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1. IntrodutionThe deon�nement phase transition in pure Yang{Mills theory [1, 2℄ is ontrolled by thedynamis of the Polyakov loop variable Px. Above a ritial temperature T, the singletpart Lx � trPx=2 develops a nonvanishing vauum expetation value (VEV). In this high{temperature phase one expets to �nd a plasma of liberated gluons (and, in QCD, alsoquarks). The VEV of Lx thus represents an order parameter assoiated with spontaneoussymmetry breaking. The symmetry in question is a global ZN symmetry, ZN being theenter of the gauge group SU(N). While the Yang{Mills ation is enter symmetri, Lx,although gauge invariant, transforms nontrivially, Lx ! zLx, z 2 ZN . Combining renor-malization group ideas and dimensional redution, Svetitsky and Ya�e have onjeturedthat �nite{temperature SU(N) Yang{Mills theory in d dimensions is in the universalitylass of a ZN spin model in dimension d�1 [3, 4℄. For some reent and rather sophistiatedon�rmations of the statement on the lattie the reader is referred to [5, 6, 7, 8℄.The universality argument implies that e�etive �eld theory methods may be putto use. It should make sense to map the mirosopi theory, here Yang{Mills, onto amarosopi one, desribed by an e�etive ation with ZN symmetry. For gauge groupSU(2), for instane, one an try to oarse{grain the gauge �elds all the way down to Z2Ising spins [9, 10, 11℄. An intermediate proedure is to establish an e�etive ation for the{ 1 {



Polyakov loop variable itself [12, 13, 14℄. This may be ahieved analytially using strong{oupling or, equivalently, high{temperature expansions [13, 15, 16℄. Doing so for SU(2),one obtains a loal e�etive ation depending on all haraters �j(Px) [15, 16℄. The indexj 2 N=2 labels the irreduible representations of SU(2). In this most elementary ase, �jan be expressed in terms of powers of Lx (the harater of the fundamental representation,j = 1=2). For larger gauge groups, however, more and more haraters/representationsbeome relevant. This fat has reently been employed for model building, regarding theuntraed holonomy Px [17℄ or, equivalently, its eigenvalues [18℄ as the fundamental degreesof freedom. We parametrize the (lattie) e�etive ation as follows,Se� =Xa �aSa ; (1.1)with enter{symmetri operators Sa and e�etive ouplings �a to be determined. As statedabove, for SU(2) it is suÆient to work with only the traed Polyakov loop, Lx. Thee�etive ation will then have the form [14℄,Se� [Lx℄ =Xx V [L2x℄ +Xxy LxK(2)xyLy + XxyuvLxLyK(4)xyuvLuLv + : : : : (1.2)The kernels K(a) depend on the ouplings �a and the temperature. By onstrution,the Z2 enter symmetry (Lx ! �Lx) is manifest. Note that the representation (1.2)is rather general and leaves room for a plethora of operators, the ompat ontinuousvariable Lx 2 [�1; 1℄ being dimensionless. Later on, it will therefore be ruial to hoosean appropriate subset of all possible operators in order to apture the essential physis.In this respet it turns out useful to follow [17℄ and view the e�etive ation (1.1) asbeing embedded into a `sigma model' depending on Px, Se� [L℄ � Se� [Px℄. This yields anadditional global SU(2) symmetry,Px ! gPx g�1 ; g 2 SU(2) ; (1.3)whih is a remnant of the underlying SU(2) gauge invariane. The Haar measure DPx hasan even larger symmetry, namely SU(2)�SU(2), orresponding to the transformation lawPx ! gPx h ; g; h 2 SU(2) : (1.4)The invariane of the measure leads to novel Shwinger{Dyson identities whih will be animportant ingredient in our derivation of the e�etive ouplings �a inherent in (1.1).The paper is organized as follows. In Setion 2 we derive exat (lattie) Shwinger{Dyson equations from the invariane of the Haar measure DPx. We proeed by analysingthe single{site distribution of the Polyakov loop variable Lx in Setion 3. This yieldsa semianalyti method to determine all ouplings �a apart from the one of the hoppingterm, �0. The latter is obtained in Setion 4 using the Shwinger{Dyson equations whihare also employed to hek the resulting e�etive ation. In Setion 5, we determine thee�etive potential in the symmetri phase from the single{site distribution. Finally, inSetion 6, we perform an extensive numerial analysis to improve the e�etive ation byinluding a maximum number of 14 operators. Some tehnialities onerning the analysisof histograms are relegated to an appendix.{ 2 {



2. Haar measure and Shwinger{Dyson identitiesThe Polyakov loop variable on the lattie is given by a holonomy or parallel transportonneting the (periodi) boundaries in temporal diretion,Px � NtYt=1Ut;x;0 ; (2.1)where the U 's are the standard link variables on a lattie of size Nt �N3s (we will mostlyuse Nt = 4, Ns = 20). The e�etive ation for the Polyakov loops is obtained by insertingunity into the Yang{Mills partition funtion, suh that (the trae of) (2.1) is imposed as aonstraint, ZYM = Z DU exp(�SW [U ℄)= Z DU DP Æ�trPx � tr NtYt=1Ut;x;0� exp(�SW [U ℄)� Z DP exp(�Se� [P℄) ; (2.2)with DU and DP the appropriate Haar measures (see below) and SW the standard Wilsonation. Of ourse, the integration over link variables U in the last step annot be performedexatly. For this reason one has to resort to e�etive ations as given by (1.1) and (1.2),for instane [3, 4, 14℄. Using inverse Monte{Carlo (IMC) tehniques, it should be possibleto determine a reasonable e�etive ation from Yang{Mills on�gurations.The main ingredient for this proedure are the Shwinger{Dyson equations assoi-ated with the symmetry of the measure DP under (1.4). To derive those we hoose theparametrization, Px � P 0x 1+ i�aP ax � P �x�� ; (2.3)whih is in SU(2), PyxPx = 1, if the omponents P �x de�ne a three{sphere S3 aordingto P �xP �x = (P 0x)2 + P axP ax = 1 : (2.4)We mention in passing that the points x where the Polyakov loop is given by enterelements, Px = �1, orrespond to the positions of monopoles in the Polyakov gauge[19, 20, 21℄, a partiular realization of `t Hooft's Abelian projetions [22℄.In terms of the oordinates (2.3), the traed Polyakov loop beomes Lx = P 0x, whilethe funtional Haar measure an be written asDP �Yx d4Px Æ(P �xP �x � 1) : (2.5)Obviously, this is invariant under rotations R 2 SO(4) generated by the angular momentaL��x � �i�P �x ��P �x � P �x ��P �x � : (2.6)
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These an be split up into `eletri' and `magneti' omponents (or `boosts' and 3d `rota-tions'), iL0ax � P 0x ��P ax � P ax ��P 0x � iKax ; (2.7)iLabx � P ax ��P bx � P bx ��P ax � i�abLx ; Lax � 12�abLbx : (2.8)Summarizing, the SO(4) generators L��x rotate the four{vetor P �x , while the SO(3) gen-erators Lax rotate the three{vetor P ax . The self{ and anti{selfdual ombinations,Max � 12(Lax �Kax) ; (2.9)Nax � 12(Lax +Kax) ; (2.10)generate left and right multipliation, respetively,Px ! gPx ; Px ! Px h ; g; h 2 SU(2) : (2.11)Global SU(2) (gauge) transformations of the Polyakov loop as given by (1.3) are generatedby Labx (or Lax) whih do not di�erentiate with respet to the trae P 0x and thus leave anyfuntional of P 0x = Lx invariant. Typial suh invariants areP 0x ; P axP ax � 1� P 0xP 0x ; : : : : (2.12)The Shwinger{Dyson equations that follow from the SO(4) invariane of the Haar measure(2.5) are given by Z DP L��x �F [P℄ exp(�Se� [P℄)	 = 0 ; (2.13)where F [P℄ is an arbitrary funtional of Px. As the e�etive ation depends on Px solelythrough the SU(2) invariant P 0x, Se� [P℄ � Se� [P 0℄, only the generators L0ax � Kax lead tonontrivial relations whih an be written ashKaxF [P℄ � F [P℄KaxSe� [P℄i = 0 ; (2.14)using the expetation value notation,hOi � Z�1 Z DPO[P℄ exp(�Se� [P℄) : (2.15)Beause Kax transforms like a vetor under gauge rotations, (2.14) in general will not begauge invariant. However, we are still free to hoose the funtional F [P℄ at our will. If wepik F ax [P℄ � P ax G[P 0℄ ; (2.16)with an arbitrary funtional G[P 0℄, we have the ation of Kax,iKaxF by = ÆabÆxyP 0xG� P axP by G0x ; (2.17){ 4 {



where we have denoted G0x � �G=�P 0x . Plugging this into (2.14), setting x = y and takingthe trae one �nds the gauge invariant Shwinger{Dyson equations,h3P 0xG� P axP ax(G0x �GS0e� ;x)i = 0 : (2.18)The same result is obtained using F ax [P℄ � KaxH[P 0℄ instead of (2.16) and identifyingH 0x � �Gx. Let us rewrite (2.18) as a funtional integral,Z DP �3P 0xG� P axP ax(G0x �GS0e� ;x)� exp(�Se�) = 0 ; (2.19)and parametrize Px aording toPx = exp i�a�ax = 1 os �x + i�anax sin �x ; nax � P ax=(P bxP bx)1=2 : (2.20)Then, the traed Polyakov loop is Lx � os �x while the Haar measure (2.5) beomesDP =Yx sin2 �x d�x d2nx4�2 : (2.21)As the funtional integral (2.19) only depends on invariants we an integrate over thediretions n (yielding an irrelevant volume fator) so that we are left with an integralinvolving only the redued Haar measure,DL �Yx d�x sin2 �x =Yx d(os �x) sin �x =Yx dLxp1� L2x �Yx DLx ; (2.22)namely,Z Yy d�y sin2 �y �3 os �xG� sin2 �x(G0x �GS0e� ;x)� exp(�Se�) = 0 : (2.23)A more ompat form for these relations is ahieved in terms of total derivatives,0 = Z Yy 6=x d�y sin2 �y Z d�x ÆÆ�x �sin3 �xG exp(�Se�)	= Z Yy 6=x d�y sin2 �y Z d(os �x) ÆÆ(os �x) �sin3 �xG exp(�Se�)	 : (2.24)Note that the sin3 � term ensures the absene of surfae terms. With (2.24) we have foundthe Shwinger{Dyson relations of the redued theory involving only the invariant L = os �.We do not have a simple geometrial explanation for the invariane of the redued Haarmeasure DL leading to (2.24). The SO(4) symmetry of the measure DP, however, is verynatural.In terms of the Polyakov loop Lx, (2.23) is the expetation valueh3LxG� (1� L2x)(G0x �GS0e� ;x)i = 0 : (2.25){ 5 {



Comparing with (2.18) we notie that it does not matter whether the expetation value istaken with the full or redued Haar measure as long as G = G[L℄. If we insert the ansatz(1.1), the Shwinger{Dyson equations (2.25) beome a linear system for the ouplings �a,Xa h(1� L2x)GS0a;xi�a = h(1 � L2x)G0xi � 3 hLxGi : (2.26)To solve this unambiguously we need as many independent operators G as there are ou-plings �a. A partiularly natural proedure, whih also turns out to be rather stablenumerially, is to hoose G � S0b;y. Any of these operators ontains an odd number of Lx'sso that the minimal set of Shwinger{Dyson equations relates only nontrivial expetationvalues, Xa h(1 � L2x)S0b;yS0a;xi�a = h(1 � L2x)S00b;yxi � 3 hLxS0b;yi : (2.27)At this stage, keeping x and y �xed, the problem of determining the ouplings �a is wellposed mathematially. Numerially, of ourse, it is better to use all the information onean get, for instane by sanning through all possible distanes x � jx � yj, x < Ns=2.The resulting overdetermined system is then solved by least{square methods. Anotherpossibility is to add new equations to (2.27) by hoosing further appropriate monomialsor polynomials in Lx for the operator G. This philosophy will be extensively adopted inSetion 6. Before that, however, we will try to proeed in a (semi{)analytial fashion.3. Single{site distributions of Polyakov loops3.1 De�nitionsFrom the e�etive ation of Polyakov loops Se� [L℄ one an derive new probability densitiesby integrating over (part of) the loop variables L. Of ourse, this amounts to some kind ofourse{graining so that via the new densities one will only have aess to gross propertiesof the e�etive ation. Nevertheless, these densities, if hosen properly, exatly repro-due ertain expetation values alulated within the full e�etive ensemble. Consider, forinstane, the loal moments,`p � hLpxi � Z�1 Z Yy DLy Lpx exp (�Se� [L℄) ; (3.1)where, as usual, the partition funtion Z is the integral over exp(�Se�). Splitting o� theLx{integration, (3.1) an be rewritten as`p = hLpxi � Z 1�1DLx Lpx pW [Lx℄ � hLpxiW ; (3.2)with the probability density pW obtained via integrating over all Ly 6= Lx,pW [Lx℄ � Z�1 Z Yy 6=xDLy exp (�Se� [Ly℄) � Z�1 exp (�W [Lx℄) : (3.3)
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Due to translational invariane, pW (like `p) does not depend on the site x. Thus, DLpW [L℄is the probability to �nd the value of the Polyakov loop in the interval [L;L + dL℄. TheZ2{symmetry of the e�etive ation implies that the power p in (3.1) and (3.2) has to beeven, p = 2q, at least for �nite volume (no spontaneous symmetry breaking). Therefore,knowing pW gives aess to all loal moments `2q and (by taking the logarithm) to all loalumulants 2q as well. A partiularly important quantity is the Binder umulant [23, 24℄,de�ned as the quotient b4 � 422 = `4`22 � 3 ; (3.4)whih measures the deviation from a Gaussian distribution. This will be analysed in somedetail later on.From the de�nition (3.3) it is obvious that pW is blind against spatial orrelationsof Polyakov loops. In other words, one annot alulate two{point funtions like Gxy �hLxLyi. In priniple, this an be remedied by a slight generalization of (3.3). To this endwe de�ne a new probability density depending on Lx and Ly,pW2 [Lx; Ly℄ � Z�1 Z Yz 6=x;yDLz exp (�Se� [L℄) � Z�1 exp (�W2[Lx; Ly℄) : (3.5)Then, one an alulate the following two{point orrelators,hLpxLqyi = Z DLxDLy LpxLqy pW2 [Lx; Ly℄ : (3.6)Obviously, pW and pW2 are related aording topW [Lx℄ = Z DLy pW2 [Lx; Ly℄ : (3.7)If there were no orrelations, one would have fatorization, pW2 [Lx; Ly℄ = pW [Lx℄pW [Ly℄.3.2 Determination of single{site distributionsAt �rst glane, there seems to be not muh of a gain by introduing densities like thesingle{site distribution pW . Note, however, that pW [L℄ is muh simpler than our originaldensity pS � Z�1 exp(�Se�) whih depends on N3s variables rather than just one. Inaddition, pW an be obtained rather easily from our Monte Carlo data. The results arefairly smooth histograms whih are displayed in Figure 1 (for details see App. A). The mostimportant observation, however, is the �nding that pW is at below T, that is, one hasan equipartition for Lx. Apparently, this is a remnant of the SO(4) symmetry disussed inSetion 2. Taking the (negative) logarithm of pW we obtain the single{site potential W [L℄shown in Figure 2.We are thus led to employ the following ansatz for the potential W from (3.3), distin-guishing between temperatures below (�) and above (+) the ritial value, T,W�[L℄ = onst ; (3.8)W+[L℄ = onst0 +Xk �2k2k L2kx : (3.9)
{ 7 {
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Figure 1: Single{site density pW [L℄ for temperatures above (�,�) and below T (+). For T < T(� < � ' 2:299), the density is at, pW = 2=�. Input: 200 to 400 on�gurations, Ns = 20, Nt = 4.Demanding h1i = 1 these imply for the density pW ,p�W [L℄ = exp(�W�)=Z� = 2=� ; (3.10)p+W [L℄ = exp(�W+[L℄)=Z+ : (3.11)Things are partiularly straightforward below T, so let us disuss this ase �rst. Theresult (3.10) shows that, after normalization, the single{site distribution of Polyakov loopsbelow T is known exatly. Furthermore, it is simple enough so that the assoiated (loal)moments an be determined analytially,`�2q � hL2qiW� = 2� Z 1�1 dLp1� L2 L2q = 1p� �(q + 1=2)�(q + 2) = 2�q (2q � 1)!!(q + 1)! : (3.12)The generating funtion for these moments an also be alulated expliitly,Z�(t) � hetLiW� = 2� Z DLetL =Xl�0 `�2l(2l)! t2l = 2t I1(t) ; (3.13)I1 being the standard modi�ed Bessel funtion. For the Binder umulant (3.4) we thus�nd the result b�4 = `�4(`�2 )2 � 3 = 1=8(1=4)2 � 3 = �1 : (3.14)
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Figure 2: The single{site potential W [L℄ shifted by the onstant o�set w. For T < T (� < � '2:299), W [L℄ is at. Input: 200 to 400 on�gurations, Ns = 20, Nt = 4.We have heked that (3.12) and (3.14) hold numerially both for the histograms pW andthe e�etive Yang{Mills probability density pS . The results for the Binder umulant aredisplayed in Figure 3.It may seem strange that we get a at distribution pW below T. However, this doesnot imply that the e�etive potential, whih de�nes the distribution of the mean �eld �L,beomes trivial (see Set. 5).To proeed, we have to speify our ansatz for the e�etive ation beyond (1.1) and(1.2). Svetitsky and Ya�e have argued [3, 4, 14℄ that, lose to the phase transition, thee�etive interations should be short ranged so that Se� is of Ginzburg{Landau type,Se� = �0Xx;i LxLx+i +Xx Xk>0 �2k2k (Lx)2k � �0S0 + �2S2 + : : : : (3.15)The high{temperature harater expansions mentioned in the introdution yield additionalhopping terms of the form LpxLqy : : : [15, 16, 25℄. The relevane of these terms will bediussed in Setion 6.Let us investigate the onsequenes of the ansatz (3.15) for the single{site distribution.{ 9 {
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Figure 3: The Binder umulant b4 as obtained from the simulated Yang{Mills on�gurations (�)with Ns = 20 ompared to the single{site distribution pW (�). Below � ' 2:30, the exat result(3.10) for pW (i.e. W = onst) has been used. Above �, W has been �tted to a polynomial (seebelow).Plugging the former into the de�nition (3.3) yieldse�W� = Z 1�1 Yy 6=xDLy exp0���0Xy;i LyLy+i � Xy;k>0 �2k2k L2ky 1A= exp �Xk>0 �2k2k L2kx !Z 1�1 Yy 6=xDLy exp (��0LxMx) exp(�S0e� [Ly℄) ; (3.16)where, in the seond line, we have introdued the �eldMx � �S0�Lx =Xi (Lx+i + Lx�i) ; (3.17)representing the sum of all nearest neighbors of Lx. In addition, we have de�ned a modi�edation S0e� whih is obtained from Se� by setting Lx = 0,S0e� [L℄ � Se� [L℄��Lx=0 : (3.18)Now, the left{hand side of (3.16) is 2Z�=� and hene independent of Lx. Thus we mayput Lx = 0 everywhere on the right{hand side yielding the identity,2Z�=� = e�W� = Z 1�1 Yy 6=xDLy exp(�S0e� [Ly℄) � Z 0 : (3.19)
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Aordingly, e�W� is the partition funtion assoiated with ation S0e� . We an go onestep further and expand the exponential ontaining the nearest{neighbor �eld Mx on theright{hand side of (3.16). This is atually a hopping{parameter expansion in �0 whih,upon using (3.19), implies1 = exp �Xk>0 �2k2k L2kx !Xn�0 (��0)nn! LnxhMnx i0 : (3.20)Here, we have de�ned modi�ed expetation values assoiated with S0e� and Z 0,hO[L℄i0 � Z Yy 6=xDLy O[L℄ exp(�S0e� [L℄)=Z 0 : (3.21)The Z2{symmetry of the e�etive ation requires n to be even, n = 2m. Denoting�2m � hM2mx i0 ; (3.22)we �nally have 1Xm=0 �2m0 �2m(2m)! L2mx = exp 1Xk=1 �2k2k L2kx ! : (3.23)To lowest order in Lx (m = 0) this onsistently reprodues the normalization (3.19),h1i0 = 1 = e�W�=Z 0. A general interpretation an be given as follows. To have equipartitionrequires a deliate balane between the hopping term (�0) and the `potential' terms (�2k).Setting �0 = 0 (so that the e�etive ation leads to a produt measure) implies that all�2k have to vanish and vie versa: �2k = 0 implies �0 = 0.To further evaluate the identity (3.23) we note that it an be viewed as a partiularexample of a linked{luster or Mayer expansion [26, 27, 28℄ expressing the moments �2m0 �2min terms of the umulants �02k � (2k � 1)! �2k : (3.24)The relation between moments and umulants an atually be solved for arbitrary m (seee.g. [29℄), �2m0 �2m = mXn=1 1n! mXk1;:::;kn=1k1+:::+kn=m (2m)!(2k1)! : : : (2kn)! nYi=1 �02ki : (3.25)This somewhat lumsy formula yields for the �rst few orders�20 �2 = �02 ; (3.26)�40 �4 = �04 + 3�022 ; (3.27)�60 �6 = �06 + 15�02�04 + 15�032 ; (3.28)�80 �8 = �08 + 28�02�06 + 35�024 + 210�04�022 + 105�042 : (3.29)It is quite obvious that by inverting (3.25) we an express the ouplings �2k (or umulants�02k) in terms of the moments �2m. Alternatively, one may take the logarithm of (3.23){ 11 {



and ompare oeÆients. In any ase, the �rst few umulants are�02 = �20 �2 ; (3.30)�04 = �40 ��4 � 3�22� ; (3.31)�06 = �60 ��6 � 15�4�2 + 30�32� ; (3.32)�08 = �80 ��8 � 28�6�2 + 420�4�22 � 630�42 � 35�24� : (3.33)These identities almost solve our problem of determining Se� as they express the unknownouplings �2k in terms of �0 (unknown as yet) and the modi�ed expetation values �2mfrom (3.22).Things beome simple if one allows for only a �nite number (say K) of ouplings �2kin the Svetitsky{Ya�e ation (3.15). Then, there is only a �nite number of independentmoments �2k, k = 1; : : : K. This is quite obvious from e.g. (3.33). Setting �8 = 0 = �08determines the moment �8 and all higher ones in terms of �2, �4 and �6.For K = 1, (3.23) yields the general expression�2m = (2m� 1)!! ��2�20�m � (2m� 1)!! �m2 ; m = 1; 2; : : : : (3.34)We thus have found fatorization: all higher moments �2m, m > 1 an be expressed interms of the lowest one, �2 � �2=�20. Of ourse, this is onsistent with Se� being quadratiin Lx (vanishing of quarti and higher umulants �02k).For K = 2, we have three ouplings, �0, �2 and �4. In this ase, (3.23) implies thefollowing generalization of (3.34),�2m = (2m� 1)!! �m2 [m=2℄Xk=0 �m2k�(2k � 1)!!� �43�22 � 1�k ; (3.35)whih shows that all moments �2m an be expressed in terms of �2 and �4. The �rsttwo fators in the sum ount the number of ways in whih one an form k pairs out ofm elements. The term raised to power k is atually (one third of) the Binder umulantassoiated with the moments �2m. If it were zero we would get bak at (3.34).Clearly, in order to determine the ouplings �2k one does not want to alulate themoments �2k by performing a new and ostly Monte Carlo simulation with the ation S0e� ,setting Lx = 0 at a partiular site x. One expets, however, that, for large latties, onewill have the approximate identityhM2mi0 ' hM2mi ; m > 0 ; (3.36)where the latter expetation is taken in the full Yang{Mills ensemble. For our numerialevaluation we have tested assumption (3.36) as follows. De�ne the expetation valueshM2mx i� � Z�1� Z Yy DLyM2mx exp �� Se� [Ly℄� �L2x� ; (3.37)so that one has hM2mx i = hM2mx i0 ; hM2mx i0 = hM2mx i1 : (3.38){ 12 {



If (3.36) is to hold then hM2mx i� must be approximately independent of �. We have hekedthis by simulating the leading{order ation,S� � �02 XhxyiLxLy +�L2x � �0Xx;i LxLx+i +�L2x ; (3.39)for di�erent values of � on a lattie of size 163 with �0 = �0:3 (symmetri phase). Thealulated expetation values hM2xi� displayed in Table 1 show that hM2xi� is indeed inde-pendent of � to an auray of about 0.5 %.� 0 1 10 100 1000 10000hM2xi� 1.951 1.947 1.962 1.954 1.939 1.961Table 1: The expetation value hM2xi� as a funtion of the parameter � suppressing the single{sitevariable Lx. Input parameters are Ns = 16, �0 = �0:3 (symmetri phase).For T > T, we use the ansatz (3.9). This implies that formulae (3.20{3.33) still hold,however, with �2k now replaed by �2k � �2k. We have heked that the identi�ation(3.36) also holds in the broken phase (hoosing �0 = �1, see Table 2).� 0 1 10 100 1000 10000hM2xi� 18.79 18.87 18.83 18.78 18.80 18.78Table 2: The expetation value hM2xi� as a funtion of the parameter � suppressing the single{sitevariable Lx. Input parameters are Ns = 16, �0 = �1 (broken phase).The ouplings �2k an be obtained by �tting W+[L℄ (see Figure 2) aording to (3.9).The �t values are displayed in Tables 3 and 4.� �2=2 �4=42.40 �0:4468 0.07032.34 �0:2712 0.05262.32 �0:1772 0.02612.30 �0:0717 0.0120
� �2=2 �4=4 �6=62.40 �0:4531 0.0901 �0:01522.34 �0:2626 0.0249 0.02162.32 �0:1612 �0:0259 0.04082.30 �0:0666 �0:0087 0.0133Table 3: Two{parameter �t to W+[L℄. Table 4: Three{parameter �t to W+[L℄.Summarizing we note that we have good analytial and numerial ontrol of the single{site distribution pW or, equivalently, the histograms displayed in Figure 1. Below T, thehistogram is at, p�W = onst, above T, W+ � log p+W is a simple polynomial in L2 withoeÆients given in Tables 3 and 4. { 13 {



4. Determination of the e�etive ationThe alulation of the ouplings �2k, k � 0, in the e�etive ation proeeds in threesteps. First we determine the moments �2m from the Polyakov{loop ensemble using theapproximate identity (3.36). Seond, from (3.30{3.33), we obtain the ouplings �2k =�02k=(2k � 1)!, k > 0, in terms of the moments �2k and �0. Third, we determine �0.The �rst step onsists of straightforward numeris based on our Wilson ensemblesobtained for several values of � near �. The results for the �2m are displayed in Table 5.A disussion of the errors will be given below after the �2k have been determined.� 2.20 2.25 2.28 2.29 2.30 2.32 2.34 2.40�2 1.93 2.086 2.242 2.327 2.466 2.946 3.336 4.173�4 10.16 11.55 13.07 13.89 15.27 20.16 24.22 33.60�6 80.88 96.06 113.0 121.7 137.6 194.1 241.5 357.6�8 829.3 1019 1237 1341 1551 2297 2922 4536Table 5: The moments �2m for di�erent values of the Wilson oupling � (Ns = 20, Nt = 4).With the moments �2m at hand we �nd the ouplings�2k = �2k0 �2k ; k > 0 ; (4.1)where the �2k an be expressed in terms of the �2k aording to (3.30{3.33). The �nalstep onsists in the determination of �0. To this end we make use of the Shwinger{Dysonrelations (2.26) hoosing the operators G � L2l�1x whih results inh(1�L2x)MxL2l�1x i�0+Xk>0h(1�L2x)L2k+2l�2x i�2k = (2l�1) h(1�L2x)L2l�2x i�3 hL2lx i: (4.2)For T < T, where the single{site distribution is known exatly, the right{hand side of (4.2)vanishes. This an either be inferred from the analytial result (3.12) or by noting thatthe term in question is a total derivative,(2l � 1) h(1 � L2x)L2l�2x i � 3 hL2lx i = � 2� Z 1�1 dL ��L h(1� L2)3=2 L2l�1i = 0 : (4.3)Plugging (4.1) into (4.2) and dividing by �0 (assumed to be nonzero) yields a nonlinearequation of degree 2k � 1 in �0. With the oeÆients �2k and all nonloal expetationvalues (orrelators) determined numerially, the oupling �0 an be obtained straightfor-wardly. As there are 2k� 1 solutions we take the one whih is approximately independentof the number K of ouplings �2k. The resulting values of all ouplings (for K = 2 andK = 3) are displayed in Tables 6 and 7. Following [30℄, the (relative) errors have beenestimated by varying the number of operators in the e�etive ation. In the �{regime ho-sen, they roughly grow linearly with � while the inrease with the label 2k of the oupling{ 14 {



� �0 �2=2 �4=42.20 �0:438(5) 0.186(3) �0:0017(3)2.25 �0:473(5) 0.233(5) �0:0031(5)2.28 �0:500(5) 0.280(6) �0:005(1)2.29 �0:509(5) 0.301(6) �0:007(1)2.30 �0:63(1) 0.45(2) �0:019(1)2.32 �0:69(1) 0.60(2) �0:053(4)2.34 �0:70(1) 0.68(3) �0:088(7)2.40 �0:73(4) 0.9(1) �0:21(4)Table 6: Numerial values for the ouplings �0 and �2k=2k, k � K = 2. The ritial Wilsonoupling is � = 2:299 (Ns = 20, Nt = 4).� �0 �2=2 �4=4 �6=62.20 �0:438(5) 0.186(3) �0:0017(3) 0.000(1)2.25 �0:476(5) 0.237(5) �0:0032(5) 0.000(1)2.28 �0:507(5) 0.288(6) �0:006(1) 0.000(1)2.29 �0:510(5) 0.303(6) �0:007(1) 0.000(4)2.30 �0:63(1) 0.45(2) �0:020(1) 0.002(1)2.32 �0:69(1) 0.62(2) �0:057(5) 0.011(2)2.34 �0:70(1) 0.70(3) �0:093(7) 0.024(4)2.40 �0:76(4) 1.0(1) �0:26(5) 0.11(5)Table 7: Numerial values for the ouplings �0 and �2k=2k, k � K = 3. The ritial Wilsonoupling is � = 2:299 (Ns = 20, Nt = 4).(or, equivalently, the maximum power 2k of Lx present) is exponential but, nevertheless,numerially small.With the e�etive ouplings determined we are in the position to hek our results bysimulating the e�etive ation. For both � = 2:20 and � = 2:40 we have produed 10000on�gurations distributed aording to Se� using the ouplings from Table 7. In Figures4 and 5 we ompare the single{site distributions obtained from the e�etive theory withthose of Yang{Mills. The outome is quite satisfatory. In partiular, one notes that theinlusion of a L6{term (K = 3) still improves the mathing of the histograms ompared tothe ase K = 2.
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Figure 4: Comparison of single{site histograms based on simulating Yang{Mills (�) vs. the e�etiveation for T < T. The urves for two and three ouplings �2k, i.e. K = 2 (+) and K = 3 (�),respetively, fall on top of eah other. Input: � = 2:20, Ns = 20, Nt = 4.
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Figure 5: Comparison of single{site histograms based on simulating Yang{Mills (�) vs. the e�etiveation with two (+) and three (�) ouplings �2k for T > T. Input: � = 2:40, Ns = 20, Nt = 4.
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� �0 �2 �4 �62.20 input �0:43803 0:37182 �0:00681 0:000242.20 output �0:43824 0:37351 �0:00621 0:000202.40 input �0:76000 1:9572 �1:0216 0:697612.40 output �0:76027 1:9605 �1:0222 0:69039Table 8: Comparison of ouplings used as input of simulation with ouplings obtained as outputof IMC applied to the e�etive ation.A further important hek is provided by reproduing the input ouplings of Table 7via our IMC proedure. The results displayed in Table 8 show quite onviningly that themethod works. If we allow for additional operators in the numeris (whih are not presentin the e�etive ation) the numbers of Table 8 remain unhanged while the ouplings ofthe new operators are onsistently of order 10�5, i.e. ompatible with zero.5. The onstraint e�etive potentialWith an e�etive ation being found, one ould go on and alulate the onstraint e�etivepotential [31℄ whih de�nes the distribution of the onstant mean �eld,�L � 1
Xx Lx ; 
 = N3s : (5.1)In perturbation theory, the e�etive potential has been evaluated long ago [32, 33℄. Itdesribes a `gas' of gluons at high temperature, i.e. deep in the deon�ned phase. Reentmodels for the e�etive potential whih also desribe the on�ned phase are based on theeigenvalues of the Polyakov loop Px [18℄ and not just their sum Lx. As stated in theintrodution, this di�erene beomes obsolete for SU(2).It thus seems of interest to investigate the e�etive potential on the lattie. Thisapparently requires further Monte{Carlo simulations of the e�etive ation Se� [L℄ with themean �eld �L held �xed, following the approah adopted in [31, 34℄. It turns out, however,that these additional e�orts an be avoided by making use of some statistial properties ofthe single{site distribution pW disussed in Setion 3.The onstraint e�etive potential V is de�ned in terms of the probability density ofthe mean �eld (5.1),pV [ �L℄ � Z�1V e�
V [�L℄ � Z�1 Z DLÆ��L� 
�1Xx Lx� exp(�Se� [L℄) ; (5.2)with the normalization ZV given by the partition funtionZV � ZV (0) � Z 1�1 d�Le�
V [�L℄ : (5.3)
{ 17 {



In what follows, we will try to obtain the mean{�eld distribution pV from the single{site distribution pW . We note, �rst of all, that, due to translational invariane, the �rstmoments oinide,h�LiV � Z d�L �LpV [ �L℄ = 
�1Xx Z�1 Z Yy DLy Lx e�Se� [L℄ � hLiW � hLi : (5.4)The higher moments, on the other hand, are di�erent,hLpiW = Z Yy DLy Lpx e�Se� [L℄ = hLpi (5.5)h�LpiV = 
�p Xx1;:::xphLx1 : : : Lxpi � �(p) : (5.6)For the mean{�eld distribution we thus get generalized suseptibilities �(p), while pW yieldsexpetation values of arbitrary powers of L at a single spatial site, taken in the ensemble ofPolyakov loops extrated from Yang{Mills. This has been disussed at length in Setion 3.To obtain a onnetion between arbitrary moments we suppose that the generatingfuntions assoiated with pV and pW are related aording toZV (t) � hexp t�LiV = hYx exp(tLx=
)iV !'Yx hexp(tL=
)iW � [ZW (t=
)℄
 : (5.7)Here, we have made the assumption that only a small fration of the random variablesfLx : x 2 
g are statistially dependent. This is justi�ed for large volumes and short{range orrelations. Aording to the law of large numbers we expet the olletive randomvariable �L =Px Lx=
 to have a Gaussian distribution if the Lx are randomly distributed1.Let us hek to whih extent this is realized.Below T, ZW � Z� is exatly known from (3.13) so thatZV (t) ' �2
t I1(t=
)�
 =Xk t2k(2k)! h�L2ki ; ZV (0) = 1 : (5.8)Thus, by expanding the Bessel funtion (to power 
) we know all moments or suseptibil-ities of pV . Expliitly, one �ndsh�L2iV = 14
 ; (5.9)h�L4iV = 18
3 + 3(
� 1)16
3 ; (5.10)h�L6iV = 564
5 + 15(
� 1)32
5 + 15(
� 1)(
� 2)64
5 : (5.11)In the large{volume limit, 
!1, the leading terms yieldh�L2kiV = (2k � 1)!!(4
)k = (2k � 1)!! h�L2ikV ; (5.12)1Note, however, that with �L being a ompat variable, we annot expet a Gaussian in a strit mathe-matial sense. { 18 {



an identity typial for a Gaussian distribution. As a ross hek, we alulate the Binderumulant assoiated with pV . From (5.9) and (5.10) we haveb4;V � h�L4iVh�L2i2V � 3 = � 1
 ; (5.13)whih obviously vanishes in the in�nite{volume limit in aordane with (5.12). Summingup the moments (5.12), we obtain the large{volume partition funtionZV (t) ' exp(t2=8
) ; (5.14)whih turns out to be Gaussian in t. Substituting t = iu, we haveZV (iu) = Z d�L exp(�
V [ �L℄ + iu�L) ' exp(�u2=8
) : (5.15)To extrat the mean{�eld distribution pV = exp(�
V )=ZV we take the Fourier transformwith respet to u and �nd pV [ �L℄ 'p2
=� exp(�2
�L2) ; (5.16)whih is a perfet Gaussian distribution with variane�2 � 1=4
 = h�L2iV : (5.17)The fat that �L is ompat does not really matter as in the large{volume limit assumed,the Gaussian is sharply loalized at �L = 0. This is indeed seen from Figure 6 whih showsthat a Gaussian �t to the distribution of �L,pV;�t[ �L℄ = 1p2�� exp(��L2=2�2) ; (5.18)works perfetly well.This is orroborated by omparing the �t values for � with the expetation valuesalulated from Yang{Mills as displayed in Table 9 for di�erent volumes and bin sizes.The agreement between the �tted width and the expetation value h�L2i1=2 is quiteimpressive, in partiular for large volumes, as expeted. Due to the approximations made,however, we do not reprodue the absolute numbers given by (5.17). If we de�ne � �2(
1)�2(
2) = 
2
1 ; (5.19)we get for 
1 = 73 and 
2 = 163 the numerial value  = (16=7)3 = 11:94 while the resultsof Table 9 yield  = 11:1 � 0:4 ; Nt = 6 ; (5.20) = 11:5 � 0:9 ; Nt = 7 ; (5.21)where the error has been estimated by varying the bin sizes. Thus, at least for suÆientlylow temperature (large Nt) we obtain the orret saling of the width with the volume.
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Figure 6: Gaussian �ts to the distribution pV [ �L℄ obtained from simulating Yang{Mills on lattiesof size 163�7 and 73�7. The value Nt = 7 for the temporal extension orresponds to the symmetriphase.

�Nt on�g.s/bin � h�L2i1=273 � 6 120 0.0837 0.077373 � 6 80 0.0845 0.077373 � 7 120 0.0582 0.054973 � 7 80 0.0588 0.0549163 � 6 250 0.0249 0.0252163 � 7 150 0.0167 0.0164163 � 7 250 0.0167 0.0164Table 9: Width � of the Gaussian �t (5.18) ompared to the expetation value h�L2i1=2 alulatedfrom the SU(2) Monte Carlo ensemble. The values for the temporal extension Nt orrespond tothe symmetri phase.

{ 20 {



6. Reproduing the two{point funtionThe proedure developed so far is based on the single{site distribution of the Polyakov loopwhih is under good (semianalyti) ontrol. By onstrution, the e�etive ation obtainedin this way reprodues the Yang{Mills distribution quite well (reall Fig.s 4 and 5). Atthis point it is natural to ask how well we are reproduing orrelators of the Polyakov loop.After all, these are intimately related to the on�ning potential (T < T) or the Debye mass(T > T), see e.g. [14℄. In Fig.s 7 and 8 we ompare the Yang{Mills two{point funtionwith the one obtained from the Svetitsky{Ya�e e�etive ation (3.15) using the (input)ouplings from Table 8.
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K = 3� = 2:29� = 2:30� = 2:32� = 2:34� = 2:40� = 2:34� = 2:32� = 2:30� = 2:29Figure 7: The Yang{Mills two{point funtion (YM) ompared to the one obtained from theSvetitsky{Ya�e e�etive ation with four ouplings (sim). Input: � = 2:20, Ns = 20, Nt = 4.The �gures suggest that we are doing quite well in the symmetri phase (� = 2:20,i.e. T < T). In the broken phase (� = 2:40, i.e. T > T), however, there is room forimprovement both in the exponential deay and the value hLi2 of the plateau. To assessthe (dis)agreement quantitatively, we �t all two{point funtions aording toGx0 � hLxL0i = a� exp(�bx) + exp �� b(Ns � x)��+  : (6.1)The values for the �t parameters are listed in Table 10 and orroborate the qualitativestatements made above. We refrain from listing the �2 for eah �t as we are only interestedin a omparison of the IMC �t parameters with those of the Yang{Mills urves. Anassessment of the error an be obtained by heking the plateau of the two{point funtion(in the broken phase) against an independent measurement of hLi2 whih, for � = 2:40,Ns = 20, Nt = 4 yields hLi2 = 0:0756(22) : (6.2){ 21 {
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K = 3� = 2:29� = 2:30� = 2:32� = 2:34� = 2:40� = 2:34� = 2:32� = 2:30� = 2:29Figure 8: The Yang{Mills two{point funtion (YM) ompared to the one obtained from theSvetitsky{Ya�e e�etive ation with four ouplings (sim). Input: � = 2:40, Ns = 20, Nt = 4.� a b 2.20 YM 0:2493 1:9627 0:0009sim 0:1971 1:8309 0:00012.40 YM 0:2006 2:0715 0:0752sim 0:1295 1:4499 0:0802Table 10: Comparison of the �t parameters from (6.1) assoiated with Fig.s 7 and 8.This agrees fairly well with the parameter  in the third line of Table 10 while the entralIMC value (fourth line) di�ers by 6.5%.In order to improve the mathing between the e�etive theory and Yang{Mills weobviously have to inlude more operators. In previous appliations of IMC, this has mainlybeen done for Ising systems [10, 11, 35, 30℄ or twodimensional nonlinear sigma models[36, 37℄. In these ases, the set of operators is restrited as they square to unity. For thePolyakov loop, however, the situation is di�erent, as arbitrary (ultraloal) powers as well ashopping terms assoiated with arbitrary powers are allowed, i.e. terms like Lp1x1Lp2x2Lp3x3 : : :.It turns out the the IMC proedure tends to get destabilized upon inluding more andmore monomials in Lx. As a result, the values for the ouplings depend rather stronglyon the number of operators present and of equations used in the overdetermined linearsystem. In addition, the determinants of the matries to be inverted may beome as small{ 22 {



as 10�40. We thus had to work with symboli programs like Maple, setting the number ofdigits to 60 or even more. Nevertheless, the instabilities prevailed. Inspired by the resultsfrom the high{temperature expansion on the lattie [15, 16℄, we have tried to overomethese problems by hanging our operator basis from monomials in L to haraters. Beingorthogonal lass funtions, these seem to be the natural andidates for an eonomi set ofoperators. At this point it should be noted that for an e�etive ation with a �nite numberof terms di�erent hoies of bases are not equivalent.As stated in the introdution, for SU(2) the haraters an be expressed as polynomialsin the traed Polyakov loop, L = trP=2 = os �, aording to�j(L) � sin �(2j + 1)��sin � = [j℄Xp=0(�1)p�2j + 12p+ 1�L2j�2p(1� L2)p ; j = 0; 12 ; 1; : : : : (6.3)This formula allows to reobtain the L{representation from the haraters. The �rst fewrelations are �1=2 = 2L ; �1 = 4L2 � 1 ; �3=2 = 8L3 � 4L ; : : : : (6.4)These are suÆient to obtain monomials up to terms of order L3xL3y. To streamline notationit is useful to de�ne a basi link variable assoiated with lattie points x and y and SU(2)`olor spin' j, Xj;xy � �j(Lx)�j(Ly) ; (6.5)whih we represent graphially as� X1=2;xy = 4LxLy ; (6.6)� X1;xy = 16L2xL2y � 4L2x � 4L2y + 1 ; (6.7)� X3=2;xy = 64L3xL3y � 32LxL3y � 32L3xLy + 16LxLy ; (6.8)...A link with n `internal' lines thus orresponds to the representation labelled by j = n=2.These links are the basi building bloks of our basis of e�etive operators. The leadingorder of the high{temperature expansion [15, 16℄ is then given by the nearest{neighborexpression, SLO �Xx;i;j �jXj;x;x+i ; (6.9)with �j a known funtion of the temporal Wilson oupling �t and extension Nt that de-reases rapidly with `olor spin' j. If we rewrite the basi link (6.5) as Xj;x;x+r, we havetwo parameters ontrolling our basis, the representation label j and the e�etive range(`link length') r = jrj. Several test runs of the IMC routines have on�rmed good onver-gene in j so that we will restrit ourselves to the lowest representations. The maximumrange we allow for is the plaquette diagonal, i.e. r � p2. To further restrit the number ofoperators, we limit ourselves to a maximum number of four links of type (6.5) that an bedrawn within a single plaquette. A typial term, for instane, is thus given by� X1=2;x;x+iX1=2;x;x+j X1=2;x;x+i+jX1=2;x+i;x+j : (6.10){ 23 {



�0:111(1) �0:0200(2) �0:0048(1) 0:00257(5) 0:0037(1) 0:00191(4) �0:00052(1)�0:159(8) �0:060(3) �0:0061(6) 0:0065(6) 0:005(1) 0:0055(5) 0:0000(1)
0:00090(4) �0:00085(3) 0:00070(6) �0:00004(1) 0:00021(2) �0:0083(2) 0:00008(2)0:0010(2) �0:0005(1) 0:0005(2) �0:0006(2) 0:0000(1) 0:043(4) �0:0006(1)Table 11: E�etive operators and ouplings for � = 2:20 (upper entries) and � = 2:40 (lowerentries), Ns = 20, Nt = 4.Altogether we have 14 operators orresponding to 18 monomials in L. They are displayed inTable 11 together with the ouplings assoiated with them. Several omments are in orderat this point. By allowing for all possible distanes x = 0; 1; : : : ; 10 in the Shwinger{Dysonequations (2.27), we obtain a maximum number of 140 equations for our 14 operators. Thevalues of the ouplings remain fairly stable if we vary the number of equations used in theIMC least{square routine (hanges being approximately 1% for the relevant ouplings). Themajor part of the errors listed omes from variations estimated via inlusion of additionaloperators. In analogy with the Svetitsky{Ya�e ansatz the relative errors grow exponentiallywith the number of basi links inluded. As the assoiated ouplings are small numerially,the larger errors have little inuene on `observables' like the two{point funtions.For the operators (6.6 { 6.8) we �nd rapid derease of the ouplings with spin j.The leading order hopping term, (r = 1) (whih has the smallest relative error)dominates by one order of magnitude ompared to the terms with r = p2. This alreadyindiates that the e�etive interations are short{ranged in aordane with the Svetitsky{Ya�e onjeture.If we enumerate the ouplings by g1; : : : g14 from left to right, we may express the newe�etive ation as ~Se� � 14Xa=1 ga ~Sa ; (6.11)Note that, aording to (6.6 { 6.8), the old LO oupling �0 is given by a (rapidly onvergent)series in j,�0 = 4 g1 + 16 g14 + terms with j > 3=2 = 8><>:�0:445 for � = 2:20�0:646 for � = 2:40 : (6.12)These numerial values for �0 agree reasonably well with those of Table 8, whereonly four operators had been used. The benhmark test to be performed, however, is the{ 24 {
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K = 3� = 2:29� = 2:30� = 2:32� = 2:34� = 2:40� = 2:34� = 2:32� = 2:30� = 2:29Figure 10: The Yang{Mills two{point funtion (YM) ompared to the one obtained from theharater ation with 14 ouplings (sim). Input: � = 2:40, Ns = 20, Nt = 4.7. Summary and disussionIn this paper we have derived e�etive ations desribing the dynamis of the (traed)Polyakov loop variable Lx � trPx=2, and hene of the deon�nement phase transition. Ithas turned out useful, however, to regard the e�etive ation as being derived from a moregeneral theory depending on the untraed Polyakov loopPx [17℄. This theory is a nonlinearsigma model with target spae SU(2) �= S3 and hene the symmetry SU(2) � SU(2)orresponding to left and right multipliation of Px by group elements. Although thee�etive ations in L learly do not have this symmetry, it is nevertheless inherited bythe funtional Haar measure whih implies novel Shwinger{Dyson equations for Polyakovloop orrelators. In addition, it seems that a remnant of this symmetry shows up in thesingle{site distribution pW of Lx whih is at below T meaning that Px is distributeduniformly over the group manifold. Obviously, it would be desirable to really prove thisequipartition for whih we have found onvining numerial evidene. As the single{sitedistribution of Lx is exatly known in the on�nement phase, we an give exat preditionsfor all moments hL2ki and for the Binder umulant, b4 = �1. Above T, we have �ttedthe log{distribution W � log pW by polynomials so that also in this ase we have goodquantitative ontrol of the distribution.It turns out that W [L℄ and a Ginzburg{Landau (or Svetitsky{Ya�e) e�etive ationSe� [L℄ are related in a manner that is simple enough to proeed by analyti means. Assum-ing that expetations taken in the e�etive ation are unhanged if Lx is hanged at a singlesite (another relation valid numerially but still subjet to a proof) we have been able toexpress the e�etive ouplings �2k (k 6= 0) of Se� [L℄ in terms of the parameters of W . The{ 26 {



remaining oupling �0 is then determined by means of the Shwinger{Dyson equations.The single{site distributions resulting from the e�etive theory Se� [L℄ agree very well withthose obtained diretly from Yang{Mills. Furthermore, the Svetitsky{Ya�e e�etive ationperfetly ful�lls the Shwinger{Dyson equations based on the SO(4) invariane of the Haarmeasure.For the symmetri phase (T < T) we have also determined the (onstraint) e�etivepotential from the single{site distribution pW assuming that the interations are suÆientlyshort{ranged suh that the law of large numbers may be invoked. As expeted we obtaina Gaussian distribution for the mean �eld �L if the volume is large and the temperaturesmall enough.By de�nition, one annot alulate orrelations from single{site distributions. Vieversa, the mathing of these distributions does not imply that the orrelation funtionsmath as well. A diret omparison shows that the two{point funtions of the Yang{Millsand Svetitsky{Ya�e ensembles di�er somewhat, in partiular in the broken phase. To im-prove the mathing we have hanged our operator basis from monomials in Lx to haraters,whih are orthogonal polynomials in Lx. Tehnially, this results in a numerially ratherstable inverse Monte Carlo proedure, even if the number of operators is large. We haveobtained the e�etive ouplings for a total number of 14 operators. The resulting e�etivetheory has short{range interations and reprodues the Yang{Mills two{point funtion inboth phases very well.Further researh will be devoted to the following issues. The preditions of the e�etiveations for the dynamis of the phase transition should be investigated in detail. Thisinludes an analysis of the e�etive potential(s) near and beyond the transition point aswell as alulations of ritial exponents. The latter will yield a hek whether the e�etiveation Se� [L℄ is indeed in the universality lass of the Z2{Ising{model. In addition, itshould be possible to generalize the methods developed in this paper to higher SU(N)gauge groups. Work in these diretions is under way.AknowledgmentsThe authors thank D. Antonov, P. van Baal and J. Wess for fruitful disussions andA. Kirhberg for a areful reading of the manusript. The work of T.H. was supportedby DFG under ontrat Wi 777/5-1.A. Histograms and binsGiven a probability density pW [L℄ one de�nes the assoiated (umulative) distributionfuntion PW [L℄ � Z L�1 dL0p1� L02 pW [L0℄ : (A.1)Density pW and distribution PW are related to our histograms as follows. We have a totalnumber N of `events' or `measurements' saying that a Polyakov loop at site x belonging to{ 27 {
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Figure 11: General histogram for distribution funtion PW [L℄.an arbitrary on�guration takes its value in some presribed interval (`bin'). Aordingly,N is a fairly large number,N = N3s �Non�g = 203 � 400 = 3:2 � 106 : (A.2)The number of bins (labeled by integers i) is denoted by I, the number of events in bini by Ci. This number represents the height of the ith olumn in the histogram ountingthe absolute numbers of events with values in [Li�1; Li℄ . The relative ounting rate isobtained by normalization,i � Ci=N = PW [Li℄� PW [Li�1℄ = pW [ �Li℄q1� �L2i �Li ; (A.3)where �Li � Li�Li�1 and �Li 2 [Li�1; Li℄ hosen appropriately. The situation is depitedin Figure 11.Good statistis is ahieved if the ounting rate i is approximately onstant beausethen all bins will be equally `populated'. This an be ahieved by suitably hoosing the binsizes �Li whih, however, is somewhat triky beause of the nontrivial measure in (A.1).If we ignore this for the moment and hoose an equidistant partition,�Li = �L = 2=I ; (A.4)the total ount in bin i beomesCi = 2NI pW [ �Li℄q1� �L2i : (A.5)This yields rather bad statistis near the boundaries L = �1, in partiular for T > T,due to the suppression by the measure. For instane, hoosing � = 2:4, I = 100, i.e.�L = 1=50, one typially �nds C1 ' 14000 data points in the �rst bin (near L = �1),while the population of the bins near L = 0 is larger by a fator of �ve, C50 ' 73000. Thesuppression by the geometry thus `wins' against the density whih is peaked near L = �1.{ 28 {



In the quantity of interest, the probability density,pW [ �Li℄ = Ciq1� �L2i I2N ; (A.6)one divides by the measure fator whih tends to zero near L = �1. This yields thepeaks near L = �1 but at the same time further enhanes the statistial error lose tothe boundaries. For T < T, this is not muh of a problem as we have equipartition,pW [L℄ = onst = p�W = 2=�, and the density is known anyhow. For T > T, however, (A.6)implies that the bulk of the density is loated where the statistial error is largest. Onthe other hand, the behavior of pW in this regime determines the higher order ouplings�2k. The lesson to be learned is that the partition should be modi�ed suh as to orretlyinorporate the e�et of the measure. To this end, we demand that the ounting rate beonstant, i = , for T < T, hene, from (A.3), = p�W q1� �L2i �Li = 1=I : (A.7)Thus, in order to properly take into aount the measure, the bin size �Li has to be hosensuh that q1� �L2i �Li = onst = =p�W = 1Ip�W : (A.8)This an be ahieved by going over to ontinuum notation,=p�W = Z LiLi�1 dLp1� L2 � PW [Li℄� PW [Li�1℄ ; (A.9)and solving this reursion for Li numerially with PW (L) given byPW [L℄ = 12 hLp1� L2 + arsin(L)i : (A.10)Alternatively, one may produe an ordered list of all data points for L, and partition thislist in suh a way that all bins ontain the same number C of `events'. The sampling pointsLi are then given by the smallest (or largest, depending on the ounting onvention) valueof L in bin i.For T > T, the density pW is then given bypW [ �Li℄ = Ip�WN Ci : (A.11)This has been displayed in Figure 1. Obviously, measure e�ets are now absent and thedi�erene between Ci and C represents the deviation from equipartition.Referenes[1℄ A. M. Polyakov, Thermal properties of gauge �elds and quark liberation, Phys. Lett. B72(1978) 477. { 29 {
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