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We study effective lattice actions describing the Polyakov loop dynamics originating from finite-temperature
Yang-Mills theory. Starting with a strong-coupling expansion the effective action is obtained as a series of
Z(3)-invariant operators involving higher and higher powers of the Polyakov loop, each with its own coupling.
Truncating to a subclass with two couplings we perform a detailed analysis of the statistical mechanics involved.
To this end we employ a modified mean field approximation and Monte Carlo simulations based on a novel
cluster algorithm. We find excellent agreement of both approaches concerning the phase structure of the theories.
The phase diagram exhibits both first and second order transitions between symmetric, ferromagnetic and anti-
ferromagnetic phases with phase boundaries merging at three tricritical points. The critical exponents ν and γ at
the continuous transition between symmetric and anti-ferromagnetic phases are the same as for the 3-state Potts
model.
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I. INTRODUCTION

In two seminal papers Svetitsky and Yaffe have tentatively
linked the finite-temperature phase transitions in ‘hot’ gauge
theories to the simpler order-disorder phase transitions of
spin models [1, 2]. In the general case their conjecture may
be stated as follows: The effective theory describing finite-
temperature Yang-Mills theory with gauge group SU(NC)
in d + 1 dimensions is a spin model in d dimensions with
a global symmetry group given by the centre Z(NC) of the
gauge group. A somewhat stronger version of the conjecture
can be formulated if the phase transitions in questions are of
second order. In this case Yang-Mills theory and spin model
fall into the same universality class and the critical exponents
coincide. This has been convincingly demonstrated for SU(2)
[3, 4] in d = 3.

However, continuous phase transitions in hot gauge theories
are not generic and hence the universality statement is almost
empty – at least in 3+1 dimensions [5]. On the other hand,
the more general version of the statement has already been
used by Svetitsky and Yaffe to argue that the phase transition
for SU(3) Yang-Mills theory must be first order for d = 3 as
there is no Z(3) RG fixed point in this case. Since then this
has been firmly established by a number of lattice calculations
[6–11].

The conjecture implies that the effective theories may be
formulated as ‘Polyakov loop models’ [12–14]. For SU(NC)
this means that the macroscopic dynamical variables have to
reflect the complete gauge invariant information contained
in the (untraced) Polyakov loop, which in lattice notation is
given by

Px[U ] ≡

Nτ
∏

t=1

Ut,x;0 . (1)

This is a temporal holonomy winding around the compact Eu-
clidean time direction of extent Nτ . For gauge groups with
nontrivial centre the traced Polyakov loop,

Lx ≡ trF Px , (2)

with the trace being taken in the defining representation1

serves as an order parameter for the deconfinement phase
transition. The phase transition goes along with spontaneous
breaking of the centre symmetry resulting from non-periodic
gauge transformations under which

Lx → zLx , z ∈ Z(NC) . (3)

The deconfined broken-symmetry phase at sufficiently large
Wilson coupling β > βc is characterised by 〈L〉 6= 0 (see [15]
for a review).

Recently it has been found that gauge groups with trivial
centre may also lead to a deconfinement transition depending
on the size of the gauge group [16–18].

At this point the choice of dynamical variables needs to
be addressed. Under periodic gauge transformations g ∈
SU(NC) the holonomy (1) transforms as

Px → gx Px g−1
x , (4)

which leaves its eigenvalues and, as a consequence, its trace
(2) invariant. The eigenvalues are permuted arbitrarily by
gauge transformations corresponding to Weyl reflections [19].
This invariance is taken into account by constructing symmet-
ric polynomials in the NC eigenvalues. From unimodularity

1 We do not include a normalisation factor 1/NC for the ease of later nota-
tion.
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the product of the eigenvalues is 1 and there are only NC − 1
independent polynomials, for example the traces trF Pn

x for
1 ≤ n < NC . These in turn are in one-to-one correspondence
with the characters of the NC − 1 fundamental representa-
tions (see below). Hence, for SU(2) Lx (which is real) is
sufficient while SU(3) requires Lx and L∗

x
, the latter being a

linear combination of L2
x

and trF P2
x. Only for NC ≥ 4 traces

of higher powers of P are needed as independent dynamical
variables [20].

In two recent papers [21, 22] we have studied Polyakov
loop models on the lattice for the simplest non-Abelian gauge
group SU(2). The models have been derived using strong-
coupling techniques at small Wilson coupling β and a newly
developed inverse Monte Carlo (IMC) method which works
for arbitrary values of β. The latter method allows for a map-
ping of Yang-Mills theory at a certain value of β to any appro-
priately chosen Polyakov loop model of the form

Seff =
∑

〈xy〉,IJ

λIJ (β)
(

χI(x)χJ (y) + h.c.
)

, (5)

where the summation is over nearest neighbours and group
representations I , J . The group character χI is the trace of
the Polyakov loop in representation I ,

χI(x) ≡ χI [Px] ≡ trI Px . (6)

All characters χI are polynomials in the characters corre-
sponding to the fundamental representations. For SU(2) the
simplest model is of Ising type,

S1 ≡ λ
∑

〈xy〉
LxLy , (7)

as first suggested in [23] (see also [24, 25]).
The output of the IMC routines are the β-dependent ef-

fective couplings λIJ . Even without particular knowledge of
these one may study the models (5) in their own right as statis-
tical field theories. The Svetitsky-Yaffe conjecture may then
be utilised to deduce information about the Yang-Mills phase
transition. For SU(2) we have been able to show that the
mean-field analysis of the effective models yields a surpris-
ingly good agreement with the Monte Carlo analysis of both
the model itself and the underlying Yang-Mills dynamics. It
should be stressed at this point that the models (5) are not just
simple scalar field theories with a linear target space as all
characters (6) take values in a compact space parametrised by
the NC − 1 fundamental characters. Hence, in the lattice path
integral each lattice site is endowed with the reduced Haar
measure on the gauge group rather than a Lebesgue measure.

This paper presents our first steps to generalise the results
of [21, 22] to the gauge group SU(3). We label the char-
acters by two integers p and q which count the numbers of
fundamental and conjugate representations (‘quarks’ and ‘an-
tiquarks’ in the SU(3) flavour language) required to construct
the representation (p, q). Equivalently, these integers charac-
terise the horizontal extensions of SU(3) Young tableaux (see
Fig. 1). Under the Z(3) centre transformations the characters

PSfrag replacements
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FIG. 1: Character labels and SU(3) Young tableaux.

transform according to the rule

χpq → zp
kz∗q

k χpq ≡ zp−q
k χpq ,

zk ≡ exp

(

2πi

3
k

)

, k = 0, 1, 2 , (8)

so that the most general centre-symmetric effective action
with nearest-neighbour interaction may be written as

Seff [χ] =
∑

〈xy〉, pq, p′q′

p+p′=q+q′ mod3

λpq,p′q′

(

χpq(x) χp′q′(y)+h.c.
)

+
∑

x, pq
p=q mod3

λpq,00

(

χpq(x) + h.c.
)

. (9)

This coincides with the ansatz suggested by Dumitru et al.
[14]. The first sum in the effective action consists of hopping
terms involving monomials of the form Lm

x
Ln

y
or Lm

x
L∗n

y
(and

h.c.) while the second sum is a ‘potential’ term containing
only powers Ln

x
(and h.c.) localised at single sites.

The remainder of the paper is organised as follows. In Sec-
tion II we confirm the ansatz (9) by means of a strong coupling
(small-β) expansion for Seff [χ]. For a restricted set of cou-
plings (and hence representations) we investigate the resulting
Z(3) models by minimising the classical action (Section III)
followed by an improved mean field analysis in Section IV.
In agreement with the Svetitsky-Yaffe conjecture we find a
first order phase transition from the symmetric to a ferromag-
netic phase. Our improved mean field analysis already reveals
an interesting phase structure with four different phases: two
distinct ferromagnetic phases, one symmetric and one anti-
ferromagnetic phase. Besides the first order transitions we
detect second order transitions from the symmetric to an anti-
ferromagnetic and to a ferromagnetic phase. The continuous
transition from the symmetric to the anti-ferromagnetic phase
is to be expected since the models reduce to the 3-state Potts
model for Polyakov-loops having values in the centre of the
gauge group. Section V contains the results of our extensive
Monte Carlo simulations performed on a Linux cluster where
we have implemented the powerful package jenLaTT. Simi-
larly as for SU(2) the mean field and numerical results are in
surprisingly good agreement. This is presumably due to the
existence of (three) tricritical points. Depending on the or-
der of the transition we localise the critical lines with either a
Metropolis, a multicanonical or a modified cluster algorithm.
In addition we have checked that the critical exponents ν and γ
at the second order transition to the anti-ferromagnetic phase
agree with those of the 3-state Potts model in 3 dimensions.
Finally, in Section VI we wrap up with discussion and conclu-
sions.
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II. STRONG-COUPLING EXPANSION

In this section we briefly recapitulate the strong-coupling
(small-β) expansion for the SU(3) Wilson action at finite tem-
perature [24, 26]. It is known that the leading order result
(βNτ ) stems from ladder diagrams that wind around the tem-
poral lattice extension and corresponds to an Ising type model
analogous to (7). By going beyond the leading order we will
encounter higher group representations/characters and hence
have an independent confirmation of the ansatz (9) for the ef-
fective action.

Our starting point is the standard Wilson action,

SW = β
∑

�

(

1 −
1

NC
Re tr U�

)

, (10)

where the summation over plaquettes contains both temporal
and spatial links. The effective action Seff[P] is introduced as
usual by inserting an appropriate (group valued) delta function
in the path integral,

Z =

∫

DUe−SW

=

∫

DP

∫

DU δ

(

P,

Nτ
∏

τ=0

Uτ,0

)

e−SW[U ]

≡

∫

DP e−Seff[P] .

(11)

While it is not known how to perform the final integration an-
alytically for the full Wilson action one can straightforwardly
integrate order by order in β. Thus we expand the Boltzmann
weight

e−SW ≡
∑

k

Õkβk , (12)

and integrate separately over temporal and spatial links,
DU = DUt DUs. Adopting temporal gauge we set all tempo-
ral links equal to unity apart from the links in the first timeslice
which according to (1) may be identified with the Polyakov
loop. Integrating out all spatial link variables we obtain the
partition function

Z =

∫

DP exp

(

log
∑

k

Ok βk

)

≡

∫

DP exp (−Seff[P]) ,

(13)

where we have introduced the operators Ok ≡
∫

DUsÕk. The
effective action may finally be written as

Seff = − log

(

∑

k

Ok βk

)

≡
∑

n

Snβn , (14)

where the coefficients Sn are related to the operators Ok via
the linked-cluster theorem. In the remainder of this section

we are going to determine the explicit form of the effective
operators Sn.

We first rewrite the Wilson-Boltzmann weight (12) as

e−SW ≡ exp

(

−
∑

�

Sp

)

=
∏

�

e−Sp , (15)

and expand the single-plaquette contribution in terms of
SU(3) characters,

e−Sp =
∑

I

aI(β) χI (Up) , (16)

with I ≡ (p, q) (see Fig. 1). All β dependence now resides
in the generalised Fourier coefficients aI which accordingly
may be further expanded,

e−Sp =
∑

I,k

ak
I βk χI(Up) . (17)

An explicit computation of the ak
I shows that these vanish

whenever the representation labels become sufficiently large,
namely if |I | ≡ p+q > k [27]. This yields the important inter-
mediate result that to any given order k in the strong-coupling
expansion only a finite number of characters contributes,

e−Sp =
∑

k





k
∑

|I|=0

ak
I χI(Up)



 βk . (18)

The integrations over the spatial links are standard group in-
tegrals which can be found in the texts [28, 29]. The upshot is
that only connected link arrangements (‘polymers’) wrapping
around the temporal extent of the lattice yield nonvanishing
contributions. The leading term is a ladder diagram consist-
ing of Nτ plaquettes each of which contributes a factor of β
implying a total contribution of O(βNτ ). The associated op-
erator is explicitly found to be

ONτ
∝ χ10(Px)χ01(Px+i) + h.c. . (19)

A typical operator of order βjNτ is given by

Sj =
∑

I,|I|=j

∑

x,i

CI(β)
(

χI (Px)χ∗
I(Px+i) + h.c.

)

, (20)

in terms of which the Wilson-Boltzmann weight (15) becomes

e−SW = exp

(

− ln
∑

n

On βn

)

= c(β) +
∑

r=1...k

∑

a1...ar

a1+···+ar≤k

Sa1 · · ·Sar .
(21)

Expanding this to next-to-leading order (β2Nτ ) yields the sim-
ple expression

Seff = S1 + S2 + S1S1 + O(β3Nτ ) . (22)
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Note, however, that some care has to be taken in interpret-
ing products such as SiSj which by (20) also contain discon-
nected pieces. Upon expanding the logarithm by means of
the linked-cluster theorem we are led to keep only connected
contributions of the form

SiSj ∝
∑

I,|I|=i
J,|J|=j

∑

x,k

(

χI(Px)χ∗
I(Px+k) + h.c.

)

×
(

χJ(Px)χ∗
J(Px+k) + h.c.

)

. (23)

Making use of the character reduction formula

χI(x)χJ (x) =
∑

K

CK
IJ χK(x) , CK

IJ ∈ R , (24)

products of characters at the same site may be reduced to sin-
gle characters. As a consequence, the connected part of (22)
takes the explicit form

Seff ≡ λ10

∑

x,i

(

χ10(Px)χ01(Px+i) + h.c.
)

+ λ20

∑

x,i

(

χ20(Px)χ02(Px+i) + h.c.
)

+ λ11

∑

x,i

χ11(Px)χ11(Px+i)

+ λ21

∑

x,i

(

χ20(Px)χ10(Px+i)

+ χ10(Px)χ20(Px+i) + h.c.
)

+ ρ1

∑

x

χ11(Px) + O(β3Nτ ) .

(25)

For what follows it is useful to introduce the short-hand nota-
tion

Seff = λ10S10+λ20S20+λ11S11+λ21S21+ρ1V1+O(β3Nτ ) ,
(26)

with the obvious term-by-term identifications as compared
to (25). Our conventions are such that all couplings in (25)
and (26) are real functions of β, the single leading one being
λ10 = O(βNτ ) (as noted already in [24]) while the sublead-
ing ones are O(β2Nτ ). It is straightforward to include higher-
order terms the number of which increases rapidly. At order
β3Nτ , for instance, there are already 11 terms so that we re-
frain from going beyond next-to-leading order in β.

For later purposes it is useful to express the operators ap-
pearing in (26) in terms of the fundamental loops L and L∗.
Octet and sextet characters (χ11 and χ20, respectively) are
eliminated via the standard reduction identities

3 ⊗ 3∗ = 8 ⊕ 1 and 3 ⊗ 3 = 6 ⊕ 3∗ , (27)

which are equivalent to the character relations (recall that L =
χ10)

χ11 = |L|2 − 1 and χ20 = L2 − L∗ . (28)

Making use of the latter the different terms in (26) become

S10 =
∑

〈xy〉

(

LxL∗
y

+ h.c.
)

, (29)

S20 =
∑

〈xy〉

(

L2
x
L∗2

y
− L2

x
Ly − L∗

x
L∗2

y
+ L∗

x
Ly + h.c.

)

,

(30)

S11 =
∑

〈xy〉

(

|Lx|
2|Ly|

2 − |Lx|
2 − |Ly |

2 + 1
)

, (31)

S21 =
∑

〈xy〉

(

L2
x
Ly − L∗

x
Ly + L2

y
Lx − LxL∗

y
+ h.c.

)

,

(32)

V1 =
∑

x

(

|Lx|
2 − 1

)

. (33)

From these expressions it is obvious that each operator Spq is
manifestly real. Under charge conjugation χpq → χ∗

pq = χqp,
hence Lx → L∗

x
, whereupon all terms in Seff are charge conju-

gation invariant as required [15]. Note that the orders included
correspond to terms that are quadratic, cubic and quartic in L
and/or L∗. Higher powers will arise upon taking into account
higher representations. Thus, in this respect S21 is somewhat
singled out being of only cubic order. This will become im-
portant in a moment.

III. QUALITATIVE CLASSICAL ANALYSIS

It has already been pointed out by Svetitsky and Yaffe [1]
that effective actions with Z(3) centre symmetry are closely
related to the 3-state Potts model which shows a first or-
der phase transition from a symmetric to a ferromagnetic
phase [30–32]. To make the relation manifest we restrict the
Polyakov loop to the centre elements zk introduced in (8). Set-
ting Px = zk we find the general formula

χpq(zk) = zp−q
k dpq , (34)

where dpq denotes the dimension of the representation (p, q),

dpq =
1

2
(p + 1)(q + 1)(p + q + 2) . (35)

Applying this to the effective action in (26) we find, up to an
additive constant,

Seff[zk] = λ
∑

〈xy〉
cos

(

2π

3
(kx − ky)

)

, kx ∈ {0, 1, 2} ,

(36)
with effective coupling

λ = 18 (λ10 + 4λ20 + 4λ21) . (37)

The action (36) is precisely the one of the 3-state Potts model
[32, 33]. We thus expect that our effective Polyakov loop
models will have a phase structure generalising the one of
the 3-state Potts model. The latter is known to have a ferro-
magnetic phase for large negative λ and an anti-ferromagnetic
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phase for large positive λ [34, 35]. As a preparation for
the discussion of later sections it is hence useful to obtain
some qualitative understanding of the phase structure of the
Polyakov loop models viewed as generalisations of the 3-state
Potts model. For the reason mentioned at the end of the previ-
ous section we choose as a minimal generalisation the follow-
ing effective action,

Seff ≡ λ10S10 + λ21S21 , (38)

which in terms of the fundamental loops may be written ex-
plicitly as

Seff = (λ10 − 2λ21)
∑

〈xy〉

(

LxL∗
y

+ h.c.
)

+ λ21

∑

〈xy〉

(

L2
x
Ly + L2

y
Lx + h.c.

)

. (39)

Note that there are also quadratic contributions stemming
from S21. The action (39) is manifestly Z(3) centre symmet-
ric under Lx → zkLx.

It is important to realise that (39) differs from the standard
lattice actions for scalar fields in several respects. First, the
field Lx is dimensionless, being the trace of a unitary matrix.
This allows for the presence of cubic hopping terms connect-
ing neighbouring sites. Even more important is the fact that
the target space of Lx is compact. Introducing the eigenvalues
of P via

Pdiag = diag
(

eiφ1 , eiφ2 , e−i(φ1+φ2)
)

, (40)

and writing L = L1 + iL2 we find for the real and imaginary
part of L,

L1 = cosφ1 + cosφ2 + cos(φ1 + φ2) , (41)

L2 = sin φ1 + sin φ2 − sin(φ1 + φ2) . (42)

The target space of L may then be sketched in the complex
L-plane (see Fig. 2). The boundary corresponds to the points
with φ1 = φ2, the singular ‘corners’ being given by the three
centre elements P = zk

�
. Let us try to get some first rough

idea of the phase structure associated with the two-coupling
model (39) in the λ10-λ21 plane by looking at the extrema of
the classical action. If we vary the couplings these will trace
out a certain (possibly discontinuous) trajectory in the target
space given by the triangle of Fig. 2.

As we argued earlier, for centre-valued Polyakov loops the
effective action (39) reduces to the action of the Potts model
(36) with coupling λ = 18(λ10 + 4λ21). Thus we expect
a ferromagnetic phase (F) for large negative λ10 + 4λ21 and
an anti-ferromagnetic phase (AF) for λ10 + 4λ21 large and
positive. In a region around the origin in the coupling plane
entropy dominates energy and we cannot expect to actually
obtain the correct phase-structure in this region by purely clas-
sical reasoning based on minimising the energy. Qualitatively
we expect a symmetric phase in a neighbourhood of the ori-
gin. This is represented schematically in Fig. 3 by the central
rectangle.
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FIG. 2: Target space of the Polyakov loop L in the complex L-plane.
The corners represent the three centre elements. The intermediate
points (denoted anti-centre elements) will also become relevant for
the discussion of the phase structure.

In order to study the ordered phases (in particular AF)
we divide the lattice in two sub-lattices (denoted ‘even’ and
‘odd’) where the Polyakov loop takes values Le and Lo, re-
spectively. Two nearest neighbours belong to different sub-
lattices. The absolute minima of the classical action

Seff(Le, Lo) ∝ (λ10 − 2λ21)(LeL
∗
o + h.c.)

+ λ21(L
2
oLe + L2

eLo + h.c.) (43)

will then be located at certain values L̄e and L̄o of the
Polyakov loop which are identified with its ‘expectation val-
ues’. We trust this reasoning as long as we are sufficiently far
from the origin of the coupling plane i.e. from the disordered,
entropy-dominated phase.

Any ferromagnetic ordering will be characterised by a min-
imum with L̄e = L̄o = L̄ 6= 0 while in an anti-ferromagnetic
phase L̄e 6= L̄o. Quite interestingly we find two distinct fer-
romagnetic phases, one for which the Polyakov loop is near a
centre element or L̄ in the vicinity of 3zk and a different fer-
romagnetic phase with L̄ taking values near the intermediate
points marked by triangles in Fig. 2. We call this an anti-
centre phase (AC). We expect a phase transition line separat-
ing the ferromagnetic and anti-ferromagnetic phases at van-
ishing Potts-coupling λ10 + 4λ21. The resulting qualitative
phase diagram is depicted in Fig. 3.

To discuss the ferromagnetic phases it suffices to minimize
the action (43) with Le = Lo = L, in which case

Seff(L) ∝ (λ10 − 2λ21)|L|
2 + 2λ21(L

3 + L∗3) . (44)

This can be done analytically. To localise the anti-
ferromagnetic phase we have calculated the absolute minima
of (43) on the target space depicted in Fig. 2 numerically. The
combined analytical and numerical results are summarised as
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FIG. 3: Qualitative prediction of the phase diagram in the coupling
constant plane for the effective action (39). The ferromagnetic (F),
anti-centre (AC) and anti-ferromagnetic (AF) phases are obtained by
looking for classical minima. The symmetric, disordered phase (S)
is located where entropy is expected to dominate over energy.

follows. For negative λ21 we have a transition

F
λ10=−3λ21−−−−−−−→ AF , (45)

while for positive λ21 there is a richer structure,

F
λ10=−3.1962λ21−−−−−−−−−−→ AC

λ10=− 28

11
λ21

−−−−−−−−→ AF . (46)

The behaviour of a suitably projected order parameter `r (the
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FIG. 4: Behaviour of the order parameter `r defined in (97) as a
function of λ10 for fixed λ21 = 1. For comparison we have added
the result from the mean field analysis to be developed in the next
section.

precise definition of which will only be needed later on) for

positive λ21 = 1 is shown in Fig. 4. Upon inspection one
notes that for λ10 sufficiently negative the system starts out
with the Polyakov loop at a centre element. Increasing λ10

beyond−7λ21 the order parameter drops monotonically until,
at a critical coupling λ10 ≈ −3.1962λ21, there is a jump to
the AC phase with L̄ near a anti-centre element. The jump of
`r is due to a centre-transformation and does not imply that
the Polyakov loop itself jumps. Indeed, L̄ changes smoothly
and arrives at an anti-center element for λ10 = −3λ21. The
system stays there until λ10 = −28λ21/11, where it jumps
again, this time to the AF phase. As expected, we see no
symmetric phase in a purely classical analysis. Actually, for
λ21 = 1 there is just no symmetric phase.

IV. MEAN FIELD APPROXIMATION

The next step of refinement to be presented in this section
is a mean field (MF) analysis of the effective action (39). This
will serve as a basis for a comparison with results from di-
rect Monte Carlo simulations to be discussed later on. Due to
the peculiarities of the model as compared to standard scalar
field theories the application of the MF approximation is not
entirely straightforward. For the benefit of the reader we will
set the stage by giving a brief outline of the necessary modi-
fications. For further details the reader is referred to our ear-
lier paper [22]. To keep the discussion sufficiently general
we will first treat the effective action (26) with five couplings
focussing on simpler examples later on.

We are interested in expectation values which are computed
by evaluating integrals of the form

〈A〉 =
1

Z[0]

∫

DP e−Seff[P] A[P] ,

DP ≡
∏

x

dµ(Px) ,
(47)

which apparently extend over the whole group manifold em-
ploying the Haar measure dµ(Px). However, due to the gauge
invariance of both action and measure the integrals can be
reduced to the coset space of conjugacy classes which we
(somewhat symbolically) denote by Px. Hence we integrate
with the reduced Haar measure by replacing

dµ(Px) → dµred(Px) . (48)

Thus, (47) is equivalent to

〈A〉 =
1

Z[0]

∫

DP e−Seff[P] A[P ] ,

DP =
∏

x

dµred(Px) .
(49)

The probability measure DP exp(−Seff)/Z[0] is character-
ized as the unique solution to the variational problem

inf
p
〈Seff + log p〉p = − log Z[0] = −W [0] . (50)

The expectation value on the left-hand side has to be taken
with respect to the integration measure

∏

x
dµred(Px) p[P ]
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with p[P ] denoting the probability density of P . From this
point of view the MF approximation is nothing else but the
restriction of the permissible densities to product form,

p[P ] → pmf [P ] ≡
∏

x

px(Px) . (51)

Expectation values can now be simply computed site by site
via factorisation,

〈χI(Px)χJ (Py)〉 → 〈χI(Px)〉x〈χJ(Py)〉y . (52)

Our goal is to compute the effective potential as function of
the mean characters umf = umf(χ̄I ). For that purpose we
solve the variational problem (50) on the space of product
measures with fixed expectation values of the characters. This
is done by introducing appropriate Lagrange multipliers jI .
For ferromagnetic systems one may assume that the weight
functions px at each site are identical, px = p. This assump-
tion corresponds to a translationally invariant ground state.
According to the discussion of the previous section we ex-
pect anti-ferromagnetic phases and hence we must refine our
choice for px. We therefore introduce different weight func-
tions on the even and odd sub-lattices, respectively,

px(Px) =

{

pe(Px) : sgn(x) = 1 ,

po(Px) : sgn(x) = −1 ,
(53)

defining the sign of a lattice point as

sgn(x) ≡ (−1)

∑

i xi
. (54)

As a consequence, expectation values of characters will sub-
sequently have two values depending on the sub-lattice where
they are evaluated,

〈χI〉x =

{

χ̄I,e : sgn(x) = 1 ,

χ̄I,o : sgn(x) = −1 .
(55)

The sources are taken constant as well when restricted to the
even and odd sub-lattices, jI,x ≡ jI,e or jI,o, respectively.
Like the characters the sources are complex.

The action (21) couples only nearest-neighbour sites so that
its expectation value entering (50) may be written as

〈Seff〉 = V d
{

λ10 (χ̄10,oχ̄01,e + h.c.) + · · ·
}

+
V

2
ρ1 (χ̄11,o + χ̄11,e) , (56)

with V = Nd denoting the lattice volume in d spatial dimen-
sions. The logarithm in (50) decomposes as

〈log p〉 =
V

2

(

〈log po〉o + 〈log pe〉e
)

. (57)

It is convenient to drop the common volume factor V and con-
sider densities instead. The variation of (50) finally yields the
weight function for the even sub-lattice,

pe(P) =
1

z(je, j∗
e)

exp
{

− ρ1V1(P)

+ je · χ(P) + j∗
e · χ

∗(P)
}

. (58)

and a completely analogous expression for the odd sub-lattice.
Here we have introduced j · χ as a short-hand for

∑

I jI χI

and the single-site partition function

z(j, j∗) ≡

∫

dµred(P) exp
{

− ρ1V1(P)

+ j · χ(P) + j∗ · χ∗(P)
}

. (59)

The sources jo,e are eliminated by inverting the relations

χ̄I(j, j∗) =
∂

∂jI
w(j, j∗) , χ̄∗

I(j, j∗) =
∂

∂j∗I
w(j , j∗) ,

(60)
to be evaluated separately on both sublattices. The Schwinger
function w(jjj, jjj∗) is defined as usual,

w(jjj, jjj∗) ≡ log z(jjj, jjj∗) . (61)

Introducing the Legendre transform of (61) according to

γ0(χ̄, χ̄∗) ≡ inf
jjj, jjj∗

{

jjj · χ̄ + jjj∗ · χ̄∗ − w(jjj, jjj∗)
}

(62)

the solution of (50) is finally obtained as the MF potential
(density) as a function of even and odd mean fields,

umf(χ̄e, χ̄
∗
e , χ̄o, χ̄

∗
o) = d

{

λ10(χ̄10,oχ̄01,e + h.c.) + . . .
}

+
1

2
ρ1(χ̄11,o + χ̄11,e) +

1

2
γ0(χ̄o, χ̄

∗
o) +

1

2
γ0(χ̄e, χ̄

∗
e) .

(63)

From this expression one can easily derive relations between
the sources jjj and mean characters χ. For instance, by varying
umf with respect to χ̄10,o we obtain

0 = d
(

λ10χ̄01,e + λ21χ̄20,e

)

+
1

2
j10,o , (64)

where we have used that the current is given as

j10,o =
∂

∂χ̄10,o
γ0(χ̄o, χ̄

∗
o) . (65)

The first term in (63) derives directly from the effective action
(26) and hence contains four couplings to which the potential
coupling ρ1 has to be added. A complete MF analysis of this
system becomes very awkward. In what follows, we therefore
specialise to effective actions with only one or two couplings.

A. One Coupling

The action (29) defines what we call the ‘minimal model’
with one coupling only,

Seff ≡ λS10 = λ
∑

〈xy〉

(

LxL∗
y

+ h.c.
)

. (66)
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Identifying (χ̄10)e,o ≡ Le,o and inserting (66) the MF poten-
tial (63) simplifies to

umf(Le, L
∗
e , Lo, L

∗
o) = d λ (LeL

∗
o + LoL

∗
e)

+
1

2
γ0(Le, L

∗
e) +

1

2
γ0(Lo, L

∗
o) . (67)

It is useful to define the generic MF potential

vmf(L, L∗) ≡ d λ |L|2 + γ0(L, L∗) , (68)

so that (67) can be rewritten as

umf(Le, L
∗
e , Lo, L

∗
o) = −

dλ

2
|Lo − Le|

2

+
1

2
vmf(Le, L

∗
e) +

1

2
vmf(Lo, L

∗
o) . (69)

This expression clearly shows that for negative λ configu-
rations with Lo = Le are favoured making the distinction
between even and odd sub-lattices obsolete. The remaining
unique expectation value,

L =
1

V

∑

x

Lx =
1

2
(Le + Lo) , (70)

thus serves as an order parameter for the ferromagnetic phase
transition. On the other hand, if λ > 0 Le and Lo will cease to
be positively correlated and we expect an anti-ferromagnetic
phase transition. In this case, a reasonable order parameter is
given by [32, 36]

M ≡
1

V

∑

x

Lx sgn(x) =
1

2
(Le − Lo) . (71)

Let us also introduce the absolute values of the order parame-
ters, henceforth denoted by

` ≡ |L| and m ≡ |M | . (72)

If we assume for the moment that the occurring phase tran-
sitions are second order the corresponding MF critical cou-
plings can be computed analytically as we are going to
demonstrate next. The consistency condition (64) reduces for
the case at hand to

0 = dλLo +
1

2
je and 0 = dλLe +

1

2
jo . (73)

As both Le and Lo may be assumed small near the criti-
cal coupling λc the corresponding sources will also be small.
Thus, we may expand

L =

∫

dµred exp{jχ10 + h.c.}χ10
∫

dµred exp{j χ10 + h.c.}
= j + O(j2) , (74)

which again holds separately on each sublattice, Le ' je and
Lo ' jo. Plugging this into (73) yields (2dλ)2 = 1 and hence
the critical couplings

λ± = ±
1

2d
. (75)

For arbitrary order parameters we have solved the gap equa-
tions (73) numerically. The result is depicted in the follow-
ing figure. The transition S-AF is second order, the one to
the phase F first order. Thus, the anti-ferromagnetic transition
must be at λ+ = 1/2d. The first order ferromagnetic transi-
tion is slightly above −1/2d. Our MF analysis thus confirms
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FIG. 5: Mean field results for the minimal model with one coupling.
The first order ferromagnetic transition S-F is at λ

−
= −0.13433

and the second order transition S-AF at λ+ = 0.166667.

the qualitative results from the preceding section that already
in the simplest model there is both a ferromagnetic and an
anti-ferromagnetic transition. This is qualitatively consistent
with the phase diagram Fig. 3 restricted to the horizontal axis.

B. Two Couplings

Even for the simple model of the previous subsection no ex-
plicit expression is known for z0(jjj, jjj

∗) as the SU(3) group in-
tegrals cannot be evaluated in closed form (a fact well known
from strong-coupling expansions, see e.g. [29]). Things natu-
rally become worse if additional couplings are turned on. Al-
ready for two couplings i.e. the action (39), the only way to
proceed is by means of numerical methods.

In order to obtain the MF version of the phase diagram
Fig. 3 we have employed the following algorithm:

1. At the extremal points of (63) all sources jjjo,e occurring
in (58) can be eliminated in favour of the expectation
values χ̄o,e as in (64). Since the character target space
is compact it can be easily discretised defining measures
pe and po at each point. Using these measures expecta-
tion values 〈χ〉o,e can now be computed which in gen-
eral will differ from χ̄o,e. Hence, we first look for local
minima of

σ(χ̄o, χ̄e) = ‖〈χ〉o − χ̄o‖ + ‖〈χ〉e − χ̄e‖, (76)

with norm ‖vvv‖ ≡
∑

i |vi|. These minima, however, do
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not correspond to exact solutions yet but rather serve as
the starting points of a recursion.

2. We now solve the equation σ(χ̄o, χ̄e) = 0 for χ̄o and
χ̄e by Newton iteration using the local minima of the
previous step as initial input. In this way we end up with
multiple solution vectors χ̄o,e each extremising (63).

3. The solution vector with minimal umf contains the de-
sired ground state expectation values.

With the help of this algorithm we are able to compute the
expectation values of L (70) and M (71).

We conclude this section with some remarks concerning
our choice of the sources jjj. Allowing them to be complex
yields an 8-dimensional parameter space for the observables
of model (39) with two characters, χ10 and χ21. For this
large parameter space it would actually be simpler to perform
a high-precision Monte Carlo simulation than to find a good
approximation for the global minima of (63). For this reason,
we have chosen real sources as an input to our MF approxi-
mation. We expect this to be a very good approximation as
long as the peak of the probability distribution for χ10 is con-
centrated near the real axis in Fig. 2.

Comparing with the classical analysis we note that our real-
source assumption is justified for all couplings which are lo-
cated away from the boundary between the phases F and AC.
The F-AC transition should be second order according to the
analysis of Section III while the MF approximation with real
sources predicts a first order transition (see Fig. 4). The con-
tradiction will be finally resolved by Monte Carlo simulations
showing that near the F-AC transition the peaks of the prob-
ability distribution for χ10 are off the real axis. Apart from
this fairly small region in parameter space we find a remark-
able agreement between the MF results and the Monte Carlo
results of the next section. This provides the ultimate justi-
fication for our simplifying choice of real sources in the MF
approximation.

V. MONTE CARLO SIMULATION

The previous two sections have provided us with a good
deal of information on the phase structure of the effective
model in the most interesting regions of parameter space.
Based on this we have performed a large number of Monte
Carlo simulations to quantitatively check the MF predictions
and obtain a precise picture of the critical behaviour. As be-
fore, to avoid excessive complexity, we have concentrated on
the action (39) with two couplings λ10 and λ21.

At the beginning of Section IV we have already noted that
both the action and the reduced Haar measure depend only on
the conjugacy class of the (untraced) Polyakov loop. Hence,
one can choose the basic field variables either as the traces in
the fundamental representations (L, L∗) and powers thereof
or as a suitable parametrisation in terms of the eigenvalues as
introduced in (40). It turns out that for a numerical treatment
the latter proves to be more appropriate and so we use (40) to

represent the conjugacy class according to

[Px] ≡ Px(Φ) = diag
(

eiφ1 , eiφ2 , e−i(φ1+φ2)
)

,

Φ ≡ (φ1, φ2) .
(77)

Here, the following restrictions should be imposed such that
the angular coordinates cover each class only once,

0 ≤ φ1, φ2, φ1 < φ2, φ2 < (−φ1 −φ2) mod 2π . (78)

These restrictions are somewhat awkward to implement in a
simulation code. It is much more convenient to let Φ take
values in the full square [0, 2π) × [0, 2π) which covers the
fundamental domain given by (78) six times. Due to the resid-
ual gauge symmetry of the system it is clear that expectation
values will be unaffected by this over-counting.

In the coordinates (77) the reduced Haar measure becomes

dµred(Φ) =
8

3π2
sin2

(

φ1 − φ2

2

)

× sin2

(

φ1 +
φ2

2

)

sin2

(

φ2 +
φ1

2

)

dφ1dφ2 , (79)

where the normalization is such that the measure integrates
to unity over the square [0, 2π) × [0, 2π). All characters can
be expressed in terms of φ1 and φ2. Using (79) the full mea-
sure (49) may be straightforwardly expressed in terms of the
angular coordinates as

DP e−Seff[P] =
∏

x

dµred(Φx)e−Seff[Φ] . (80)

The focus of our numerical studies has been the phase dia-
gram in the λ10 −λ21 plane. There, we have scanned through
the region [−0.25, 0.33] × [−0.22 . . .0.16] with a resolution
of 71 × 46 points, which were in total 3266 different Monte
Carlo simulations. Before we present our results a few words
on our numerical techniques are in order.

A. Algorithms

For the investigation of phase transitions, in particular their
order, histogram methods are widely used and accepted. This
approach, however, requires large statistics and thus tends to
consume a lot of computer time. In addition, we are inter-
ested in a fairly large range of coupling constants. For these
reasons, the updating algorithm for the Polyakov loop mod-
els has to be fast and versatile. It turns out that the standard
Metropolis algorithm favourably matches both requirements
if we aim at an accuracy of about 5% − 10%. On the other
hand, because of the highly nontrivial probability measure in-
volved, a heat bath algorithm does not seem applicable or, in
any case, would be too time consuming. In addition, its local
nature should not yield any enhancement of statistics near a
first order phase transition. We have thus refrained from im-
plementing a heat bath update scheme but rather decided to
optimise the Metropolis algorithm as described in the follow-
ing two paragraphs.
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FIG. 6: Histogram of ` with λ10 = −0.13721 on a 103-lattice sam-
pled against the histogram for N = 9.

1. Multicanonical algorithm

When a system undergoes a first order phase transition, the
histogram associated with the order parameter will generically
display a multi-peak structure. Depending on the total volume
of the system the peaks can be very pronounced. In other
words, the configuration space is decomposed into distinct
sectors between which local algorithms can hardly mediate.
One way to overcome the resultant failure in sampling the to-
tal configuration space is to make use of the multicanonical
algorithm, see e.g. [37].

The crucial improvement step consists in the replacement
of the measure used in (80) according to

dµred exp(−S) → dµred exp(−S) η(`) . (81)

The new improved measure on the right-hand side has a
weight η = η(`) which depends on the (modulus of the) order
parameter. One chooses the particular form

η(`) ≡ ρ−1(`) , (82)

where ρ(`) denotes the probability density of the order pa-
rameter. This choice leads to an enhancement of configura-
tions that would otherwise be suppressed and thus allows for
a much improved ergodic behaviour of the algorithm.

The effect due to the altered measure is illustrated in Fig. 6
where two typical distributions are plotted. In the original
distribution one clearly recognises two well-separated peaks.
Any local algorithm will fail to sample such a distribution
properly once it is trapped at one of its peaks. The distri-
bution actually used ‘closes the gap’ enabling transitions be-
tween different peak regions during the simulation. In the end,
of course, one has to correct for the change in the measure by
reweighting with η−1,

〈Q〉 =
〈Q η−1(`)〉mult.

〈η−1(`)〉mult.
=

〈Q ρ(`)〉mult.

〈ρ(`)〉mult.
, (83)

where we have denoted expectation values taken with respect
to the modified measure with a subscript ‘mult’.

A slight problem with this approach, however, still has to
be overcome. One actually needs right at the beginning what
one set out to compute originally, namely the distribution ρ.
A practicable strategy is e.g. the following. From a small lat-
tice volume, say V0, where peaks are usually less pronounced,
one obtains an approximate distribution function ρ0(`) which
is then used on a slightly bigger lattice, say of volume V1.
This simple trick can be further refined if on the larger lattice
one first computes ρ1(`) using ρ0 and subsequently repeats
all measurements employing ρ1. In practice, this procedure is
iterated several times to make larger and larger lattices avail-
able. Going beyond a volume of V = 123 requires additional
knowledge of the scaling behaviour of ρ(`). Fig. 7 shows that,
to a very good approximation, the scaling depends linearly on
the volume, V = N3,

log ρ(`, N) ≈ A(`) + C(`) N3 . (84)

In summary, the multicanonical algorithm yields substantial
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improvements compared to the standard Metropolis algorithm
and allows for very accurate simulations. Lattices with vol-
umes up to V = 203 could thus be studied near the first order
phase transition. However, as the implementation is very in-
volved we applied it only to the minimal model (λ21 = 0). In
principle, the generalisation to incorporating further couplings
is straightforward, being merely a matter of having sufficient
computing time available.

2. Cluster algorithm

The multicanonical algorithm is best suited for studying
first order transitions. This is no longer true for second or-
der transitions where it is outperformed by cluster algorithms
– at least if there is one available. For our purposes, none
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of the algorithms on the market could be immediately put to
use. We therefore decided to modify the well-known Wolff
algorithm [38], an extension of the Swendsen-Wang [39] al-
gorithm originally proposed for discrete spin systems.

Before actually describing our modifications let us briefly
recall the main idea of [38]. Suppose the action (and the mea-
sure) are invariant under a certain global symmetry which acts
on the fields according to

Φx → Φ
′
x = R Φx . (85)

Typically, the symmetry operator R will depend on some pa-
rameters which we collectively denote by ω (continuous or
discrete) so that R = R(ω). It is important to note that the
operator R has to be idempotent, R2 = id, in order to ensure
detailed balance. The algorithm then works according to the
following list.

1. Fix some parameter ω0 and hence some transformation
R0 ≡ R(ω0). Randomly choose a lattice point x and
apply the symmetry transformation

Φ
′
x = R0 Φx , (86)

which may be viewed as flipping the field variable Φx.
The point x is checked and added to the cluster.

2. Repeat the following for all unchecked neighbours y of
x:

Let S̃ = S̃(Φx,Φy) denote the contribution to the ac-
tion from the link 〈xy〉 and compute

∆S̃ ≡ S̃(Φ′
x, R0 Φy) − S̃(Φ′

x,Φy) , (87)

which may be rewritten as

∆S̃ = S̃(Φx,Φy) − S̃(Φ′
x,Φy) , (88)

since S̃ is already invariant under R. The decision to
add y to the cluster is subject to an accept/reject step so
that the probability to flip Φy becomes

p =

{

0 : ∆S̃ > 0 ,

1 − e∆S̃ : ∆S̃ < 0 .
(89)

If Φy is flipped, check the point y.

3. Go back to Step (2) for all sites added to the cluster in
the previous step.

Note that (88) measures whether it is advantageous to flip Φy

once Φx has been flipped. From the very construction of the
algorithm it should be already clear that the clusters will in-
crease with the correlation length of the system. In this way
one suppresses the phenomenon of critical slowing down ob-
served with local algorithms. This makes the cluster algorithm
particularly suited for the study of second order phase transi-
tions.

The first step in adapting the cluster algorithm to our needs
is to find suitable symmetries of the action (21). Being a

Polyakov loop model the symmetry in question is the discrete
Z(3) symmetry, L → zkL. In addition, the action has to be
real which implies constraints on the way complex conjuga-
tion acts. From these symmetries one can construct three op-
erators Ri, i = 0, 1, 2, acting on the Polyakov loop according
to

Ri L = (zi L)∗ , zi ∈ Z(3) . (90)

As required the Ri square to unity. Furthermore, it is easy
to see that both the operators Spq appearing in (26) and the
domain of the Polyakov loop L are left invariant by the action
of Ri. The latter is illustrated in Fig. 8 for a particular value
of L. For the actual algorithm the transformations (90) are not

PSfrag replacements

R0

R1

R2

Re

Im

−2 −1 0 1 2 3 4

−2

−1

0

1

2

FIG. 8: Illustration of the Z(3) reflections R i used in our modified
cluster algorithm.

immediately applicable since the simulation is based on the
angular variables Φ introduced in (77). However, it is just a
matter of a little algebra to show that the Ri act on the angles
Φ via

(φ1, φ2) 7→











(2π − φ1, 2π − φ2) under R0 ,
(

4π
3 − φ1,

4π
3 − φ2

)

mod 2π under R1 ,
(

2π
3 − φ1,

2π
3 − φ2

)

mod 2π under R2 .
(91)

Whereas in the original cluster algorithm flipping along ran-
domly chosen lattice sites is sufficient to guarantee ergodicity
this is no longer true in the present case. Hence, we have to
augment the update scheme by standard Metropolis sweeps to
make the algorithm ergodic. For one Monte Carlo step our
cluster algorithm finally can be summarised as follows:

1. Choose a random number NM between 0 and V = N3.

2. Do NM standard Metropolis sweeps at randomly drawn
lattice points.

3. For a suitable fixed number Ncl repeat the steps for
building a cluster as described above.
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4. Do V −NM additional Metropolis sweeps, again at ran-
domly chosen lattice sites.

From several test runs we have found that the number Ncl

should be chosen such that total number of flipped sites after
performing step (3) is approximately half the number of all
lattice sites. Thus, if |C| denotes the typical size of a cluster,
the following equation should hold (at least approximately),

Ncl =
V

2|C|
. (92)

One of the most interesting questions of course is the gain in
performance compared to e.g. the standard Metropolis algo-
rithm. We have found that the autocorrelation time for the
order parameter τ` is independent of both the lattice extent
(at least in the range N = 8 . . . 28) and the coupling con-
stant (if close to the second order phase transition) implying
a dynamical critical exponent of z = 0. Moreover, for an op-
timal choice of Ncl the autocorrelation time is of order unity.
As a result, our cluster algorithm outperforms the Metropolis
algorithm even for small lattices. On the largest lattices we
have considered the cluster algorithm reduces autocorrelation
times by two orders of magnitude as compared to Metropolis
updating. This improvement comes at the cost of a slightly in-
creased complexity, specifically a factor of 1.5 in computing
time which clearly is negligible. On the other hand, in line
with our expectations, no significant improvement has been
found near the first order transition.

B. Results

We present the results of our Monte Carlo simulations in
the same two steps as for the MF approximation. Hence, we
first report on the minimal model (66) and switch on λ21 later
on. With only λ10 different from zero it is reasonably cheap to
perform highly accurate measurements so that a precise quan-
titative comparison with the 3-state Potts model is possible.

For the model (39) with two couplings we determine the
phase diagram in the λ10–λ21 plane and compare with our
expectations as laid out in the previous two sections. We con-
clude with a careful study of the nature of the phase transi-
tions, in particular their continuity properties.

1. Minimal model (one coupling)

To determine the ferromagnetic phase transition for λ10 <
0 we have used standard techniques which need no further ex-
planation. It suffices to note that in order to study the first or-
der (S-F) transition we performed 106 sweeps on a 163-lattice
in the multicanonical ensemble for each value of the coupling
constant. This led to highly accurate statistics until we ap-
proached the close vicinity of the critical coupling itself. In
this regime our statistics is restricted to 102 independent sam-
ples due to large correlation times of the order of 104 sweeps.
As Fig. 10 shows this is sufficient to demonstrate that the tran-
sition is first order.
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proximation.
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FIG. 10: Ferromagnetic phase transition computed with the multi-
canonical algorithm on a 163-lattice. The expectation value of ` is
plotted against its probability distribution given by the area shaded
in grey. The latter clearly shows the correct discontinuous behaviour.
Note that, since we measure the modulus, statistical fluctuations
manifest themselves in a (small) positive value of the order parameter
even in the symmetric phase.

In Fig. 9 we compare our Monte Carlo result for `(λ10) with
its MF approximation. The figure basically zooms into that
part of Fig. 5 where the first order ferromagnetic transition
is located. Again, the first order nature of the transition is
corroborated.

In addition to the coupling dependence of the order param-
eter we have determined both the critical coupling and the
discontinuity ∆` at λ10,crit. The results are given in Table I
together with the MF prediction. Again we find a surpris-
ingly good quantitative agreement between simulations and
MF approximation. Moreover, if we consider the ratio of the
two critical couplings, say λ10,crit;F/λ10,crit;AF, we are able to
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compare this with results of the 3-state Potts model. The ac-
tual figures turn out to be fairly close, namely −0.6904 for
the minimally coupled Polyakov model and −0.6750 for the
3-state Potts model [34, 35].

TABLE I: Critical couplings for the S-F and S-AF phase transitions
and jump ∆`. For the first order transition (S-F) there is excellent
agreement between MF and Monte Carlo data. Even the values for
∆` agree within 10%. For the second order transition (S-AF) the
critical couplings agree within approximately 20%.

method λ10,crit (S-F) ∆` λ10,crit (S-AF)

Monte Carlo −0.13721(5) 1.33(2) 0.19875(5)

Mean Field −0.13433(1) 1.46(1) 0.16667(1)PSfrag replacements
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FIG. 11: Expectation value of m near the anti-ferromagnetic phase
transition computed via MF approximation.

Table I also displays the (positive) critical coupling for the
second order AF transition. This has been analysed with our
modified cluster algorithm by performing a total number of
2 × 106 sweeps. With these large statistics at hand it is also
possible to determine some of the critical exponents thus prob-
ing the universality properties of the model. To do so we have
employed standard renormalisation group techniques follow-
ing [40]. In particular, we consider the Binder cumulant U
and susceptibility χ given by

U = 1−

〈

m
4
〉

3 〈m2〉
2 , (93)

χ = N3
〈

m
2
〉

, (94)

with m as defined in (71) and N denoting the spatial extent of
the lattice as before.

The Binder cumulant U = U(N, λ10) is constructed such
that it becomes independent of N close to the critical point.
Hence, the latter is rather precisely determined as the point
where the graphs of U (plotted for different N ) intersect. This
behaviour is nicely exhibited in Fig.13.

PSfrag replacements

λ10

m

ρ(m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.188 0.192 0.196 0.200 0.204

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

FIG. 12: Expectation value and probability distribution of m near the
anti-ferromagnetic phase transition obtained from Monte Carlo sim-
ulations. To identify clear signals we have chosen a large lattice with
V = 283 and evaluated 5 × 105 sweeps. In contrast to Fig. 10 no
discontinuity is observed. Again the expectation value of the sym-
metric phase is biased since we measure the modulus of the order
parameter.
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of the coupling λ10. The critical coupling λ10,crit is determined via
the intersection point.

From the standard relations at criticality,

χ(λ10,crit) ∝ Nγ/ν , (95)

∂U(N, λ10)

∂λ10

∣

∣

∣

∣

λ10=λ10,crit

∝ N1/ν , (96)

we have finally computed the critical exponents γ and ν which
are listed in Table II.

The uncertainty in λ10,crit quoted in Table I is mainly due
to the fact that the different cumulants do not precisely meet
in a single intersection point (cf. again Fig. 13). The error
in the critical exponents is estimated from a least square fit
to the logarithm of (95) and (96). To cross-check our results
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TABLE II: Critical exponents for the second order AF transition of
the minimal model.

exponent 3-state Potts [35] minimal Polyakov

ν 0.664(4) 0.68(2)

γ/ν 1.973(9) 1.96(2)

we have measured the expectation value of m and its prob-
ability distribution ρ(m) in analogy with the ferromagnetic
transition already discussed. As in the former case, the ex-
pectation value of the order parameter alone does not suffice
to decide on the order of the transition. However, the proba-
bility distribution shown in Fig. 12 is quite different from the
one in Fig. 10. No discontinuous behaviour is observed now
which provides further (numerical) evidence for a second or-
der phase transition. Equally important, the critical coupling
obtained is compatible with the results presented in Table I.
For the sake of completeness Fig. 11 shows the MF prediction
for the transition S-AF.

Comparing with earlier results on the 3-state Potts model
[36] we draw the important conclusion that the minimal
Polyakov loop model is in the same universality class.

2. The phase diagram for two couplings
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FIG. 14: Fundamental domain F of the order parameter L obtained
by identifying Z(3) copies according to the depicted arrows.

Having discussed the minimal model at length let us con-
tinue by switching on the second coupling λ21 in order to anal-
yse the phase diagram in the coupling constant plane. This re-
quires a suitably chosen ‘indicator’ to distinguish the (at least)
four phases (S, F, AC and AF) we expect in accordance with
our MF analysis of Section IV. While ` and m clearly are
order parameters for the minimal model they are numerically
less suited for the model with two couplings. It turns out ad-
vantageous to construct a new observable denoted `r which

may be obtained from ` by the following procedure. We first
divide the domain of L into six distinct parts as shown in
Fig. 14. The light-shaded region represents the preferred locus
of the Polyakov loop in the ferromagnetic phase F, whereas the
dark-shaded region corresponds to the anti-centre ferromag-
netic phase AC. To eliminate the (numerically superfluous)
Z(3) symmetry the first step in our projection is to identify
the regions as indicated by the arrows in Fig. 14. In this way
we end up with a fundamental domain F for the Z(3) sym-
metry centred along the real axis. Every L is mapped into F
by a centre transformation. To finally obtain a real observ-
able we project the transformed L onto the real axis. This
projection results in the variable `r the sign of which clearly
distinguishes between the two ferromagnetic phases. `r < 0
indicates the AC phase, `r > 0 the ferromagnetic phase F,
while ` = 0 in the symmetric phase S. Mathematically, the
projection of L to `r is given by

`r =











Re L : L ∈ F ,

− 1
2Re L +

√
3

2 Im L : L ∈ F ′ ,

− 1
2Re L −

√
3

2 Im L : L ∈ F ′′ .

(97)

To detect the AF phase we simultaneously measure m so that
we can finally discriminate between all possible phases.

Our main results for the phase diagram are shown in Fig. 15
obtained by the modified MF approximation explained earlier
and Fig. 16 which displays the Monte Carlo data and hence
constitutes the most faithful representation of the phase struc-
ture.

The Monte Carlo simulations were carried out on a 83-
lattice. The number of sweeps was chosen such as to reduce
the jackknife error in the estimate of `r below 0.1. The in-
dependence of our samples was ensured by demanding that
the autocorrelation time τ`r

associated with the observable `r

was less then one percent of the total number of sweeps. As
a result our simulations included at least 4 × 104 sweeps far
away from the critical regions and more than 106 sweeps in
their vicinity.

It is reassuring to note that the qualitative phase diagram
Fig. 3 predicted from energy-entropy arguments is quantita-
tively confirmed by both Figs. 15 and 16. Comparing the
latter in some detail it is once more remarkable how good the
MF approximation works. Within large regions of parameter
space it agrees with the ‘real’ data within 10% or less. Inter-
estingly, the observable `r also seems to be sensitive to the AF
phase (see lower right part of Figs. 15 and 16). However, any
further discrimination between phases F and AF by means of
`r is impossible. To lift this degeneracy one clearly needs the
AF order parameter m as an additional input.

It remains to be discussed why `r is sensitive at all to AF or-
dering. In what follows we will provide a heuristic answer in
the context of the 3-state Potts model. By definition, all spins
are (anti)aligned in the (anti)ferromagnetic ground state. In
the Z(2) symmetric Ising model with only two spin states each
possible ground state is two-fold degenerate, independent of
the particular ordering (F or AF). The counting of degenera-
cies, however, is totally different for systems with more spin
states (hence higher symmetry). In the AF phase the addi-
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FIG. 15: Phase diagram of the model with two couplings as obtained via MF approximation. The figure shows a contour plot of the ground
state expectation value of `r in the λ10–λ21 plane. The phase transition between the two ferromagnetic phases (F-AC) is clearly visible in the
lower left part. Note that `r even discriminates between symmetric and anti-ferromagnetic phases (S-AF) as can be seen in the lower right part
of the figure. A heuristic explanation of this phenomenon is given in the main text.
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FIG. 17: Phase boundaries and orders of transitions as obtained via
Monte Carlo simulation on a 83-lattice. We observe a mixture of
both first and second order transitions depending on the particular
values for the couplings. The symmetric phase is enclosed by ordered
phases as already expected from the discussion of Section III. For
further details on the simulation see the main text.

tional freedom of choice between two (or more) states anti-
aligned with a given one leads to an enormous degeneracy of
the ground state in energy. As a consequence, entropy will be
the sole judge deciding what is to be observed in a measure-
ment. For the Z(3) Polyakov loop model both MF approxi-
mation and the Monte Carlo simulations tell us that the most
probable ground state corresponds to a preferred direction for
the Polyakov loop on one of the two sub-lattices and an equal
distribution of the two remaining directions on the other sub-
lattice. Although we do not have an analytical justification for
this statement the numerical evidence is compelling. Based
on the latter, the sensitivity of `r to AF ordering can be ex-
plained by a net expectation value which for the case of the
3-state Potts model is easily computed as

`r = 0.5 z1 + 0.25 z2 + 0.25 z3 6= 0 . (98)

We conclude this discussion with an overview of the result-
ing phases, their boundaries and the order of the transitions in
between presented in Fig. 17. Our reasoning here is based
on additional measurements carried out along parametrised
curves λ = λ(s) as depicted in Fig. 18. These simulations
were exclusively focused on the order of the phase transition
measuring the histograms of the observables L and M . As
before all measurements were carried out on 83-lattices each
trajectory λ(s) being sampled with twenty points. For every
such point λs 106 Monte Carlo sweeps were performed. To
improve the statistics of the histograms we made use of all
previously discussed symmetries (Z(3), complex conjugation
and exchange of even and odd sub-lattice) by binning L or
M together with their centre images zL, z2L, zM , z2M and
their complex conjugates. This amounts to using each mea-
sured value of L six times and of M even twelve times. In
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FIG. 18: Phase diagram of Fig. 17 with oriented trajectories (marked
by arrows) used for the histograms of Figs. 19 to 22. The curves are
directed from the symmetric to the broken phases intersecting the
critical lines vertically. We have chosen a representative subset from
a total of twenty such curves which were analysed to determine the
order of the transitions.

total we have recorded twenty such runs four of which are
depicted in Fig. 18.

To illuminate the order of the transitions corresponding to
the four directed line crossings displayed in Fig. 18 we present
six (out of twenty) histograms in Figs. 19 to 22 which dis-
play the distribution of the observable L respectively M in
the complex plane.

The first figure in this series, Fig. 19, corresponds to the
ferromagnetic transition, S-F. The histograms displayed may
be viewed as a ‘movie sequence’ starting out in the symmetric
phase with the distribution ρ(L) located at the origin. Re-
calling the relation between probability distribution ρ(L) and
the constraint effective potential [41], U(L) ∝ exp(−ρ(L)),
this situation corresponds to a unique minimum of U(L) at
L = 0. As the couplings change three further maxima –
which are Z(3) copies of each other – arise in addition to the
one at the origin. Hence, we observe coexistence of ordered
and disordered phases. The new maxima are separated from
the original unique maximum at the origin by a finite amount.
The associated discontinuity together with coexistence clearly
shows that the transition is first order.

In contrast to this the situation depicted in Fig. 20 is quite
different. First of all the distribution is much more delocalised
as compared to Fig. 19 implying a much flatter effective po-
tential. Moreover, as soon as the maxima of the broken (or-
dered) phase emerge the maximum at the origin has dissolved.
Hence, there is no coexistence of different phases as in the pre-
vious case but rather a continuous appearance of new maxima,
branching away from the origin towards the corners of the fun-
damental domain. These features characterise a second order
phase transition.

Analogous behaviour can be observed in Fig. 21 with the
maxima now moving in roughly the opposite directions in-
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FIG. 19: Histogram of the observable L in the complex plane at a first order ferromagnetic phase transition.
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FIG. 20: Histogram of the observable L in the complex plane at a second order ferromagnetic phase transition.
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FIG. 21: Histogram of the observable L in the complex plane at a second order anti-centre phase transition.
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FIG. 22: Histogram of the observable M in the complex plane at a second order anti-ferromagnetic phase transition.
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dicating a transition to the AC phase. Still different is the
S-AF transition of Fig. 22. By the same reasoning as given
above this transition is of second order as well. However, the
probability function emerging in the broken phase does not
display the usual three-fold symmetry we have observed for
the previous transitions. Although the figures seemingly look
rotationally invariant one actually finds a six-fold degeneracy
rather than a continuous one. The symmetry enhancement by
a factor of two has a simple explanation. Note that Fig. 22
shows the probability distribution of the AF order parameter
M which is defined in terms of even and odd sub-lattices. In-
terchanging the latter accounts for the additional factor of two.

Let us conclude this section with a short remark concerning
Figs. 20 and 21. We have seen that our numerical data seem
to indicate the possibility of second order transitions from the
disordered phase S to F or AC ordering. This is at variance
with the folklore claiming the absence of a Z(3) universal-
ity class in d = 3, see e.g. [5]. It is not excluded that the
observed second order characteristics near the tricritical point
(S-F-AC) derive from artifacts due to our algorithms. At the
moment, however, we cannot make a definite statement about
this issue. Obviously, the puzzle deserves further investigation
in the future.

VI. SUMMARY AND OUTLOOK

As outlined in the introduction the original motivation for
Polyakov loop models lies in their status as effective theories
for finite-temperature gluodynamics. However, our investiga-
tion of the statistical mechanics involved should have made
it clear that they are interesting in their own right. In sup-
port of this statement we mention the 3-fold Z(3) symmetry
shared with the 3-state Potts model, the nontrivial complex
target space and the enormously rich phase structure resulting
thereof.

As we have seen, the latter can be understood qualitatively
by simple energy-entropy considerations which predict a sym-
metric phase S close to the origin in coupling space ‘sur-
rounded’ by broken phases. These can exhibit ferromagnetic
(F), anti-ferromagnetic (AF) or anti-centre (AC) ordering.
This picture has been confirmed quantitatively both within a
mean-field (MF) approximation and by extensive Monte Carlo
simulations. Both methods find a first order transition for S-F
and a second order one for S-AF. In order to capture the details
of the phase diagram a total number of 8000 simulations (cor-
responding to roughly 3000 hours of CPU time) was required.
Naturally, this has added further refinements to our classical
and MF analysis like precise values for critical couplings and
exponents.

The agreement between MF and Monte Carlo result is much
better than naively expected for a statistical model in d = 3.
The S-F critical couplings agree to within 1%, the discontinu-
ity ∆` within 10% and the S-AF critical coupling within 20%.
The precise agreement for the S-F transition suggests that the
point where the S-F and S-AC critical lines merge is actually a
tricritical point where two first order transitions merge into a
second order one. It is known that the upper critical dimension
for a tricritical point is three [42, 43] so that in d = 3 the MF
approximation actually is exact apart from logarithmic correc-
tions [44]. This observation is corroborated by the fact that the
Polyakov loop model with two couplings is somewhat similar
to the spin-one Blume-Capel [45, 46] model which apart from
an Ising term has an addition K

∑

i s2
i , si = −1, 0, 1, with

3 spin states. The model is known to have a tricritical point
and is closely related to the 3-state Potts model [47]. The sec-
ond order phase transition line is characterised by 3d Ising
critical exponents. Obviously, one should test the analogous
exponents for our AC-F transition at the very left of our phase
diagrams.

One may also address the spatial localisation of the phases.
On the 3d lattice the coexisting phases should be separated by
interfaces the tension of which can be measured (see e.g. [15]
and references therein).

In the end one is of course interested in matching the ef-
fective couplings to the underlying microscopic theory, i.e.
finite-temperature Yang-Mills. The resulting curve λIJ (β)
in the space of effective couplings should stay in the sym-
metric and ferromagentic phases. We have already solved
the matching-problem for the (simpler) case of SU(2) us-
ing inverse Monte Carlo methods based on Schwinger-Dyson
equations. For SU(3) this is considerably more difficult (at
least technically) due to the increased complexity of the Haar
measure. The problem is actually similar to one encountered
in strong-coupling expansions where SU(2) group integrals
can be performed analytically which is no longer true for
SU(3). Nevertheless, we have been able to derive the rele-
vant Schwinger-Dyson equations and hope to report on their
applications in the near future.
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