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The L 2 index theorem on even dimensional non-compact manifolds is related to the 
corresponding APS result for compact manifolds with boundaries. We show that generally the two 
index theorems are slightly different. For the two-dimensional Dirac operator on the disk we 
formulate (modified) nonlocal boundary conditions such that the two index theorems coincide. 
Exploiting the supersymmetric structure of/~2 we explicitly evaluate the supersymmetric partition 
function in this case. 

I. Introduction 

The aim of this paper is to relate the Atiyah-Patodi-Singer (APS) index theorem 
[1] vahd for compact manifolds with boundaries to the corresponding index theorem 
for special non-compact manifolds (asymptotically R 2") [2-4], based on scattering 
theory. In fact we show on various simple examples that generally the two index 
theorems are slightly different (assuming of course that we can take a meaningful 
limit in the APS index theorem by taking the boundary to infinity) but a subtle 
modification of the APS boundary conditions is enough to recover the scattering 
theory results. We also point out the connection of the results with the anomaly 
calculations. 

Though we work out explicitly only simple two-dimensional examples it is clear 
how to generalize our results to higher (even) dimensions. In particular, since in four 
dimensions there exist finite energy self-dual solutions to the Yang-Mills equations 
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which have non-integer topological charge [5] (sometimes called hyperbolic mono- 
poles) our results are not purely of academic interest. 

Our paper is organized as follows: in the second section we review the chiral 
anomalies, then after recalling the APS index theorem we consider the case of 
"cylinder manifolds" in sect. 3. In sect. 4 we analyze thoroughly the two-dimen- 
sional disk example and we show how to modify the APS boundary conditions to 
recover the well-known (supersymmetric) Bohm-Aharanov result on R 2 when the 
radius of the boundary tends to infinity. 

2. Chiral U(1) anomaly 

Ever since the discovery that in a gauge theory the classical chiral symmetry is 
broken at the quantum level [6] these axial anomalies have been playing an 
increasingly important role in the developments of quantum field theories. It is 
generally believed that anomalies are a true aspect of the quantum theory, not just 
consequences of technical problems in perturbation theory. 

Let us recall the basic feature of the chiral anomaly: The effective action, F, for a 
euclidean fermionic theory interacting with background gauge fields is formally 
written 

F = l o g f  D ~ D + e x p ( f ~ i ( O + m ) + ) = l o g d e t i ( O + m ) .  (2.1) 

We assume that we work in a d = 2n-dimensional euclidean manifold which is not 
necessarily compact (e.g. R 2, R4). Denoting the generalization of "/5 by ~7 = inY1 • • • 
Y2n, under an abelian (local) chiral transformation 

= e~tk ' , ~ = ~7'e "~ , (2.2) 

eq. (2.1) becomes 

F = log J(a) + logdet e-9i(D + m)e "9, (2.3) 

where J (a )  is the jacobian associated with the transformation (2.2), D~D~b= 
J(cQD~' D~b', which is nontrivial as pointed out by Fujikawa [7]. For infinitesimal 
chiral variations we get formally 

1 1 
2tr "~a = 2im tr iI~ + im ~et + i tr iO + i-~ ),~a ~, (2.4) 

where the right-hand side is the chiral variation of F, 6F, and the left-hand side is 
the anomaly. Of course (2.4) is purely formal as log det i(D + m) is UV-divergent, 
and also the measure in (2.1) should be properly defined. A natural way of defining 
the measure D ~  D+ is ~ la Berezin [8]: introducing an orthonormal basis (~n(x)} 
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and expanding ~/ and ~p as 
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~p(x) = E6 ,q~(x ) ,  +(x)  = Ea,q~n(x), (2.5) 

where (a  n ) are grassmannian coefficients, the measure in (2.1) is 

D~ Dq~ = I--I dSn dan.  
n 

(2.6) 

Assuming that iJ~ is self-adjoint we can work in the i D basis: 

i0~bx = ~ffx" (2.7) 

In (2.7) it is assumed that the spectrum of i0 is discrete, which is most often 
achieved by compactifying the base space (e.g. R 4 ~ $4). This compactification 
procedure is applicable only if the background gauge fields satisfy strong regularity 
constraints (e.g., the Dirac operator on R 2 with a smooth gauge field with nonin- 
teger flux • = (1/4~r)fe~,~F~dZx, cannot be defined on the compactified R 2 - S 2 
consistently.) Another way of achieving the discreteness of the spectrum of iJp is by 
introducing a finite volume, that is we modify the base space to a space X with 
boundary 0 X. However by introducing boundaries - wh i c h  can be viewed as an 
infrared regulator - one must impose boundary conditions on the Dirac operator 
such that it is self-adjoint. Also since eventually one would like to take the infinite 
volume limit it is natural to choose boundary conditions which preserve the original 
(L2) properties of the Dirac operator as much as possible. Let us first choose a 
representation of the 3,-matrices such that 

0) 
"r = - 1 .  ' 

and f and g in ~b = ( f ,  g) are the right- and left-handed components of the Dirac 
spinor ~b. One sees at once that the popular Dirichlet boundary conditions lead to 
an over-determination of the Dirac problem and hence are inconsistent [9]. Other 
local boundary conditions which ensure that L and L t are adjoints of each other 
were widely used in various physical applications (bags etc.) [10]. However it is not 
hard to see that these destroy the ¢/-invariance and /o r  the charge conjugation 
invariance. More importantly, the zero modes of i D are not in this domain 
anymore, since the zero mode equations 

L,f= o, Lg = o (2.1o) 
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are first order, homogeneous equations. Therefore the "regulated" Dirac operator 
has no zero modes [11] and hence its (analytic) index is zero: 

index iO = dim ker L t - dim ker L = 0. (2.11) 

Since the zero modes of the Dirac operator play a crucial role, the above regulator is 
rather unsatisfactory. However by enlarging one's point of view and if one allows 
for non-local boundary conditions it becomes possible to introduce boundaries and 
nevertheless keeping the index intact. The global boundary conditions consistent 
with a non-zero index were set up by Atiyah, Patodi and Singer (APS) [1], and we 
shall present them in some detail in sect. 3. 

Let us return at this point to the anomaly eqs. (2.4). To give some meaning to it 
we must regularize both sides, since tr ~ does not exist. Conventionally one takes the 
heat kernel regularization for the left-hand side of (2.4): 

Z ( f l )  = tr'~e -/~2 = f d x T r ( x l e  -aLL*- e-BL*LIx ) . (2.12) 

(Tr runs over the Dirac and internal symmetry indices.) The two terms at the 
fight-hand side of (2.4) have a natural interpretation as the global ( -  a), low energy 
part and the local ( -  a~), high energy part of the anomaly [3]. The global part is 
UV-finite so the second term on the fight-hand side is UV-divergent and the trace 
must be regularized (e.g. by ~-function techniques). For a constant a the global part 
of the anomaly is conveniently written as 

( 1 1 ) 
m2tr L L t + m 2  L tL+m2 = A ( m 2 ) .  (2.13) 

This fundamental object has been used in Callias paper [2] which first really 
addressed index theorems in infinite spaces (for fermions coupled to a external 
Yang-Mills-Higgs field). Since 

where 

f0 ~ 2 dfle  -Bin Z( f l )  = G(m2) ,  (2.14) 

1 1 ) (2.15) 
G(m 2 ) = t r  LL*+m 2 L t L + m  2 ' 

we see that the global part of the anomaly is simply related to the Laplace back 
transform of the (supersymmetric) partition function Z(fl). In particular, after a 
partial integration in (2.14) 

o o  2 

A(m 2) = l imZ( f l )  + fo e-m ~Z'(fl) 
,83,0 
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and one sees at once that the large energy limit of A(m 2) coincides with the high 
temperature limit of Z(fl) ,  i.e. that 

lim A(m z) = l i m Z ( f l ) .  (2.16) 
m2--. ~ /3,;0 

Also, by writing Z(f l )  = Z(oo) + Z,(fl), where of course Z(fl)  tends to zero when fl 
approaches infinity, one can establish that the difference ]A(m 2) - Z(oo)l is smaller 
than 

rn2 fo"IZ(fl)l + ~axlZ(fl)l 

for any positive a. Therefore the difference must tend to zero when m 2---~ 0 (take 
a - 1 /m) .  In this way we see that 

lim A ( m  2) = lim Z(fl), (2.17) 
m 2 J,O fl"'* 

i.e. the global part of the anomaly is just Z(oo). 
When the chiral variation et is localized (such that boundary terms vanish) we can 

recast (2.4) into the standard form 

2ao(X ) = 2mJs(x ) - O~,J~(x), (2.18) 

where j5  is the axial current 

J~(x)=i f dX +b.~'4~x 
~ +  im 

Js(x)  is given as 

+W~x 
A(x) = i[dX 

d 

(2.19) 

(2.20) 

and where ao(X ) denotes the anomaly density. If the space is compact and has no 
boundaries then the spectrum of iJ~ is purely discrete and the last term of (2.18), 
integrated over the space, is obviously zero. Now using the heat kernel techniques to 
compute the anomaly density [12] and the fact that m f J s ( x ) d x  = A(m 2) is equal to 
the index of i~  in this case [3], one recovers the celebrated form 

(2.21) 

where ~/i(x) is the Chern-Pontryagin density (generalized flux density). However if 
one works on an open space or on a manifold with boundaries the anomaly 
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equation (2.21) must change since in this situation the right-hand side is not 
necessarily an integer. Actually it was Callias [2] who first addressed index theorems 
in infinite spaces. However, in his case (fermions coupled to external Yang-Mills 
and asymptotically constant Higgs fields) the continuum if iJ~ is separated from 
zero (the energy gap is determined by the asymptotic value of the Higgs field) and 
(2.21) still holds [3]. However, in more general background fields (see Niemi and 
Semenoff [2]) this is not the case anymore. Then the global part of the anomaly is 
no longer equal to n+ - n_, since the spectrum of iJ~ has a continuous part which 
stretches down to zero. In this case both the zero modes and the continuum 
contribute to the anomaly. In fact, the continuum is responsible for the fractional 
part of the anomaly [3, 4]. For the anomaly " t r  # "  the heat kernel method still gives 
the right-hand side of (2.21) [12]. In fact as shown in [3, 4] the anomaly equation 
yields 

1 
x f  ~ ( x )  = n + -  n_ + - ~ ( ~ ;  - ~ ; ) ,  (2.22) 

aX ¢r k 

where 8~ denotes the left- (right-) handed phase shifts of the operator - 0 2 .  This is 
a form of the index theorem for non-compact manifolds. In (2.22) it is assumed of 
course that the generalized flux integral at the left-hand side exists, and that L 2 
(scattering) boundary conditions are imposed on the Dirac operator. 

On the other hand by introducing boundaries and applying the APS global 
boundary conditions the anomaly is equal to the index of i0  but there are two 
contributions to it. One part is again the generalized flux and the other part a 
non-trivial boundary contribution so that (2.21) is replaced by 

n + -  n = Xfx~(X ) - f ( 0 X ) ,  (2.23) 

where f ( 3  X) is the boundary contribution, which is roughly the fractional part of 
the generalized flux. This shows how careful one must be when calculating the 
anomaly on non-compact spaces. 

In this paper we shall derive and rederive eqs. (2.22), (2.23) for various simple 
examples in detail and compare the corresponding index theorems for the two 
different ways of calculating the anomaly for non-compact spaces, namely to work 
on the non-compact space and deal with the continuous spectrum and L2-boundary 
conditions or introduce boundaries and apply the APS method. Clearly for a 
meaningful comparison we shall assume that the generalized flux integral is conver- 
gent over the non-compact manifold. We shall relate the APS ~/-invariant on a X to 
the phase shifts on the non-compact space. Since we deal with two different 
operators - the Dirac operator on the open space with a L2-dense domain and the 
Dirac operator on a bounded subspace with APS domain - only in the limit when 
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the boundary tends to infinity can they coincide. This relation between infinite 
space index and ,/-invariant was actually first developed by Niemi and Semenoff [2]. 
What is really interesting is that despite the above problem one can make a 
meaningful comparison between the two approaches and the resulting index theo- 
rems are the same if one introduces a slight modification in the original APS 
boundary conditions. 

3. ~l-invariant and phase shifts. Non-compact manifolds and manifolds 
with boundaries 

Let us start by recalling the Atiyah-Patodi-Singer (APS) index theorem [1,13] for 
a Dirac operator, iD, defined on a 2n-dimensional, compact, euclidean spin 
manifold X with a 2n - 1 dimensional boundary O X: 

index(iJg) = fxa0(x)  - 1(*/(0) + h) ,  (3.1) 

where ao(X ) is the "anomaly" density defined by the left-hand side of (2.4) (e.g. on 
a two-dimensional flat manifold ao(X ) = (1/2~r)F12(x), where F12(x ) is the field- 
strength tensor); h is the number of zero modes of the restriction of iJ~ to the 
boundary OX denoted by B; */(0) is the famous */invariant of APS which measures 
the spectral asymmetry of B. 

Parametrizing X near the boundary as (u, y) ~ I x 0 X where the normal coordi- 
nate u vanishes on 0 X, we assume that the operators L and L t can be written as 

L = - 0, + B, (3.2a) 

L* = 0,, + B, (3.2b) 

where B is a self-adjoint (first order and elliptic) operator. It has been shown by 
APS [1] that if { % } denotes the set of eigenvalues of B, the spectral function, */(s) 
of B may be written as 

sign(o~.) 
, /(s) = E (3.3) 

Io~.1" 
n 

~.~0 

They have also shown that */(0) is finite for all self-adjoint elliptic operators on 
odd-dimensional manifolds. The anomaly density ao(x ) is the constant term in the 
high temperature expansion (fl ~ 0) of the diagonal of the heat kernel 

z ( / L  x, x)  = F_,e-B~((f~(x),f~(x))-(gx(x),gx(x))), 
k 
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where (fx, X) and (gx, X) denote the normalized eigenfunctions and the eigenvalues 
of LL t and LtL respectively on the double of X. Since the double of X is a compact 
manifold without boundary all the usual heat kernel expansions can be applied 
directly [12]. 

A crucial point for the validity of the APS index theorem is to impose suitable 
boundary conditions at 8X for the Dirac operator, which guarantees self-adjoint- 
ness and are compatible with the non-trivial topology of the gauge fields (and /or  
the manifold). These non-local boundary conditions require that the right- (left-) 
handed spinor restricted to the boundary 0 X should lie in the subspace spanned by 
the eigenfunctions (e ,  } of B with the corresponding eigenvalues, ~0, being negative 
(positive). Let us expand f and g near the boundary in terms of an orthonormal 
basis of eigenfunctions of B 

f ( u ,  y )  = E f ~ ( u ) e . ( y ) ,  g(u,  y )  = E g . ( u ) e n ( y ) .  

Then the APS boundary conditions read 

f~(0) = 0  for ~ , ~ 0 ,  (3.4a) 

g,(0) = 0 for to, < 0, (3.4b) 

and guarantee that L and L t (more precisely their closures) are the adjoints of each 
other. 

The conditions (3.4a, b) imply the following boundary conditions for the second 
order operators, H + = LL t and H -  = LtL (for simplicity we assume that B has no 
zero modes): 

f .  (0) = 0 for ~n > 0, 

( L t f ) . ( 0 )  = 0 for ~. < 0, (3.5a) 

g.(0) = 0 for ~. < 0, 

(L~)n(O) = 0 for ton ) O. (3 .5b )  

For a simple interpretation of these non-local boundary conditions, see refs. [1,13]. 
It has been shown in ref. [1] that from the point of view of the operator a u the 

~l-invariant may be expressed as 

, / ( 0 )  = - 2 a  0 ,  ( 3 . 6 )  

where a o is the temperature independent term in the high temperature (small /3) 
expansion of 

Z( f l )  = tr(e - # n + -  e -#n-)  - a 0+ a l v ~  + " '"  (3.7) 
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over the cylinder OX x [0, oo) = ((y, u)}. Here the boundary operator B on 0X is 
trivially (u-independently) extended to the cylinder (and so are L and L t in (3.2) 
and H-+) therefore we can diagonalize B over this cylinder by using the basis { e,  }. 
Writing 

= (3.8)  
n 

where Z,(fl) is the trace of the heat kernel in a given ~0, sector, Z,(fl) has the 
following integral representation [1]: 

where 

Z , ( B )  = - ½ sign(%)erfc( Bf~,2 ), 

2 oo 

erfc(x) = ~ -  f~ e- t2dt .  

(3.9) 

(3.10) 

The spectral function, ~/(s), is the Mellin transform of Z(fl) (we assume that B has 
no zero modes) 

s ~ -  fo~B' /2-1Z(f l )  dfl. 
1)) 

(3.11) 

For details of the original derivation of (3.11) we refer to ref. [1]. 
We find it instructive to derive (3.9) by exploiting the supersymmetry structure of 

the Dirac operator. In our case the supersymmetry boils down to the following: if fx 
is an eigenfunction of LL t 

LL*fx = )~2fx (3.12) 

satisfying (3.5a) then Ltfx is an eigenfunction of LtL satisfying the non-local 
boundary conditions (3.5b). In other words the boundary conditions are compatible 
with supersymmetry. Let us now introduce the Green functions G ÷ and G-  as 

(H~ + + m2)G+(u, u') = 6 ( u -  u'), 

(Hj  +m2)G- (u ,u ' )=8(u -u ' ) ,  

(3.13a) 

(3.13b) 

where G -+ are symmetric in (u, u') and fulfill (3.5a, b) at the boundary u = 0 (or 
u' = 0) and the usual L 2 condition at u = ~ (or u' = oo). First, using the spectral 
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represen ta t ion  for G -+ 

together  with the equations 
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-x A(u)A+(u') 
G+ ( u, u') = f cl X~ + m ~ , (3.14a) 

gx( u)gtx( u ') 
G - ( u ,  u')  = f d X  (3.14b) X2+ rn 2 , 

Ltfx = Xgx, (3.15a) 

Lg x = Xfx ,  (3.15b) 

we derive the following supersymmetry  relations between G+(u, u') and G-(u ,  u'): 

L~G+(u, u')  = Lu ,G- (u ,  u ') ,  (3.16a) 

L~,G+(u, u') = L,G (u,  u') ,  (3.16b) 

which will turn  out to be extremely useful. Using (3.13) and (3.16) one obtains  

L~Lt,,G+ ( u, u')  = 8 ( u  - u') - m2G-  ( u, u') . (3.17) 

Since we diagonal ized B over the "ha l f  cylinder",  to actually compute  the Green  

funct ions  G -+ = F.Gff we have to solve 

( - -  o 32 + m 2 + to2)G,+-(u, u') = 8(u  - u') (3.18) 

subject  to the bounda ry  condit ions (3.5a, b) at u = 0 and u ' =  0 and L 2 bounda ry  
condi t ions  at  u = oc and u ' =  o¢. Let  us first assume that  to, > 0. Then  we can 
immedia te ly  write down the solution of (3.18) for the r ight-handed ($ = + )  Green  

funct ion:  

1 
G~+(u, u')  = - - ( e  -°"lu-~ ' l  - e - " - ( " + " ' ) ) ,  (3.19) 

2% 

where  % = m ~  + to,.2 F r o m  eq. (3.17) we can now trivially derive the lef t -handed 
(~ = - )  G r e e n  function: 

) o +'.+ .'e .--u, 
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Since we wish to calculate 
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G°(m = (u, u) - C;-(u,  u ) ) d u  (3.21) 

it is useful to observe that G n can be converted into surface terms by using the 
following relation between Gn + and G~- on their diagonal: 

C;(u,u)- G;(.,.) 1 

2o~ n 
- -  O,(G~+(u, u) + G,-(u, u)). (3.22) 

Eq. (3.22) follows from (3.16a) and (3.16b) by adding these two equations and then 
restrict the sum to the diagonal u = u'. For co n < 0 the calculation of Gn(m 2) is very 
similar and finally we obtain for (3.21) 

1 sign(o~,) 
Gn(m2)  2 On(On+ I~nl) " (3.23) 

As one can easily check [14] the Laplace back-transform of eq. (3.23) yields eq. (3.9). 
An alternative way of calculating Z(/3) is by using "phase shifts" which gives the 

above result significantly faster than the previous "Green  function method". The 
key formula - which holds for both the L 2 and the APS boundary conditions - for 
applying the phase shifts is: 

1 ~ f o ~ d E F ( E ) d S n ( E )  (3.24) t r ( F ( H  +) - F ( H - ) )  = ~r d E  ' 

where the energy, E = X2; 8n(E ) = 8~+(E)- 8~(E) denotes the difference between 
the right- and left-handed phase shifts; the function F(x) should tend to zero at 
least as 1/x  as x ~ ~ .  We refer to appendix A for the derivation of (3.24) and the 
general definition of the phase shifts. 

Let us choose F(x)= exp( - f lx ) .  For ~0 n > 0 the left- and right-handed "scatter- 
ing" states are (up to an overall normalization) 

f ,  = s in(ku),  

1 
g, = ;L*f,  = sin(ku + 8) ,  (3.25) 

where k = ~ and 8 = arctan(k/o~,). 
Using appendix A it is easy to see that 8(E) in (3.25) is indeed the difference 

8 -  - 8 + between the left- and right-handed phase shifts. From (3.24) we therefore 
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1 ¢m .0 

Z(/3)  = ¢r ,0 2 + k 2 = - ler fc  ' (3.26) 

ast eq. (3.9). 
aportant to note that the heat-kernel on the cylinder is temperature 
:, although the boundary conditions (3.5a, b) preserve the supersymmetry. 
:trum of iO would be purely discrete this could not happen. However, it is 
nting out that the existence of a continuous spectrum is not sufficient to 
the temperature dependence of Z(13). Since/3 has dimension [length] 2 
is dimensionless, clearly another dimensionful parameter  is required to 

n-trivial Z(/3). The point is that in the present case (on the cylinder) the 
.'s of B have dimension [length] -1 so Z(/3) could be any function of the 
Lless quantity (092/3). 

e would like to connect the above results to our anomaly considerations. 
3) and (3.23) we observe that for m --+ 0 

sign(w,,) 
, 2 _ _ -  ¼m2~/(2) (3.27) A ( m  2) - - E 2 

n *on 

r energy part  of the anomaly vanishes. On the other hand, the high energy 

(m2), m ~ oo is equal to 

A = + b,  (3.28) 

nd b are constants and ~ = fxao(X)dx is the generalized flux. In deriving 
assumed that the eigenvalues of B are linear in ~. To establish (3.28) it is 
to compute OZA/O~ 2 which can be seen to vanish for m -~ ~ as  m -2 .  

(3.28) fails for those exceptional values of • where new bound states 

ite illuminating to calculate the anomaly when the original manifold, X, is 

X = [a ,  b] × S 1 

~e have two boundaries, 0Xa=S~ , )  and 0X2=S~b).  We denote the 
es by x ° = u, x 1 = 0. Let us choose the following representation for the l' 

,o=(0 i) ,__(0 ° 
- 0 ' - 1  " 

the gauge choice A o = 0 and also assume for simplicity that A 1 = ~(u) ,  so 
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the Dirac operator D = ~ + i.~ becomes 

where 

L = - 0 .  + (10o + ~) ,  (3.30a) 

Lt= Ou + ( loo + e~). (3.30b) 

Clearly the operator at the right should be identified with the boundary operator 

1 
B =  -700+ ~ ,  (3.31) 

l 

with eigenvalues ,% = n + ~a and % = -(~% + ~b)- 
In the present case when m--, oo we can compute both constants c and b in 

(3.28) explicitly. It is not difficult to see that 

lim O.A(m z) = c 

can be represented by the integral 

oo dx  

~J-  ~ (1 + x 2 )  3/2 

Furthermore, by observing that 

A(rn2,~)=A(mZ,~+ l) 

and that A is an odd function of • together with the fact that A (~ )  vanishes at 
= + 1 (for these values of • the spectrum of B is symmetric) we finally obtain 

A = l  - (q)b), (3.32) 

where 0 ~ ( ~ )  < 1 denotes the fractional part of the flux, • (see fig. 1). 
It is not too difficult to work out the ~-invariant as well. At the right boundary 

we obtain 

%(s) = ~(s, - (~b) )  -- ~(S, 1 + ( ~ b ) ) ,  (3.33) 
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-A 

Fig. 1. The high energy limit A(oe) of A(m 2) as function of the flux. 

where ~(s, q) is the modified f-function 

1 

f(s,q)= ~ (n+qlS" 
n=0 

Since [15] 

f(0,  q) = - q +  ½, (3.34) 

the contribution to the ~/-invariant from the right boundary is 

~/h(0) = 2(ff~h) - 1 = - 2 A .  (3.35) 

The contribution to the ~/-invariant and the anomaly from the left boundary (u = a)  
is calculated in the same way and we find for the total boundary term (taking into 

account the change of orientation at u = a with respect to u = b) 

*/h + */a = 2((q~b) -- ( ~ ) )  " (3.36) 

For  the sake of completeness let us now count the number of zero modes. Assuming 
for example, ~b > qb > 0, there are no left-handed zero modes satisfying the 

non-local boundary  conditions. The right-handed ones are given by 

L(u)=exp{- f"(n+~(u'))du'}, (3.37) 

where the boundary conditions imply the following restriction for the allowed range 

of n: 

-~b<n< -~. ,  

which in turn fixes the index to be 

ind(iJg) = [q~b] - [ ~ ] -  (3.38) 
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Since the total flux is 

1 1 "  

JxFol dx = q~b- ~a 2 ~r 

using (3.36) and (3.38) we verified the APS index theorem for this simple example. 
Finally we calculate the anomaly of the Dirac operator on the infinite cylinder, 

R × S 1. We shall assume that 

~ ( u )  ~ +  for u ~ __ o9 

(with finite • _+) thus guaranteeing that the total flux is finite. In fact it is given by 

l r f x F o l d X = ~ + - ~ _ .  

In this "non-compact"  case the natural boundary conditions are dictated as being 
L 2. For computing the anomaly we shall employ the heat-kernel regularization as in 
(2.12). We shall exploit again the key formula (3.24) which gives the result in a very 
quick way. All we need to calculate now are the usual scattering phase shifts 
8,, = 8 + - 8~-. The right-handed spinor solution has the asymptotic form 

f e-ik-u for ~ - u o9 

f ~ [ a g ( k ) e  'k+u + bR(k)e'k+" for u ~  o9, 

where the dispersion relation is 

E=k~+(~0#+)  2 w i t h c 0 : : n + q ~ _ +  

and we took the normalization convention from appendix A. Using again supersym- 
metry and taking the same normalization the left-handed spinor solution is given by 

1 
g -  Ltf ,  

- i k  + w_ 

so that 

a L ( k )  

Since the phase shift is given as 

ik+ - ~o+ 
ik_ - ~o_ aR ( k ) " (3.39) 

e2,~SR_SL)__ aR ( - -k )  aL(k) 
aR(k  ) a L ( _ k )  (3.40) 
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13.39) - the unknown function aR(k ) drops out from the phase shifts. (3.40) 
the result 

6 = 6 R - 6i. = - a r c t a n -  
k+ k 

+ a r c t a n - -  (3.41) 
~+ ~_ 

:h 8 R and 6i. are the same function of k as 6(k)  in eq. (3.25), when plugging 
into (3.24) we can make use of (3.26) to write down Zc(/3), where Zc(fl) 
',s that part  of Z(/3) which comes purely from the scattering states. Taking 
:count the jump of the phase shift at a bound state we end up with 

Z , , ( / 3 ) = n R - - n L - - l ( e r f c ( ~ ) - - e r f c ( ~ ) ) .  (3.42) 

ain the anomaly we carry out the summation over n and take the limit/3 -+ 0 
lally obtain 

A = ind(iD) + ((q}+) - ( ~ _ ) ) .  (3.43) 

43) is in complete agreement with the APS index theorem in the limit when 
) boundaries (u = a, b) tend to Tinfinity. 

"emark that since the L 2 and APS boundary conditions appear to be different 
)t a priori obvious that one should get the same results. What seems to be 
hat surprising is that the scattering phase shifts are actually the same for both 
case and in the outer region of the finite cylinder with the APS boundary 

ons. 

hermore we think it is interesting that the fractional part  of the anomaly 

is always zero on compact manifolds without boundaries) can be viewed as a 
try effect, associated with the presence of a continuous spectrum on the one 
md the APS ~-invariant on the other hand. Finally we would like to mention 
is cylinder example has also been thoroughly analysed in a very clear paper  
ae [16], from a somewhat different point of view but our results are of course 
plete agreement with his. 

ial anomaly for the 2-dimensional disk and modified APS boundary conditions 

his section we shall mostly concentrate on the simple but illuminating 
e of a U(1) gauge field defined on a disk in R 2, with radius R. As it will be 
ae disk is somewhat more complicated than the cylinder case. The Dirac 
)r rewritten in polar coordinates is given as 

0 (4.1) i~9= L* 0 ' 
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where 

L=eie(-ar+ 1( 1 TOo+*))' (4.2a) 

(1(1)) 
Lt=e  -i° Or+-  --:Oo+eb , (4.2b) 

r l 

and we assume for simplicity a rotationally symmetric gauge field 

X ~ 
A, = - ~ , , T g * ( r ) .  (4.3) 

Clearly from (4.2) the boundary operator is not self-adjoint (using the induced 
scalar product) because of the exp(+i0)  factors which then prevent us from 
applying the APS method directly. We remark here that it is a generic feature in R 2n 
when one employs radial-type coordinates, already for the free Dirac operator that 
near the boundary it is not of the "standard" APS form. 

However one can easily get rid of the troublesome exp( _+ iO) factors by applying 
the unitary transformation 

on iO: 

U=(  e-i°/20 e i°/20 ) (4.4) 

Ui~) U- 1 = 
0 1(1 )/ 

Or+~Tr + Tae+~ r 

1(1 )// 
-- 0 r - -  -~r  + , 00 q- 1~ r 

0 

(4.5) 

Note, that the corresponding transformation on the wave function 

q , o  U+ 

maps single valued spinors to double valued ones. Since the transformation (4.4) is 
not well defined at the origin, we are forced to cut a hole (with radius 3, say) there. 
This is in agreement with the fact that on the disk only single valued spinors are 
allowed. The punctured disk is topologically equivalent to a circle, S 1, with R as its 
universal covering space where multivalued functions 

(2~r) = ei2~%k (0) (4.6) 

are admissible. 
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If  we s tar t  with polar  coordinates,  that  is when the line element  

ds  2 = d r  2 + r2dO 2 

we get direct ly (4.5) for the Dirac operator .  The terms _+ 1 / 2 r  come f rom the spin 

connec t ion  

which is present  because of our  use of  curvilinear coordinates.  Now,  already the 
coord ina te  sys tem itself is singular at r = 0 (and the spin connect ion as well) so a 
" h o l e "  is induced by  our choice of  coordinates.  

Hav ing  derived (4.5) in one or the other  way it is easy to bring L and L t to the 
s t andard  fo rm by  t ransforming away the spin connection.  Indeed defining 

1 

~b = ~-r  ~ ,  (4.7) 

thus changing the measure  f rom r dr  to dr ,  we get 

where  

1(0 ,4 a, 

 r+(100+ot/r 
Lt = 0r + 7 0° + ~ r .  (4.8b) 

N o t e  that  the adjoint  of - O r is O r with respect  to the induced scalar product .  There  
is no p r o b l e m  now in reading off the boundary  operator ,  B, f rom ( 4 . 8 ) -  its 
eigenvalues at the "ou te r "  boundary  r = R are 

n + a + ~ ( R )  
% = - R ' ( 4 . 9 )  

where we imposed  the following condit ion on the eigenfunctions of B: 

e,,(2~r) = ei2~%.(0) ,  0 ~< a < 1, 

in ag reement  with (4.6). Now we still have to cope with the induced bounda ry  at 
r = a. Let  us assume that ~ ( r )  --, 0 as r -~ 0, so that the field strength is regular at 
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the hole. At r = 3 the corresponding eigenvalues of B are 

577 

n+a+'~(a) 
¢o,, = 3 , ( 4 . 1 0 )  

where the relative minus sign between (4.9) and (4.10) is due to the change of 
orientation at r = 3 with respect to r = R. The calculation of ~/R(0) and 78(0) now is 
essentially the same as for the cylinder and we obtain 

fiR(0) = 2 (a  + q~(R)) - 1, (4.11a) 

rla(0) = 1 - 2 (a  + ~ ( 8 ) ) .  (4.11b) 

So according to the APS index theorem 

ind(iJg) = [ ~ ( R )  + a] - [ ~ ( 3 )  + c~], (4.12) 

which agrees of course with the counting of the explicitly known zero modes. For 
a = ½ we recovered Ma's result [17]. Since ~ (3 )  ---, 0 as 8 --* 0 in this limit we get for 
the disk without the hole 

i nd ( i0 )  = [q~(R) + a ] .  (4.13) 

However as it stands this 3 --+ 0 limit is somewhat questionable since we seem to end 
up with multi-valued spinors over a disk. Furthermore, though there is no "physical 
hole" (the fields are well behaved) we still get a non-vanishing contribution to ~ ( 0 )  
for a 4= ½. This argument suggests already that to make connection with the original 
problem (non-singular fields on the disk) a = ½ is the only allowed value. Indeed, 
remembering that the back transformation of iJ 9 from polar to cartesian coordinates 
involves 

U = diag(e ie/2, e ie/2) 

clearly it is only with a = ½ when we get single valued spinors and in this case the B 
operator has half-integer eigenvalues. For a = ½ the APS index theorem can be 
illustrated as in fig. 2. 

Note that the ~-invariant is periodic with periodicity one, which is a consequence 
of course, of the periodicity of the spectrum of B. (If a 4= ~ then in the two figures 
on the left-hand side there is a shift by a - ~.) 

In what follows it is essential to observe that starting with iJ~ as in (4.1) and (4.2) 
on the disk, the angular momentum operator 

1 
2 5  

I 



578 P. Forgacs et al. / U(I) anomaly 

I 

-1 
® 4 . 4  

Fig. 2. The flux-dependence of the index and the ~/-invariant on the two-dimensional cylinder with APS 
boundary conditions. 

commutes  with iJ~. Therefore we can work in a given J sector and we immediately 
recover i o as given in (4.5) and - i O  o - 1.y2 5 having half-integer eigenvalues. This 
argument  seems to indicate that the boundary operator can be identified with 

J + ~ .  
To compact ify the disk to S 2 it is necessary to have an integer flux (assuming that 

the transition function is single valued on S 2 as required by the bundle picture). In 
this case the index (on S 2) is equal to the flux. Therefore one might expect that 
integer values of the flux play a somewhat distinguished role. Since the boundary 
r = R can be thought of as an infrared regularization of the anomaly - (note that 
there is a long range gauge field) it would be natural to demand that by removing 
the regulator (i.e. R ~ ~ )  we recover the well known L 2 result which can be 
depicted as [3, 4] in fig. 3. 

One sees that the fractional part  - in contradistinction to the previous case - is 
not periodic and the index jumps at integer and not at half-integer values of the 
flux. For example, when • > 0, the explicit right-handed L 2 zero modes are 

i=exp(-S dr'}, t '41 

where n denotes the (integer) eigenvalues of the orbital angular momentum oper- 
ator. One can easily establish that the condition for normalizability at r ~ ~ is 
n - 1  + q ) ( ~ ) >  0 which differs from the APS condition j +  q)> 0. Since the 

-1 

I' 

i n d e x  

I 

i°  
] 

f r a c t i o n a l  
p a r t  

. /  . . - ! .  . , .  

f l u x  

Yo 
1 

Fig. 3. The index and the fractional part of the anomaly on R 2 with l, 2 boundary conditions. 
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physical bound states should be L 2 normalizable - using the APS boundary condi- 
tions with the boundary operator as J we would allow for zero modes which would 
correspond to unphysical ones in the limit R ~ oe. All these arguments indicate 
that the boundary operator is not J + ~, as one would have naively thought. In 
addition, there is another seemingly technical reason against identifying B with 
J + ~. When computing the originally well defined anomaly, A(m 2) as in (2.13) - in 
the outside region r > R using the APS boundary conditions by first diagonalizing J 
and then attempt to calculate the " t race" (summing over j ) -  we find that the 
resulting sum is ill defined (see appendix B). On the other hand if we insist on 
B -- ( 1 / i ) 0  0 + ~ with the usual (integer valued) spectrum of (1/ i )00 we then obtain 
a convergent sum (over n) for A(m2). We hope that this point will become clear 
from the explicit calculations below. 

Motivated by the above arguments (both physical and mathematical) in the 
following we take B = (1/ i )00 + • as our boundary operator in (4.2). Using (4.1) as 
the Dirac operator poses some difficulties, since L and L t are not the adjoints of 
each other due to the exp(_+ iO) factors, with the usual APS boundary conditions. It 
is however not so difficult to find the modification of the APS conditions to ensure 
the adjointness of L and L* and thus the self-adjointness of the Dirac operator. For 
the technical details we refer to appendix C. The result is the following: expanding f 
and g near the boundary in the B eigenbasis 

Be n = o~ne n where ~o n = n + • ,  

we obtain the following boundary conditions for 

f =  Ef.en and g = Y',gne, 

at r = R :  for q ) > 0  

f , ( R )  = 0 for ~o n > 1, 

gn(R) = 0  for %~<0, (4.15a) 

and for q~ < 0 

f , ( R )  = 0 for % > / 0 ,  

g , ( R )  = 0 f o r % <  - 1 .  (4.15b) 

The adjointness conditions do not fix the boundary conditions comple te ly -  in 
deriving (4.15a, b) we required that Z ( f l )  should vanish in the outside region when 
• ( r )  = 0. 
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~p 

Fig. 4. The slantwise action of the supersymmetric operators L and L t. 

The corresponding boundary conditions for the second order operators L L  t and 
L t L  following from (4.15) are 

f , ,(R) = 0, ~% > 1 ; 0~ + -to,, f~lR = 0, to,, ~< 1, (4.16a) 
r 

( 1) 
g n ( R ) = 0 , ~ , ~ < 0 ;  - O r + - ~ o ,  g~lR=0, ~%>0. (4.16b) 

for q~ > 0 and similarly for q~ < 0. 
Our calculations will be drastically simplified by the fact that the boundary 

conditions (4.16) preserve supersymmetry just like the APS boundary conditions. In 
fact supersymmetric boundary conditions are equivalent to demanding that L and 
L t be the adjoints of each other. 

It is important to note that the supersymmetry operators L and L t (in 4.2) 
change the orbital angular momentum and hence the eigenvalues of B by + 1 (resp. 

- 1). This '"slantwise" action of the operator is illustrated in fig. 4. 
We now proceed to calculate the anomaly using again the phase shift method and 

the key formula (3.24), exploiting heavily the supersymmetry. First we have to find 
the phase shifts of the second order operators. Therefore we have to solve the 
equations 

1 ~0 n 
LLtfn = - 0 ~ -  rOr  + ~ f , = X 2 f ~ ,  (4.17a) 

1 o~ n 
LtLg ,  = - O~ - -r Or + ~ -  gn = )t2gn (4.17b) 

in the outer region r > R subject to the boundary conditions (4.16). As it is well 
known (4.17) is just the Bessel equation whose solution is given as: 

f ,  = otJ, o.( )tr ) + f lJ_~.(  )kr ), (4.18a) 

1 
g . -1  = ~ L t f .  = aJ~ _~(~r)  - flJ1 ~ . (~r ) ,  (4.18b) 
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where L* is of course taken in the B eigenbasis: L* = 0r+ oa,/r. Using the 
asymptotic expansion for the Bessel function (r --+ oo) and the phase shift definition 
as in appendix A one can establish that the phase shift for the right-handed 
function, f ,  is 

( 1 - f l / a ~ r ) l  -e p l a Z 8~")= ¼~r + arctan _-A-7-, t anTw . . (4.19) 

The phase shift of the supersymmetric partner Ltf is given by 

( l + fl/atan2 (% ) ~ t n - 1 )  = 1 - -  1) , a~r + arctan 1 - fl/a (4.20) 

which is obtained from (4.19) simply by the substitution a ~ a, fl--, - f l ,  % 
o~ n - 1. From (4.20) one can easily check that 

~ ( n )  __+_ 1,ff = ~ ( n - 1 )  , ( 4 . 2 1 )  

where the ( + )  sign is for ~0. > 1 and the ( - )  sign is for % ~< 1. To apply the key 
formula (3.24) we evaluate the limit of 

N 

= E 
- N  

when N---, ~ .  
We can make use of (4.21) by rearranging the finite sum as follows: 

(4.22) 

N 

8(u)= E (8(R"+ 1) -- 8(")) -- (~(N+ 1) -- 8[~N+ 1)) • (4.23) 
- ( N + I )  

In (4.23) the sum is actually zero because of (4.21) (there is an equal number of 
positive and negative oa terms in the sum). The above rearrangement of (4.22) is 
illustrated below in fig. 5. 

So we find that the sum (4.22) telescopes to 

(4.24) 

From this telescoping property one can already anticipate that the only contribution 
to the anomaly comes from the very large angular momenta. To calculate 8~L - N)_ 
8~R N) for large values of N we observe that o~ N > 0 and t ~  N < 0, hence the boundary 
conditions (4,16a, b) imply 

4N(XR) 
fl/a (4.25a) 
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N 

I I ' 
, , I I 

I ~ I 

'~ ~ 6 L 
-N 

Fig. 5. The remaining "boundary terms" after the rearrangement of the finite sum (4.22). 

in the right-handed sector, whereas in the left-handed sector: 

J~ ~(%R) 
fl/ct J-o, ,,(%R) " (4.25b) 

From the formulae for the asymptotic expansion for large orders of the Bessel 
functions it follows at once that fl/a in (4.25a) tends to zero exponentially for 
~0 N ---, ~ and f l /a in (4.25b) tends to infinity (also exponentially fast) as O~_N ~ -- ~ -  

Then the phase shift formulae (4.19) and (4.20) yield 

~(N-1) = ~(L-N)-  ~ ( N ) ~  - r r < ~ ) 0 ( E ) ,  (4.26) 

where E = %2. In eq. (4.26) the fractional part of the flux, (q~), comes from the 
correct choice of the branch of the arctan function in (4.19) and (4.20) which is fixed 
by the requirement that 0 ~< 8 < ~r. Also in (4.26) the phase shifts are zero for E < 0 
because both LL t and LtL are non-negative. 

Since 

d 
dE 6tN)(E) = - T r ( ~ ) 6 ( E ) ,  (4.27) 

where 8 (E)  denotes the usual delta function, the key formula (3.24) yields: 

t r ( F ( H  + ) -  F(H )) = -(dP)F(O). (4.28) 

From (4.28) we immediately get for Z(fl) (in the outside region with the boundary 
conditions (3.15a, b)): 

Z(B)  = - ((b>, (4.29) 

which is clearly temperature independent contrary to the case of the cylinder. 
This temperature independence seems surprising at first since the spectra of the 

operators L, L t are continuous, but it can be understood from the following simple 
dimensional analysis. In the present case the eigenvalues of the boundary operator, 
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B, are dimensionless contrary to the case of the cylinder where the B eigenvalues 
had dimension [length] -1. The only intrinsic dimensionful parameter now is R 
coming from the boundary conditions, so the (dimensionless) Z(/3) can only be a 
function of /3/R 2. Since we assume that ~ ( R ) ~  ~(oo) for R large enough, the 
eigenvalues of B are independent of R. Also the index of i~ becomes independent 
of R when R -* oo. Therefore Z(/3) should be independent of R in this limit. 

It is also true that the anomaly A(m 2) does not depend on the energy scale, so 
this is a way to understand why the anomaly can be viewed as either coming from 
the ultraviolet or from the infrared region. 

In appendix B we compute the anomaly using the Green function method, where 
the calculations are more involved (and are also more explicit). The results are of 
course in complete agreement with the phase shift calculations. 

Finally we would like to point out that the zero modes as given by eq. (4.14) 
satisfy the boundary conditions (4.15) when o~ n = n + • > 1. To ensure normalizabil- 
ity at the origin n < 1, so we find that the index of iD is given by [~] for • > 0. 
(For  • < 0 the index of ia 9 is - [ - ~].) Using eq. (4.29) we can see again how the 
index theorem is satisfied in the present case. We remark that the index theorem 
derived this way is slightly different from the APS index theorem. This is of course a 
consequence of our modification of the original APS boundary conditions. 

To conclude this section we would like to compare the above results over the disk 
with the L 2 result in R 2. 

First we observe that the supersymmetry relation between f and g is still valid, 
that is if f is a scattering state regular at the origin, then Ltf is also a regular 
scattering state. For large r the solutions of (4.17a, b) are again given by (4.18a, b). 
Since in the derivation of (4.24) we used only the supersymmetry property it 
remains true that 8 (N) is determined by the very large angular momenta. Further- 
more we can argue that fl/a tends to zero in the f sector for ~0 N ~ oo and fl/a 
tends to (minus) infinity for ~0_ N ~ -- ~ -  Indeed, for large values of ~0 the solution 

f can be written as 

o(e r)  
f -  ~ ~ +/3sinoo~r. ~ ~ ]  (4.30) 

When w---, ~ the second term in (4.30) explodes exponentially and cannot be 
matched with a regular solution unless /3 ~ 0 in this limit. This argument is 
essentially the same as the one employed for X ~ 0 (low energy) in ref. [3]. Taking 
into account (4.14) we find the expected L 2 result as shown in fig. 3. 

In this case (in R 2) the temperature independence of Z(/3) is quite obvious since 
the only contribution to the anomaly comes from the very large angular momentum 
sectors so only the large distance behaviour of the gauge fields is relevant. In other 
words, although for dimensional reasons a regular gauge field (at r = 0) must 
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depend at least on one dimensionful parameter (characterizing the short-range field 
strength) Z(/3) actually does not depend on this parameter. It only depends on the 
dimensionless coefficient of the asymptotic 1/r-tail of the gauge field. Thus, as in 
the case of the APS boundary conditions, Z(/3) is independent of the dimensionful 
inverse temperature/3. 

We thank P.A. Horvathy for his interest and useful discussions. Two of us 
(L. O'R. and A.W.) are grateful to R. Musto for discussions on scattering theory 
and anomalies. A.W. thanks J. Alberty for helpful conversations. P.F. thanks the 
DIAS for its kind hospitality and support, and also thanks the SERC (UK) for 
support. 

Appendix A 

Here we establish the key formula (3.24). This formula allows one to calculate 
supersymmetric traces in terms of the phase shifts 8~ = 3 + - 8~- [18]. It holds for 
both the L 2 and the APS boundary conditions. 

Consider the second order equation (3.12) for the right-handed spinor 

(-02. + V)fx=X2fx (A.1) 

and assume V--) w 2 as u --* oc. Applying d / d h  (denoted by a dot) to eq. (A.1) we 
obtain 

( -0~  + v) fx  = x2fx + 2Xfx. (A.2) 

Using these two equations we can immediately write down the wronskian identity 
between fx and fat: 

(A.3) 

Subtracting the corresponding identity for the left-handed spinor yields 

t b ( W(fx, fat)-  W(~x, gx)}[~= 2XLb{ fxfat-gxgtx) du" (A.4) 

The point is that the term on the right-hand side is related to the spectral 
representation of the kernel of F(H +) - F(H-) on the diagonal u = u': 

( F ( H + ) - F ( H - ) ) ( u , u ) =  fF(XZ)(fxfat-gxg~)dX 2. (A.5) 

The scattering solutions in (A.5) are normalized by the usual completeness relations 
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ffx(u)ftx(u')dX 2 = 8(u - u') etc. From (A.4) we see that the trace 

585 

t r ( F ( H + ) - F ( H  ) ) =  f du f dXZF(X2)(fxf*x-gxg*x) 

can be converted into surface terms, 

. t b t r ( F ( H + ) - F ( H - ) )  = ]irn ° f dAF(Az){ w(fx, f*x) - W(gx, gx))l~. (A.6) 

b - ' ~  

(On the cylinder a ~ 0 must be replaced by a ~ - oo.) It remains to be shown that 
the right-hand side of (A.6) is expressible purely in terms of the phase shifts of fx 

and gx. 
We apply (A.6) to the half cylinders u >1 0 with the APS boundary conditions at 

u = 0. Using (3.5) one sees at once that the wronskians vanish at this boundary. It 
remains to compute the contributions from the far zone (kb >> 1). For ku >> 1 the 
scattering solutions have the asymptotic form 

1 1 
fx - - - ~ - s i n ( k u  + 8+),  gx - ~ - s i n ( k u  + 8 - ) ,  k 2 = X2 _ w2, (A.7) 

and we can now trivially derive the difference of the wronskians 

W(fx,  ftx ) _  W(gx, gtx)_ 1 3 - - ~ c o s ( 2 k u + 8  ++8-)sin8 . 
7/" 

(A.8) 

Inserting (A.8) into (A.6) and applying the Riemann-Lebesgue lemma to the rapidly 
oscillating term - cos(2kb + 8 + + 8 - )  we immediately find the key formula (3.24). 

For  the other two cases, i.e. the cylinder and the disk (both with L 2 boundary 
conditions) one may employ the same technique. In this or some other way (e.g. by 
using analycity arguments [19]) one derives the following result in the cylinder case: 

Normalizing the scattering solutions on the real line at the far left (u ~ - o o )  as 

f x -  e-ik-u; k2-= X2- V ( -  ~ ) ,  (A.9) 

we can expand them at the far right (u ~ oo) as 

fx-a(k)e-ik+u+b(k)eik*u; kZ+=X 2 -  V(oo), (A.10) 

where 1/a and b/a are the transmission- and reflection coefficients of a left-mov- 
ing wave. With this normalization one can show that the right-handed scattering 

phase shifts defined as 

e 2i8+ = - a ( - k ) / a ( k ) ,  (A.11) 
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together with the left-handed ones (calculated in the same way) appear in the key 
formula. 

On the disk the phase shifts are defined similarly. Far from the origin (r--, co) 
the regular solutions have the form 

1 
.Ix - ~r-r ( a ( k )  e-ik~ + b (k ) e i k~ ) ,  (A.12) 

where as on the half cylinder k 2 = X 2 - V(r  = oo). The L 2 boundary conditions (at 
r = 0) are independent of k and therefore a ( - k )  = b(k ) .  So the right-handed phase 
shifts are now given by 

e 2'8+= - a ( - k ) / a ( k ) =  - b ( k ) / a ( k ) .  (A.13) 

Beside the explicit derivation of the key formula given above one may employ the 
S-matrix theory directly to derive the same result. Indeed, in ref. [3] the spectral 
representation of the S-matrix of H -+ has been used to show that 

d#(X) = 18(21), (A.14) 
, ff  

where #(X) is the difference of the trace measures of H ÷ and H- ,  i.e. 
t i f F ( H  +) - F ( H - ) ) =  fF(X)d/~(? 0 for sufficiently fast decaying functions F. Of 
course, (A.14) is equivalent to the key formula (3.24). 

Appendix B 

In this appendix we present a detailed calculation of the anomaly A(m 2) for the 
disk (in the outside region) using the Green function method. 

The quantity we are going to calculate is 

1 1 ) = t r (G+(m 2) - G - ( m 2 ) )  (B.1) G(m 2) = tr L L  t + m2 Lt  L + m2 

in a given %, sector. The Green functions 

1 
"-'+'t.,,~tr, r')" = (rl  L L  t + m2 Ir') , 

1 
~-'%tr, r')" = ( r  I Lt  L + m2 Ir') 

satisfy ( (2)) 1 d 2 1 d o~ n 
~ r  2 + - r - - d r -  m2 + - ~ -  G f f = - - 6 ( r r  - r ' ) "  (B.2) 
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Of course, G~ + is subject to the boundary conditions (4.16a), e.g. for ~ > 0 

G + ( r = R , r ' > R ) = G + ( r > R ,  r ' = R )  = 0  for ¢%> 1, 

* +  = r' R ) = ( L r G ~ ) ( r > R  , R )  0 for ~. ~< 1, ( L r G o ) ( r  R ,  > t + r ' =  = 

(Lt~ = O r + ¢%/r)  and G-  has to satisfy in (r,  r ')  the conditions as in (4.16b). Let us 
write the solution of (B.2) as 

Go, = G~ + G y ,  (B.3) 

where G~ denotes the inhomogeneous part and Gff denotes the homogeneous part 
of the Green function. 

In fact G I can be written in terms of the modified Bessel functions as 

G I = I , o ( m r < ) K o , ( r n r > ) ,  (B.4) 

where r< = min(r, r ')  and r> = max(r, r'). An easy way to see that G I does produce 
the 8 function at r = r '  in (B.2) is the following: first we observe that in (B.2) the 
8-function can come only from ( ¢ - i G I ) " / f /  since the other terms in (B.2) are 
continuous as r ---, r ' .  Therefore it is enough to show that the first derivative of v~G ~ 
has a jump of - 1 / ¢ ~  at r = r'. Indeed 

lim { (v~I~(mr<)K,~(mr> ));>r,- (1/rI,o(mr<)K,~(mr> ))'<~, } 

x 1 
= - - y ' ( I ~ ( x ) K ' ( x )  - I ' ( x ) K o , ( x ) )  = , (B.5) 

¢7 v r  

using the familiar identity 

1 
I o ( x ) K , ~ + l ( X )  + I . + l ( x ) K , o ( x )  = - - ,  

x 
(B.6) 

where x = mr,  together with the (supersymmetric) recursion relations 

~ + 1  
I ,o(x ) = I ' + l ( x  ) + I,.,+l(X), 

x 

~ o - 1  
I ~ ( x )  = I '~_ l (x  ) - - - I , ~ _ l ( x ) ,  

X 

K,~(x)  = - K ' + x ( x ) -  - -  
~o+1 

K . ( x )  = - K ' _ l ( x  ) + 
t o - 1  

X~_ i (x  ) . (B.7) 
x 

We note that the inhomogeneous part, G I, is the same for both the G ÷ and the G-. 
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Let us assume for simplicity that  the flux 0 < q~ < 1 so that  ~o o = ( ~ ) .  The  Green  
funct ions  G + and G S are finally given as 

I for co. > 1" G+~ = G60 - a60K~(mr)K60(mr ' ) ,  

for ¢0. < 1: G+~ = G  ' -I-Or I 60K,~(mr)K60(mr') - - 6 0  - -  

for ~% > O: Gg = G I + a~,+lK60(mr)K60(mr')  , 

for 0~. < O: G~, = G'  ~, - a _ 6 0 K ~ ( m r ) K ~ ( m r ' )  ( B . 8 )  

where  a60 = I60(mR)/K,~(mR) .  It  is easy to check that  the Green  funct ion in (B.8) 
do indeed satisfy the modif ied APS boundary  condit ions at r = R and at r '  = R and 

are regular  for  r -~ 0¢ (and r '  ~ o0). The trace we have to calculate can be wri t ten 
a s  

t r ( G + ( m 2 )  - G-(m2)) = ~_, f ;  drr(G+(r, r) - G~, (r, r)). 
O J  n 

(B.9) 

We  split the sum over the t%'s into 3 terms: 

G ( m 2 )  = -  Y~ f drr(a~ +a~,+x)K2(mr) + ~_, f d r r ( a l - ~  + a _ ~ , ) K 2 ( m r )  
¢o. > 1 ,~. <<. 0 

qt_ (O~tOo_ 1 __ a,~o+l)fdrrK~o(mr)" (B.10) 

In  wri t ing down  the third term we used the defining equat ion for K~ in terms of 160 
and  I _  60. Firs t  we point  out that  [20] 

f ; d r r K 2 ( m r )  = ½R2(K~ I ( m R ) K ~ + I ( m R )  - K 2 ( m R ) ) .  (B.11) 

So the first sum in (B.10) becomes 

R ~> (K,~_ 1 K~ ) R K,~o (B.12) 

2m ,~,, 1 K,o K60+1 2m K60o+ 1 ' 

in o ther  words  the infinite sum telescopes to a single term. The same telescoping 
p rope r ty  holds for the second sum in (B.10), which then becomes  

R K~,  ° 

2m K1_60 ° " 
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The third term can be recast as 

Now, since 

too ( K2 
m2 1 o,o 

K,oo-lK,%+1 

K~o K,% 2%_ 2 1 

K1-,% Kl+o~0 ~--K~° K,oo+ 1K~0_ 1 

we finally obtain 

w° ( * )  (B.13) G(m2) = m 2 -- m2 . 

So the global part of the anomaly as in (2.13) is 

A ( m 2 ) = ( * > .  

We conclude this appendix by commenting on the problem with identifying the 
total angular momentum J as boundary operator. If we would make this identifica- 
tion then we should first diagonalize J, i.e. evaluate 

Gj(rn2) = f drr (G+~(r , r ) -Gf_~(r , r ) )  (B.14) 

in a given J-sector (n = j  + ½ in the right- (resp. left-) handed sector), and then sum 
over j 

G(m 2) = Y'.Gj(m 2) (B.15) 
J 

in order to calculate G(m 2) in (2.15). 
Using the identities 

a,,(xI~,K,o_l) = x( I,o_aK,~_ 1 - I,~K,~), 

Ox(XKwKw_l) = - - x (K2  1"{- K 2 ) ,  (B.16) 

and the explicit form of the Green functions in (B.8) one easily checks the following 
identities (the analog to the supersymmetric relations (3.22)): 

f o r  w > 1: x ( G :  - a : _ l )  = O x ( - x l ~ g o _  1 + xol~g~o_lgo), 

for w 6  1: x(G+,,,-G~,_l)=3x(xll_,~K,,,-xoq_,~Kl_~,K,~), (B.17) 
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which allows one to recast Gj(m 2) into a surface integral at infinity (at r = R the 
surface contribution vanishes). Employing the asymptotic expansion of the Bessel 
functions for large arguments we end up with 

for o~ > 1 : m 

Gj (rn2) = 2m 2 , 

1 
for ¢0 ~< 1: Gj(m2) = 2rnZ, (B.18) 

which is of course in complete agreement with (4.21). Note that the sum (B.15) is ill 
defined. In this way one sees explicitly that one cannot evaluate G(m 2) as in (B.15). 

Appendix C 

In sect. 4 we have calculated the anomaly on the disk with the modified APS 
boundary conditions (4.15). Here we wish to demonstrate that these boundary 
conditions follow naturally by requiring the self-adjointness and the charge conjuga- 
tion invariance of the Dirac operator. Expanding the right- and left-handed spinor 
components  as 

f =  E f , ( r ) e  i"a, g = ~. ,gm(r)e ira° , (C.1) 

one sees at once that (with L and L t as in (4.2)) 

( Lff , g ) -  ( f  , Lg) = R fr=f*ei°gdO 

= 2 ~ r R E f f f _ l ( R ) g n ( R  ) . (c.2) 

Let us assume • > 0 and the APS-like boundary conditions (domain for L t)  

g m ( R ) = O  for O~m ~ O~ (C.3a) 

for the left-handed spinor. For L t being the adjoint of L the coefficients f , ( R )  must 
vanish for ~,  > fl with 13 >/a + 1. Actually, according to the definition of the 
domain of the Hilbert space adjoint we must allow for all right-handed spinors for 
which the boundary term in (C.2) vanishes. In this way we find the right-handed 
boundary conditions 

f~(R)  = 0 for ~% > a + 1. (C.3b) 

(Indeed, the conditions (C.2) guarantee that the defect indices of both LL  t and LtL 
vanish.) 
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To have charge conjugation invariance we must ensure that with ~k also the 
C-conjugated spinor 

~C=Y°(~*)T '  7 ° = ( O i  0)  (C.4) 

is in the domain of the Dirac operator. Since C should transform solutions which 
couple to eA, into those which couple to -eA~, we first write down the boundary 
conditions for • < 0. According to our previous considerations we demand 

f , ( R )  = 0 for ~n >/4, 

gin(R) = 0 for ¢o m < 4 - 1, (6.5) 

in this case. 
Assume now @ > 0 and that ( f ,  g) fulfill the boundary conditions (C.3). One can 

easily check that the C-conjugated spinor 'Pc = (fc, gc), where 

- -  • ~ - - i n O  fc= iEgL(r) e-''~°, gc = zEfn  ( r ) e  (C.6) 

obeys the boundary conditions (C.5) if - ~0, >/4 and - ~% < c~ - 1. These conditions 
are equivalent to (C.2) (and thus ensure C-invariance) only if a + 4 = 0. This 
constraint allows for two choices of (a, 4) such that the "mass gaps" [a, a + 1] and 
[5 - 1, 4] in the spectrum of the boundary operator are symmetrically situated. For 
a = - ½, 4 = t the gaps coincide and one recovers the APS boundary conditions 
with boundary operator J. As explained in sect. 4 (and also since Z(fl) ---, const :~ 0 
when • ~ 0 in this case) these boundary conditions are undesirable and we take the 
only other choice a = 4 = 0 which guarantees self-adjointness and C-invariance. In 
this way one obtains the modified APS boundary conditions (4.15). 
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