any Abelian transitionfuntions lead to an even q for SU(2).Although we have onentrated on the transition funtion question, another (to dateunsolved) problem is to obtain the instantons for pure gauge theory on T 4. While 'tHooft found some extremely simple \Abelian" instantons [9℄, these an only representsingle points in the moduli spae of a given instanton setor. This is in sharp ontrastto the situation on S4 where Atiyah et al [13℄ gave an algebrai reipe for omputingall instantons. In fat one of the few things known about instantons on T 4 is a negativeresult. Using the Nahm transformation [14℄, van Baal [15℄ has argued that there are no4



SU(N) instantons with q = 17. We should stress that while there are no harge oneinstantons there do exist on�gurations with q = 1. While for q = 1, the minimalation is never ahieved one an �nd on�gurations whose ation is arbitrarily lose to theinstanton number. Numerial [16℄ and analytial studies indiate that as one brings theation loser to the minimum the ation density beomes onentrated near a point. Forthe higher harge jqj > 1 setors, smooth instantons are known to exist [17℄. However, forthe purposes of our gauge �xing the expliit form of the instantons is not required.3 Non Abelian transition funtions and Polyakov loopsWe have seen that Abelian transition funtions are not suÆient to desribe the odd hargesetors, for the gauge group SU(2). Yet we would still like to have our transition funtionsas simple as possible. Consider the following possibility; let us take three of the fourtransition funtions to be the identity, ie.U0 = U1 = U2 = 1l: (3.1)Within this ansatz, the oyle ondition (2.2) implies that U3(x) is periodi in x0, x1 andx2. Now the formula (2.5) for the instanton number redues toq(U3) = 124�2 ZB3 �3���Tr h(U�13 ��U3)(U�13 ��U3)(U�13 ��U3)i (3.2)with B3 = fx 2 T 4jx3 = 0g. Note that the two dimensional integrals in (2.5) drop out,and one only has a single three dimensional integral. Furthermore, it is evident that the x3dependene of U3 is irrelevant, and we may assume that U3 is independent of x3. In otherwords, suppose we have a U3(x) whih depends on x3, then a simpler U3 with the sameinstanton number an be obtained simply by setting x3 to be an arbitrary onstant. Avery useful onsequene of (3.2) is that if U3(x) an be deomposed into periodi fators,then the topologial harge is simply a sum of the ontributions of the periodi fators,more preisely, if we an write U3(x) = P1(x)P2(x), where P1(x) and P2(x) are periodi inall diretions, then q(U3) = q(P1P2) = q(P1) + q(P2);muh like the situation on S4.First we show that (3.1) is easily ahieved in the even setors of SU(2). Let us startwith Abelian transition funtionsU0 = U2 = 1l; U1 = e2�i�2�3 ; U3 = e2n�i�0�3 (3.3)whih lead to q = 2n, n 2 Z (we use the dimensionless oordinates �� de�ned by (2.8)).7However, by using the Nahm-transformation one an onstrut transition funtions and instantonsolutions with q = 1 for U(N � 1) 5



Here only two transition funtions are the identity. However it is straightforward to gaugetransform U1 to unity. To ahieve this we require a gauge transformation V (x) whih isperiodi in x0 and x2 (sine we wish to keep U0 and U2 as unity), and has the propertythat V (x+ b1) = e�2�i�2�3V (x):Choosing the parameterisationV (x) =  �(x) ��(x)��(x) ��(x) ! ; j�j2 + j�j2 = 1; (3.4)�(x) and �(x) are periodi in x0 and x2, and satisfy�(x+ b1) = e�2�i�2�(x); �(x+ b1) = e2�i�2�(x):One an simply take (our onventions regarding theta funtions are explained in AppendixA) ��(x) = 1N � " �2�1 # (0; i); �(x) = 1N � " �2�1+d # (0; i); j�j2 + j�j2 = 1; (3.5)where d is not an integer. Sine the two theta funtions are regular and have no ommonzeroes, the funtions �(x) and �(x) are smooth. Note that V (x) only depends on x1 andx2. After this gauge transformation (3.1) holds and U3(x) beomes non-AbelianU3 = V �1(x1; x2)e2�in�0�3V (x1; x2):Multiplying U3(x) by the periodi Abelian fator e�2�in�0�3 does not hange the instantonnumber. Hene, an equally valid set of transition funtions for the 2n setor isU0 = U1 = U2 = 1l; U3 = V �1(x) e2�in�0�3 V (x) e�2�in�0�3 :Note that U3 is independent of x3 and periodi in x0, x1 and x2. Now onsider the followingset of transition funtionsU0 = U1 = U2 = 1l; U3 = V �1(x)e�in�0�3V (x)e��in�0�3 ; n 2 Z: (3.6)U3(x) is still periodi in x0, x1 and x2 and thus these transition funtions satisfy the oyleondition (2.2). It is easy to see that the instanton number of these transition funtionsis preisely half that of (3.3); i.e. now we have q = n, n 2 Z. Thus we have a set of C1transition funtions for all instanton setors. Let us write our U3 more expliitlyU3(x) =  j�j2 + j�j2e�2�in�0 ����(e2�in�0 � 1)��(1� e�2�in�0) j�j2 + j�j2e2�in�0 ! :6



Note that U3(x0 = 0; ~x) = 1l: (3.7)This will greatly simplify the analysis of the gauge �xing in the next setion.Suppose we have a set of transition funtions with the following propertiesU0 = 1l; Ui(x0 = 0; ~x) = 1l: i = 1; 2; 3: (3.8)The non-Abelian transition funtions introdued here learly satisfy these onditions. Thenonsider the following gauge transformationV (x0; ~x) = P(x0; ~x);where P(x0; ~x) is the path ordered exponential in (1.2) whih in general is non-periodi intime. Now P(x0; ~x) has the following periodiity propertiesP(x0 + L0; ~x) = P(x0; ~x)P(L0; ~x)P(x0; ~x+ bi) = U�1i (x0; ~x)P(x0; ~x)Ui(x0 = 0; ~x): (3.9)For brevity we use the notation P(~x) := P(L0; ~x): (3.10)Using (2.3,3.8,3.9), the gauge transformed transition funtions areUV0 = P(~x); UV1 = UV2 = UV3 = 1l:Thus we have performed a gauge transformation from transition funtions where U0 =U1 = U2 = 1l to transition funtions with U1 = U2 = U3 = 1l. Note however that the newU0 is simply the path ordered exponential of the original A0 whose trae is the Polyakovloop. Applying the formula (2.5) for the instanton number to the new set of transitionfuntions yields q = 124�2 ZB0 �0ijkTr h(P�1�iP)(P�1�jP)(P�1�kP)i ; (3.11)where P = P(~x), and B0 = fx 2 T 4jx0 = 0g = T 3. It is evident that for SU(2) the righthand side is the winding number of the map P : T 3 ! SU(2) �= S3, ie. the instantonnumber is just the winding number of the Polyakov loop. The analogous result for gaugetheories on lR4 has been given in ref. [11℄. We emphasise that (3.11) is only valid whenthe (original) transition funtions satisfy (3.8).7



4 Gauge �xing on T 4 without DefetsWe may always assume that we start with a smooth gauge potential whih is periodiin time, so that U0 = 1l. We may also assume that we are in a gauge where the spatialtransition funtions have the property (3.8). Thus we may use the formula (3.11) for theinstanton number. Another useful onsequene of (3.8) is that this together with (3.9)implies that P(~x) = P(L0; ~x) is periodi in all spatial diretions. Note that the standardAbelian transition funtions an only have property (3.8) if we are in the perturbative(q = 0) setor. The non-Abelian transition funtions given in the last setion do indeedsatisfy (3.8).Following [8℄ we seek a (time-periodi) gauge transformation, V (x), for whih the gaugetransformed A0 is independent of time and in the Cartan subalgebra. Below we argue thatit is impossible in general to �nd a smooth gauge transformation whih leads to a gauge�eld with the desired properties. While it is straightforward to formally de�ne a suitablegauge transformation, the gauge transformed potential is ill de�ned in the presene of\defets" where P(~x) has degenerate eigenvalues [7, 11℄. This motivates us to de�ne thedefet manifoldD = f~x 2 T 3jP(~x) has at least one degenerate eigenvalue.g (4.1)whih is invariant under time-periodi gauge transformations. A defet is understood tobe a onneted subset of D.Before we onsider the various defets, we �rst show that in the absene of defets asuitable non-singular gauge transform exists. More preisely, for D = ;, there is a smooth(periodi in time but non-periodi in the spatial variables) gauge transformation whihtransforms our starting gauge �eld, so that A0 has the simple formA0 = a0(~x) (4.2)with a0(~x) in the Cartan subalgebra and periodi,a0(~x + bi) = a0(~x); i = 1; 2; 3: (4.3)Consider the time-periodi gauge transformation [8℄V (x0; ~x) = P(x0; ~x)P��0(~x)W (~x); (4.4)where P(x0; ~x) is the path ordered exponential (1.2), and W (~x) diagonalises P(~x), i.e.P(~x) = W (~x)D(~x)W�1(~x); D(~x) = expf2�iH(~x)g; (4.5)with H(~x) in the Cartan subalgebra H. The frational power of P in (4.4) is de�ned viathis diagonalisation of P. Then it follows at one that the gauge transformed A0 reads8



AV0 = 2�L0H(~x): (4.6)For D = ; the eigenvalues of P are nowhere degenerate and we an �nd smoothD(~x);W (~x). Sine P(~x) is periodi in all spatial diretions it has the same spetrum at ~xand ~x+ bi. In the absene of defets the spetral ow from ~x to ~x+ bi annot interhangetwo eigenvalues, that is the situation depited in �g.1b annot our, and D(~x) must beperiodi. In general, the periodiity of D(~x) implies only that the eigenvalues of H areperiodi modulo 1. But if they are not periodi they would have to wind as shown in �g.1awhen we move from ~x to ~x+bi. Then at least one eigenvalue of H is degenerate somewhereon T 3 and D is not empty. Thus H(~x) must be periodi,H(~x+ bi) = H(~x): (4.7)>From (4.6) it is lear that the transformed A0 indeed has the stated properties.
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Using (2.3,3.9) and (3.8), the �nal form of the transition funtions is UV0 = 1l andUVi = e2�i�0H(~x)W�1(~x)W (~x+ bi)e�2�i�0 H(~x) = Ri(~x); (4.10)whih are Abelian. Inserting these transition funtions into (2.5) yields q = 0. This alreadyshows, that for gauge �elds with non-zero instanton number there are neessarily defetson T 3.In the SU(2) ase we may writeRi(~x) = e2�iri(~x)�3 ;where the ri(~x) are funtions of the spatial oordinates. The oyle ondition (4.9) impliesthat �kij�ri(~x + bj)� ri(~x)� = nk 2 Z: (4.11)Unless all the nk are zero one annot �nd a smooth diagonalising W (~x) suh that theAbelian transition funtions Ri(~x) beome the identity. We have seen, that W (~x), whihdiagonalises P(~x) is de�ned only up to right-multipliation,W (~x) �!W (~x) ei�(~x)�3 : (4.12)If we append to eah point in T 3 the set of all diagonalising matriesW (~x), we get a U(1)-prinipal bundle over T 3, here denoted by Q(T 3; U(1)) [18℄. A smooth and periodi W (~x)on T 3 would be a global setion in this bundle. But in general the U(1)-bundles over T 3are non-trivial and are haraterised by three integers. Indeed, with a (time-independent)Abelian gauge transformation (4.12) we an bring the transition funtions Ri into thestandard formR1 = 1l; R2 = e�2�in3�1�3 and R3 = e2�i(n2�1�n1�2)�3 ; (4.13)where the ni are the integers de�ned in (4.11). If not all ni vanish, then these are transitionfuntions of nontrivial U(1)-bundles over T 3.A more diret and physial way to understand the obstrution uses the (magneti)U(1)-gauge potential [7, 19℄Amag = 12iTr�W (~x)�1dW (~x)�3� (4.14)on T 3, whih transforms under the residual gauge transformation (4.12) asAmag �! Amag + d�:Using (4.9) it follows at one that the 3 magneti uxes�i = Zxi=onstFmag = Zxi=onstdAmag = �ijk�rj(x+ bk)� rj(x)� = 2�ni10



are quantised. We onlude that the integers ni in (4.11,4.13) annot be hanged by asmooth (Abelian) gauge transformation. Note, that the ux �i is independent of xi andAmag may be interpreted as a soureless magneti potential permeating the torus.The �xing of the residual gauge freedom an be aomplished muh like in the two-dimensional ase [8℄ and is disussed in appendix C.5 Gauge �xing with defetsBelow we shall argue that isolated defets may be identi�ed with magneti monopoles, linedefets with magneti loops and sheetlike defets with domain walls. Monopoles may bepresent if D = T 3 n D ontains non-ontratable 2-spheres and magneti loops if D hasnon-ontratable loops (besides the 3 topologially distint loops winding around T 3). Inother words, monopoles and loops an only be present if�2(D) 6= 0 monopoles�1(D) 6= Z3 loopsBesides monopoles and loops, there may exist defet walls extending over the whole threetorus. The three types of defets are depited in �g.2.We ould try to repeat the analysis of hapter 4 in the presene of defets still assumingthat W and D in (4.5) are smooth. If only monopoles and loops are present, then we anonnet ~x with ~x+ bi by a path in D. Along suh a path the eigenvalues of H an neitherwind nor exhange as in the absene of defets. Hene, spetral ows as shown in �g.1 arenot possible and H(~x) must be periodi, and as in hapter 4 we have UVi = Ri(~x). Sinesuh transition funtions have instanton number zero, we have a ontradition in all q 6= 0setors.We now speialise to the gauge group SU(2); we will onsider SU(N) elsewhere. Thedefet manifold is now simplyD = f~x 2 T 3jP(~x) = �1lg:Thus we have two distint defet sets, aording to whether P(~x) is plus or minus 1l. Inhapter 4 we de�ned an Abelian magneti potential Amag and �eld Fmag = dAmag. Nowwe wish to argue that the defets at as a soure for the magneti �eld Fmag. Moreover,we show that in the absene of walls8 the total magneti harge of the P = 1l defetsis quantised and is proportional to the instanton number q. The magneti harge of theP = �1l defets is minus that of the P = 1l defets so that the total magneti hargeis zero. This di�ers from the lR4 ase, where one only has magneti harge neutrality ifone inludes \harges at in�nity". In order to establish these results it is onvenient to8We an formally de�ne the absene of walls as follows. Consider the extension of the defet manifoldto lR3, ie. ~D = f~x 2 lR3jP(~x) = �1lg. There are no walls if ~D = lR3 n ~D is onneted.11
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Figure 2: Monopoles, loops, domain walls and spetral owsintrodue a stati \Higgs" �eld �(~x) viaP(~x) = ei�(~x); � = �j�j: (5.1)Of ourse �(~x) is not globally de�ned. Let S be a losed surfae surrounding a P = 1ldefet. We further assume that S neither ontains nor intersets any other defets. Forexample, in �g. 3 an (extended) monopole defet is surrounded by a 2-sphere and losedloop defets are surrounded by 2-tori. Now �(~x) may be smoothly de�ned on S and on theinterior of S suh that the Higgs �eld is zero on the defet. On S itself � is non-vanishingand hene an be normalised. The normalised �eld �̂ = �=j�j takes its values in S2 andde�nes a map S ! S2. The winding number of this map is [20℄12
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Figure 3: The magneti ux through losed surfaes is equals the winding of thenormalised Higgs �eld S ! S2n(S) = 116�i IS Tr ��̂d�̂ ^ d�̂� : (5.2)The magneti ux through S is de�ned by�(S) = IS Fmag: (5.3)In Appendix B we show that Tr ��̂d�̂ ^ d�̂� = 8iFmag (5.4)and hene n(S) = 12��(S): (5.5)That is the magneti harge of the defet is proportional to the winding number of theHiggs �eld �̂ : S ! S2. Hene it is quantised. Atually, if S is a two-sphere surroundinga magneti monopole then AmagjS may be viewed as the Abelian gauge potential of theShwinger model on S2 [21℄, if S is a two-torus as the gauge potential of the Shwingermodel on T 2 [22℄. The quantised ux � is just the quantised instanton number of theShwinger model on S2 or T 2.We now look at the relation between the winding numbers of the defets (and henethe magneti harges) and the instanton number q. We again assume that we only haveno walls. In this ase the Higgs �eld, �(~x), an be assumed to be smooth throughout T 3exept at the the P = �1l defets, where it is ill de�ned. At the P = 1l defets the Higgs13



�eld is zero. In Appendix B we derive the following relation between Tr ((P�1dP)3) andthe Higgs �eld �2iTr(P�1dP)3 = 3dh(j�j � 12 sin(2j�j))Tr(�̂ d�̂ ^ d�̂)i; (5.6)�̂ being the normalised Higgs �eld. Note that the right hand side of (5.6) is ill-de�nedboth where P = 1l and P = �1l. Using the instanton number formula (3.11) and (5.6) wean write the topologial harge as a funtional of the Higgs �eldq = 116�2i ZD dh(j�j � 12 sin(2j�j))Tr(�̂d�̂ ^ d̂�)i: (5.7)Before we an apply Stokes theorem we must exlude losed sets (with in�nitesimal volumein D) surrounding both P = 1l and P = �1l defets. Thus we haveq = 116�2iXi ISi (j�j � 12 sin(2j�j)Tr(�̂d�̂ ^ �̂): (5.8)where the Si are surfaes surrounding the defets. Note that the fator j�j� 12 sin(2j�j) be-haves very di�erently in the neighbourhoods of the two kinds of defets. Near a defet withP = 1l the Higgs �eld tends to zero and the fator vanishes as � j�j3. Sine HS Tr(�̂ d�̂^ �̂)stays �nite if we approah suh a defet the integrals in (5.8) vanish when the surroundingsurfaes approah defets with P = 1l. On the other hand, in the neighbourhood of theP = �1l defets we have j�j � � so that (j�j � sin(2j�j)=2) � �, from whih follows thatq = 116�i XP = �1l defets ISi Tr(�̂d�̂ ^ d�̂): (5.9)At this point it is onvenient to de�ne an alternative Higgs �eld �alt(~x) throughP(~x) = � exp [i�alt(~x)℄ ;where now �alt(~x) is smooth and zero at P = �1l, but ill de�ned at the P = 1l defets. Inthe absene of walls we have that both j�(~x)j and j�alt(~x)j are in the interval [0; �). In Done has the following relations between the two Higgs �eldsj�j = � � j�altj; �̂alt = ��̂: (5.10)Using this we see that the topologial harge is proportional to the sum of winding numbersof �alt around the P = �1l defetsq = � 116�i XP = �1l defets ISi Tr(�̂alt d�̂alt ^ d�̂alt): (5.11)14



The orientation of integration in this equation is suh that the normal vetor on the surfaeSi points inside the surfae (onto the monopole). But in equation (5.2) the orientation ofintegration is opposite. Therefore we onludeq = XP = �1l defetsnalt(Si): (5.12)Hene the instanton number is the sum over the winding numbers of the Higgs �eld �altat P = �1l defets. Taking into aount equation (5.10) we obtainTr ��̂alt d�̂alt ^ d�̂alt� = �8iFmag: (5.13)Thus a P = �1l defet with winding number nalt has magneti harge �nalt. Similaronsiderations yield that the instanton number q is given by the sum over winding numbersof the Higgs �eld � at P = 1l defets, or equivalently, by the sum of all monopole hargesat P = 1l defets. The relation between the instanton number and the magneti hargesof pointlike monopoles on lR4 has already been obtained by Reinhardt [11℄.For a non-zero ux the magneti potential Amag must neessarily be singular somewhereon S, else the ux H dAmag would vanish. As is well-known from the Dira monopole, wemay assume that Amag is regular on S with one point removed. Sine this holds true forany S � D surrounding a harged defet we must attah a string to eah suh defeton whih Amag is singular. By de�nition, wherever the magneti potential is singular thediagonalisation matrix W (~x) is singular.Let us now onsider a S2 � D surrounding a monopole-antimonopole pair. On suh asphere the Higgs �eld has no winding and an smoothly be diagonalised. This means thatthe strings on whih W (~x) (and Amag) is singular start and end at defets with oppositemagneti harge. Outside of these strings it is possible to hoose W smooth. A possibledistribution of monopoles onneted by strings is shown in �g.4. The string positions aregauge dependent. But they must start and end at (anti)monopoles whose positions aregauge invariant. There is some freedom regarding whih defets are onneted to eahother with Dira strings. Suppose we have a Dira string emanating from a P = 1l defet.Then this string may be onneted to either a P = 1l or P = �1l defet with the oppositeharge. We have shown that the instanton number, q, is proportional to the total magnetiharge at P = 1l defets. We an restate this result in terms of the Dira strings as follows;q is proportional to the number of Dira strings joining P = 1l and P = �1l defets9. Infat, it is possible to rewrite the instanton number formula (3.11) so that the ontributionof the strings is transparent without introduing Higgs �elds. This alulation is given inAppendix B.To gain further insight we investigate P in the viinity of a point defet (see also [18℄).For that we follow the eigenvalues along a losed path from p to p (see �g.2a) passingthrough a monopole10. We may slightly deform this path so that it misses the monopole.9Dira strings joining P = 1l anti-monopoles to P = �1l monopoles ount with a relative minus sign tostrings joining P = 1l monopoles and P = �1l anti-monopoles.10a SU(2)-monopole with P = 1l 15
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Antimonopole, P = 1 = - 1Antimonopole,Figure 4: The smooth diagonalisation of P(~x) fails on strings onnetingmonopoles and anti-monopoles of opposite harges. Shown is a string-networkin the setor with instanton number q = 4On the deformed path the eigenvalues of P are nowhere degenerate and thus H in (4.5)must be periodi (see above). Returning to the undeformed path through the monopolewe onlude, that at the monopole, where both eigenvalues are 1, the two eigenvalues arereeted at � = 1 as shown in �g.2a. The spetral ow is ontinuous but not di�erentiable.Sine P(~x) is smooth, the diagonalising W (~x) in (4.5) must be singular to ompensatefor the non-smoothness of D(~x). As in the ase without defets, W (~x) is not neessarilyperiodi and obeys (4.8).To summarise, in the presene of monopole and loop defets we an still perform thegauge transformation (4.4). But it is neessarily singular on strings onneting the defets.The gauge transformed A0(~x) is periodi, but singular on these strings. After gauge �xingthe transition funtions an be hosen as in (4.13). The instanton number is related to themagneti harges of the defets in a very simple way.In ases where domain walls extend over the whole torus the situation is analogous tothe one in 2-dimensional gauge theories. We annot avoid defets when going from one\fae" of the torus to the opposite one. There is no obstrution for the eigenvalues to varysmoothly along a path rossing the wall. Neither H nor W are singular at the wall (see�g.2). But the eigenvalues of H may wind or interhange if we move from ~x to ~x+ bi andthus D(~x) may be periodi only up to a permutation of its entries, i.e.H(~x+ bi) =WiH(~x)W�1i + Ĥi;where theWi are Weyl-reetions and the Ĥi 2 L, with L being the disrete lattie de�nedin (2.7). Now we an only prove, that the gauge transformed transition funtions have the16



form U0 = 1l; Ui = e�2�i�0ĤiRi(~x)Wi;where again the Ri are in the Abelian subgroup and ful�l the oyle ondition (2.2). Thistime dependene in the transition funtions is reminisent of the T 2 analysis [8℄. The gauge�xed A0 has the formA0(~x) = a0(~x) + 2�L0 3Xi=1 Ĥi�i; where a0(~x+ bi) =Wia0(~x)W�1i : (5.14)As in the ase without defets there are residual gauge transformations (see Appendix C).6 Conlusions and OutlookIn this paper we have onsidered the gauge-�xing of Yang-Mills theory on the four torusfor arbitrary instanton setors. Of ourse the hoie of gauge �xing does not a�et physis,but an appropriate gauge-�xing may onsiderably simplify the mathematial problem ofomputing or approximating funtional integrals. Motivated by their suess in two di-mensions we adopted an extended Abelian projetion on the four torus. Here we requireA0 to be Abelian, time independent and the spatial omponents Ai of the gauge potentialto be periodi in time.One di�erene with the T 2 problem is that we have the added ompliation of instantonsetors. In two dimensions one may assume that before gauge �xing the gauge potential A�is ompletely periodi, ie. the transition funtions are trivial U� = 1l. In four dimensions,we may only assume this if we are in the zero instanton setor (ie. the topologial hargeq is zero). We have argued that for q 6= 0 it is onvenient to work with a new set of non-Abelian transition funtions. With these transition funtions the path ordered exponential,P(~x), whih is entral to the gauge �xing is ompletely periodi, even though of oursethe gauge �eld itself is non-periodi. Moreover, these transition funtions inlude the oddinstanton setors of SU(2). To our knowledge, smooth untwisted transition funtions forthis ase have not been given before.The most signi�ant break with the two dimensional treatment is the presene of un-avoidable singularities in the �nal gauge �xed potential [7℄. These singularities are due toambiguities in the diagonalisation of P(~x) where the eigenvalues of P(~x) are degenerate(for SU(2) this degeneray ours where P(~x) = �1l). There is a lose analogy betweenthese defets (ie. points, loops or surfaes where P(~x) is degenerate) and magneti hargesin Yang-Mills-Higgs theories [23℄. We have presented a detailed analysis of the speial asewhere one only has point and loop defets, whih an be interpreted as magneti monopolesand magnetised loops. The gauge �xed potential is smooth everywhere exept for \Dirastrings" joining monopole (loop) pairs. The instanton number, q is simply the number ofmagneti harges at the P = 1l defets.>From one viewpoint the existene of these magneti defets imply that our attemptto generalise the two dimensional �xing has failed. We take the opposite view. It is a long17



standing onjeture that on�nement of olor is produed by dual superondutivity (oftype II) of the QCD vauum [24℄. Indeed, lattie alulations [25℄ indiate that magnetimonopoles (or loops?) are the dominant infrared degrees of freedom, at least in the maximalAbelian gauge and the Polyakov gauge.There is a long way from the piture of ondensed magneti monopoles to realQCD. Atpresent there is no analyti proof of the existene of the ondensate of monopoles. However,in those theories where we understand on�nement, the latter is due to the ondensation ofmonopoles; these examples are ompat QED [26℄ and supersymmetri Yang-Mills theories[27℄. The balaning of the energy and the entropy of monopoles (and/or loops) may explainthe ourrene of the deon�nement transition in QCD. At low temperatures we expet aondensation of monopoles with P = 1l and of monopoles with P = �1l. In the broken hightemperature phase, where hTrPi � �2, we do not expet long monopole loops but rathera dipole gas of monopole-antimonopole pairs, both with P = 1l (or both with P = �1l).Of ourse the treatment given here has been purely lassial. The next step would beto study the path integral within this gauge �xing. At this point one would need a suitableapproximation [28℄. With a view to investigating the on�nement of stati quarks it wouldbe interesting to onsider whether in any regime the monopoles and Dira strings play adominant role in the path integral.AknowledgementsWe are grateful to O. Jahn, F. Lenz, G. Rudolph and P. van Baal for helpful disussions.AppendiesA Theta FuntionsOur onventions with respet to theta funtions are the same as ref. [29℄. We work withthe Jaobi theta funtion with harateristis� " ab # (z; i�) = Xn2Z e���(n+a)2+2�i(n+a)(z+b): (A.1)This funtion has the following periodiity properties� " a +mb+ n # (z; i�) = e2�ina� " ab # (z; i�); m; n 2 Z (A.2)and has zeros where z = (a+ n + 12)� + (b +m+ 12); n;m 2 Z.B Tehnial ResultsIn this appendix we derive some of the tehnial results quoted in hapter 5.18



B.1 Magneti Charges and Higgs winding numbersTo relate this winding number to the magneti ux we parameterise the normalised Higgs�eld as �̂ = ( sin � os'; sin � sin'; os �); � = j�j�̂i�i; (B.1)where the angles �; ' are funtions on S. The orresponding P = exp(i�) is diagonalisedby [30℄ W = exp(�i'2 �3) exp(�i�2�2) exp(i��3) and D = exp(ij�j�3):The magneti potential (4.14) is Amag = d�� 12 os �d', and the orresponding �eld strengthis Fmag = 12 sin �d� ^ d':On the other hand, taking the Higgs �eld (B.1) we getTr ��̂d�̂ ^ d�̂� = 4i sin �d� ^ d' = 8iFmag: (B.2)Comparing with equations (5.2) and (5.3) one readily obtainsn(S) = 12� IS sin � d� ^ d' = 12��(S): (B.3)B.2 Derivation of equation (5.6)Now we will relate Tr �(P�1dP)3� to the Higgs �eld � = ����. With the notation j�j =qTr�2=2 and �̂ := �=j�j we have P = exp (i�) = os(j�j) + i sin(j�j)�̂ and it follows that(P�1dP)3 = � sin4 j�j�̂d�̂ ^ d�̂ ^ d�̂� i sin3 j�j os j�jd�̂ ^ d�̂ ^ d�̂�3i sin2 j�j�̂d�̂ ^ d�̂ ^ dj�j: (B.4)Under the trae the �rst two terms on the right hand side of (B.4) drop out. Hene wehave Tr �(P�1dP)3� = �3i sin2 j�jdj�j ^ Tr ��̂d�̂ ^ d�̂�= d( 32i  j�j � sin(2j�j)2 !Tr ��̂d�̂ ^ d�̂�) : (B.5)19



B.3 Instanton number and Dira StringsWe showed in the paper that in the presene of magneti monopoles the diagonalizationis not smoothly possible. The matrix W beomes singular on Dira strings onnetingmonopoles with opposite magneti harges. We shall argue that the strings on whih Wis singular ontribute to the instanton number q. Setting P =WDW�1 one �rst observesfor arbitrary gauge groups that Tr �(P�1dP)3� = dA;where the 2-form A isA = �6Tr �W�1dW ^D�1dD�+ 3Tr �W�1dWD�1 ^W�1dWD� :Thus we an onvert the integral in (3.11) into a surfae integral over the \boundary" ofthe torus and over in�nitesimal ylinders around the strings (see �g.4):q = 124�2 Z Tr �(P�1dP)3� = qs + qb;where the individual ontributions from the strings and boundary of the torus readqs = 124�2 Xstrings Zyl: A and qb = 124�2 3Xi=1 � Zxi=0 (A(x+ bi)�A(x))�:If only monopoles are present, then H(~x) is periodi and W (~x + bi) = W (~x)Ri(~x), wherethe Ri are abelian and satisfy the oyle onditions (4.9). After some algebra we obtainA(x+ bi)�A(x) = �6Tr(Ri(x)�1dRi(x) ^D(x)�1dD(x)):We parametrize the diagonal matrix asD = ei��3 so that D�1dD = id��3 (B.6)and arrive atqb = 14i�2 3Xi=1 Zxi=0 dh�Tr(R�1i dRi�3)i (B.7)= 14i�2 Xi;j Zxi=xj=0 "ijk�Tr ��Ri(x+ bj)�1�kRi(x + bj)�Ri(x)�1�kRi(x)� i�3� dxk :Di�erentiating equation (4.9) one sees that the trae term is symmetri in i and j. Thereforewe onlude qb = 0 in aordane with the fat that the spatial transition funtions aresimply given by the funtions Ri, see equation (4.10).20



The strings do ontribute to the instanton number. We onsider a Dira string onnet-ing monopoles. We argue that this string ontributes to the instanton number the sum ofmonopole harges of P = 1l monopoles attahed to the string. Using the parametrisation(B.6) we an writeA = �12d� ^ Amag + 12 sin� os�Fmag= �12d(�+ sin� os�) ^ Amag + 12d(sin� os�Amag): (B.8)Integrating over a losed surfae S surrounding the string the ontribution from the seondterm vanishes. Now we hoose a P = 1l monopole and the Dira string emanating from it.We introdue oordinates (z; ') on S suh that � is independent of '. The ontributionof the string to the instanton number reads124�2 IS A = � 12�2 Z dz ��z (�+ sin� os�) Z d'Amag': (B.9)The integral R d'Amag' is up to the sign given by the magneti ux through the Dirastring, ie. it is �2� times the magneti harge of the P = 1l monopole. Therefore theontribution of the string to the instanton number is given by (1=�)�(� + sin� os�).Hene, if the string ends at a P = �1l monopole then it ontributes 1 (�� = �) and,if it ends at a P = 1l monopole (�� = 0), it will not ontribute. The generalisation toarbitrary strings is straightforward.C Residual Gauge FixingAfter the gauge �xing proedure desribed in setions 4 and 5, A0 is independent of timeand restrited to the Cartan subalgebra. Furthermore, the transition funtions beomeabelian (upto an element of the Weyl group if one has wall defets). However, the gaugeis not �xed ompletely, sine one must �x the residual gauge freedom related to gaugetransformations whih preserve the properties of A0 mentioned above. If we have no wallswe may assume that the transition funtions have the standard form (4.13). Thus we onlyonsider residual gauge transformations whih do not hange the transition funtions. Onemay regard this �xing of the transition funtions as the �rst part of our residual gauge�xing. Let us �rst onsider the ase onsidered in hapter 4, where one has no defets.C.1 No defetsHere we assume that the defet manifold D is empty, in whih ase P(~x) is smoothlydiagonalisable. We may also assume that H(~x) is smoothly restrited to the �rst Weylhamber. After the �rst part of the gauge �xing given in setion four the transitionfuntions are abelian. The residual gauge transformations areV (x) = exp�2�i�Hper(~x) +Hi xiLi�� ; (C.1)21



where all H's are in the Cartan subalgebra, Hper is periodi in all spatial diretions, andHi 2 L. Clearly these residual gauge transformations have no e�et on A0. Aordingly,to �x the gauge we must impose onstraints on the spatial omponents of the gauge�eld. Of ourse, Ai(x) depends on time, whereas the residual gauge transformations underonsideration are time-independent. Thus we ould impose onstraints on Ai for some�xed time, say x0 = 0. Alternatively, if we wish to treat all times on an equal footing wean onsider the time-averaged objet~Ai(~x) = 1L0 Z L00 dx0Ai(x0; ~x): (C.2)Using the result that the transition funtions are Abelian after gauge-�xing, theCartan part of ~Ai(~x) (or Ai(x0 = 0; ~x)) may be deomposed into a periodi piee ~A;periand a ontribution ~A;lini , whih is linear in the spatial oordinates. If we impose1L1L2L3 ZT 3 ~A;peri d3x 2 2�Li � H=L; i = 1; 2; 3; (C.3)we �x the gauge freedom with respet to the Hi. Here H=L is the torus obtained bydividing the Cartan subalgebra H by the lattie L.If we demand the following relations, we an �x the residual gauge freedom onerningHper upto an Abelian global gauge transformation~A;per1 = h1(x2; x3); L1Z0 ~A;per2 dx1 = h2(x3); L1Z0 L2Z0 ~A;per3 dx1dx2 = h3; (C.4)where the funtions hi are Cartan subalgebra valued funtions of the relevant spatial oor-dinates. An alternative to (C.4) whih is symmetri in the spatial variables is simply theCoulomb type ondition r � ~A;per(~x) = 0: (C.5)C.2 Defets without wallsWe now assume that the defet manifold, D, is non-empty. Thus our gauge �xed potentialis not well de�ned for ~x 2 D and on the Dira strings joining the defets. While D is gaugeinvariant, the paths taken by the Dira strings are not. However, one an only hangethe path of the Dira strings with a singular gauge transformation. The residual gaugetransformations onsidered in the previous subsetion were (impliitly) assumed to besmooth. Thus it is onvenient to separate the residual gauge �xing into two parts. Firstly,one �xes the loation of the Dira strings (whih an be viewed as a singular residualgauge �xing). For example onsider the ase where one only has point-like monopoledefets. Here one an take the Dira strings to be straight lines all meeting together in theentre of T 3. Then one repeats the residual gauge �xing of setion C.1, exept that nowone must exlude a losed set, G, ontaining both the defet manifold D and the (by now�xed) Dira strings from the relevant integrals in (C.4).22



C.3 WallsIf we allow for wall defets then we atually have a wider lass of residual gauge transfor-mations V (x) =W � exp�2�i�Hper(~x) +Hi xiLi +H0 x0L0�� ; (C.6)where H0 2 L, and W is an element of the Weyl group whih ommutes with all thetransition funtions.The reason for this extra freedom is that in the ases onsidered in theprevious subsetions we ould assume that H(~x) is restrited to the �rst Weyl hamber,and we only onsidered residual gauge transformations whih respeted this onstraint.Referenes[1℄ T. Suzuki, Nul. Phys. (Pro. Suppl.) B30, 176, 1993 and referenes therein.[2℄ K.G. Wilson, Phys. Rev. D10, 2445, 1974.[3℄ A.M. Polyakov, Phys. Lett. 72B, 477, 1978; L. Susskind, Phys. Rev. D20, 2610, 1979.[4℄ S.J. Gates, M.T. Grisaru, M. Roek and W. Siegel, Superspae or One Thousandand One Lessons in Supersymmetry , Benjamin-Cummings 1983; P. West, Phys. Lett.B258, 375, 1991; I. Jak and D.R.T. Jones, Phys. Lett. B258, 382, 1991.[5℄ L.P. Kadano�, Physia 2, 263, 1966; K.G. Wilson, Phys. Rev. B4, 3174, 1971; K.G.Wilson and I.G. Kogut, Phys. Rep. 12, 75, 1974.[6℄ D.J. Gross, R.D. Pisarski and L.G. Ya�e, Rev. Mod. Phys. 53, 43, 1981; J.I. Kapusta,Finite-temperature �eld theory, Cambridge University Press, 1989.[7℄ G. 't Hooft, Nul. Phys. B190, 455, 1981.[8℄ U. G. Mitreuter, J. M. Pawlowski and A. Wipf, Nul. Phys. B, in press, hep-th/9611105.[9℄ G. 't Hooft, Comm. Math. Phys. 81, 267, 1981.[10℄ P.A.M. Dira, Pro. Roy. So. A133, 60, 1931.[11℄ H. Reinhardt, Nul. Phys. B 503, 505, 1997.[12℄ P. van Baal, Comm. Math. Phys. 85, 529, 1982.[13℄ M.F. Atiyah, N.J. Hithin, V.G. Drinfeld and Yu.I. Manin, Phys. Lett. A65, 185,1978; N.H. Christ, E.J. Weinberg and N.K. Stanton, Phys. Rev. D18, 2013, 1978; E.Corrigan, D.B. Fairlie, P. Goddard and S. Templeton, Nul. Phys. B140, 31, 1978.[14℄ W. Nahm, Phys. Lett. B 90, 413, 1980.23
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