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ation: 81Q10, 34L05, 34L40I. INTRODUCTIONIn Quantum Field Theory under external 
onditions,quantities like e�e
tive a
tions and va
uum energies,whi
h des
ribe the in
uen
e of external �elds or bound-aries on the physi
al system, are generi
ally divergentand require a renormalization to get a physi
al meaning.In this 
ontext, a powerful and elegant regularizations
heme is based on the use of spe
tral fun
tions, su
h asthe asso
iated �-fun
tion [1,2℄ and heat-kernel (for re
entreviews see, for example, [3{6℄).It is well known [7,8℄ that for an ellipti
 boundaryvalue problem in a �-dimensional 
ompa
t manifold withboundary, des
ribed by a di�erential operator A of or-der !, with smooth 
oeÆ
ients and de�ned on a domainof fun
tions subje
t to lo
al boundary 
onditions, the �-fun
tion �A(s) � TrfA�sg (1)has a meromorphi
 extension to the 
omplex s-plane pre-senting isolated simple poles at s = (� � j)=!, withj = 0; 1; 2; : : :In the 
ase of positive de�nite operators, the �-fun
tionis related, via Mellin transform, to the tra
e of the heat-kernel of the problem, Trfe�tAg. The pole stru
ture of�A(s) determines the small-t asymptoti
 expansion of thistra
e [8℄, Trfe�tAg � 1Xj=0 aj(A) t(j��)=! ; (2)where the 
oeÆ
ients are related to the residues byaj(A) = Resjs=(��j)=! �(s) �A(s): (3)

However, for the 
ase of a di�erential operator with
oeÆ
ients presenting singularities, less is known aboutthe stru
ture of the �-fun
tion or the heat-kernel tra
easymptoti
 expansion.Callias [9{11℄ has argued that, when the 
oeÆ
ient inthe zero-th order term in an ellipti
, (essentially) self-adjoint, se
ond order di�erential operator presents a sin-gularity like 1=x2, the heat-kernel tra
e asymptoti
 ex-pansion in terms of powers t(j��)=2 (as in (2)) is ill-de�ned, and an expansion in
luding log t and perhapsmore general powers of t (t� with � 6= n=2) wouldbe in order. In parti
ular, 
onsidering Hamiltonians Hwith these 
hara
teristi
s, it has been given in [9,10℄ asmall-t asymptoti
 expansion for the diagonal elemente�tH(x; x) whi
h also presents t(j��)=2 log t terms, andwhere some of the 
oeÆ
ients are distributions with sup-port 
on
entrated at the singularities.It is the aim of the present arti
le to analyze thepole stru
ture of the �-fun
tion of a Hamiltonian H de-s
ribing a quantum S
hr�dinger parti
le living in thehalf-line R+, subje
t to a singular potential given byV (x) = gx�2 + x2, with g 2 R.For 
ertain range of values of g, this Hamiltonian (ase
ond order di�erential operator) admits nontrivial self-adjoint extensions in L2(R+) (ea
h one des
ribing a dif-ferent physi
al system). We will show that the asso
iated�-fun
tion presents isolated simple poles whi
h dependon g, whi
h (in general) do not lie at s = (1 � j)=2 forj = 0; 1; : : :, and 
an even be irrational numbers. More-over, we will �nd that the residues at these simple polesdepend on the self-adjoint extension of H 
onsidered.This pole stru
ture for the �-fun
tion implies a small-t asymptoti
 expansion for the heat kernel tra
e of theproblem in terms of powers whi
h (in general) are not halfan integer. Moreover, the 
oeÆ
ients in this expansiondepend on the sele
ted self-adjoint extension.The stru
ture of the paper is the following: In Se
tionII we spe
ify the adjoint of the Hamiltonian operator andin Se
tion III we determine its de�
ien
y subspa
es. TheHamiltonian self-adjoint extensions are 
hara
terized inSe
tion IV, and in Se
tion V is des
ribed the 
orrespond-ing spe
trum. In Se
tion VI we give an integral represen-tation for the �-fun
tion of ea
h SAE of the Hamiltonianand in Se
tion VII we dis
uss the stru
ture of its sin-gularities. In Se
tion VIII we analyze some parti
ular
ases, and we establish our 
on
lusions in Se
tion IX.Appendix A is devoted to the 
onstru
tion of the 
lo-1



sure of H , and in Appendix B we outline the ne
essaryasymptoti
 expansions.II. THE HAMILTONIAN AND ITS ADJOINTLet us 
onsider the operatorH = � d2dx2 + V (x); (4)with V (x) = gx2 + x2; (5)densely de�ned on the domain D(H) = C10 (R+), the lin-ear spa
e of fun
tions '(x) with 
ontinuous derivatives ofall order and 
ompa
t support non 
ontaining the origin.It is easily seen that H is a symmetri
 operator.In order to 
onstru
t the SAE [12℄ of H we must getits adjoint, Hy, and determine the de�
ien
y subspa
es.The operator Hy is de�ned on the subspa
e of square-integrable fun
tions  (x) for whi
h ( ;H') is a 
on-tinuous linear fun
tional of ' 2 D(H). This requiresthe existen
e of �(x) 2 L2(R+) su
h that ( ;H') =(�; ');8' 2 D(H). If this is the 
ase, then �(x) isuniquely de�ned, sin
e D(H) is dense in L2(R+) and,by de�nition, Hy = �.For  2 D(Hy) and 8' 2 D(H) we have( ;H') = R10  (x)�(�'00(x) + V (x)'(x)) == ((� 00 + V (x) ); ') = (�; '); (6)where the derivatives of  are taken in the sense of dis-tributions.Equation (6) implies that  00(x) = V (x) (x)��(x), alo
ally integrable fun
tion. Then, its primitive  0(x) isabsolutely 
ontinuous for x > 0.Therefore, the domain of Hy is the subspa
e of squareintegrable fun
tions having an absolutely 
ontinuous �rstderivative and su
h thatHy (x) = � 00(x) + V (x) (x) 2 L2(R+) (7)(without requiring any boundary 
ondition at x = 0).In the next Se
tion we will determine the de�
ien
ysubspa
es of H , K� = Ker(Hy � i).III. DEFICIENCY SUBSPACES OF HTo 
ompute the de�
ien
y indi
es [12℄ of H , n� =dimK�, we must solve the eigenvalue problemHy�� = ��00�(x) + V (x)��(x) = ���; (8)for �� 2 D(Hy) and � 2 C, with =(�) 6= 0.

By means of the following Ansatz (suggested by theexpe
ted behavior of the solutions of (8) for x! 0+ andx!1), � = x�e�x22 F (x2); (9)with � = 1=2 +pg + 1=4; (10)we get from (8) the Kummer's equation for F(z):zF 00(z) + (b� z)F 0(z)� aF (z) = 0; (11)where a = (2�+ 1� �)=4 and b = �+ 1=2.For real �, we have g � �1=4 and � � 1=2. In this
ase it 
an be seen [13℄ that the only solution of eq. (11)leading to a square-integrable at in�nity solution of eq.(8) is given by the Kummer fun
tion F (z) = U(a; b; z).Then, the eigenfun
tions of Hy are proportional to��(x) = x� e�x22 U �2�+ 1� �4 ;�+ 12;x2� : (12)We must now study the behavior of �� near the origin,where U(a; b; z) behaves as z�a(1 + O(1=z)) [13℄. Wemust 
onsider two di�erent regions for the parameter �.For � � 3=2, �� 2 L2(R+) , a = (2�+ 1� �)=4 =�n, with n 2 N. As a 
onsequen
e, if � =2 R, �� =2L2(R+), and the de�
ien
y subspa
es are trivial.This means that, for � � 3=2, H is essentially self-adjoint, and its dis
rete spe
trum is given by the 
ondi-tion �a 2 N, i. e.�n = 4n+ 2�+ 1; (13)with n = 0; 1; 2; : : : The 
orresponding eigenfun
tions are�n = x�e� x22 U ��n;�+ 12;x2� : (14)On the other hand, for 1=2 � � < 3=2, one 
an see [13℄that �� 2 L2(R+);8� 2 C. Then, the de�
ien
y sub-spa
esK� are one-dimensional, and the de�
ien
y indi
esn� = 11. In this region, H admits di�erent self-adjointextensions.1This is in a

ordan
e to Weyl's 
riterion [12℄ a

ording towhi
h, for 
ontinuous V (x), H is essentially self-adjoint if andonly if it is in the limit point 
ase, both at in�nity and at theorigin.In addition, if V (x) � M > 0, for x large enough, then His in the limit point 
ase at in�nity. In 
onsequen
e, in thepresent 
ase H is essentially self-adjoint if and only if it is inthe limit point 
ase at zero.In parti
ular, for positive V (x) (g � 0), if V (x) � 3=4 x�2for x suÆ
iently 
lose to zero then H is in the limit point 
aseat the origin. On the 
ontrary, if V (x) � (3=4 � ") x�2, forsome " > 0, then H is in the limit 
ir
le 
ase at zero.This 
on�rms our results 
on
erning the self-adjointness ofH in the di�erent regions of the parameter g.2



IV. SELF-ADJOINT EXTENSIONS OF HSin
e n+ = 1 = n� for 1=2 � � < 3=2, there existsa one-parameter family of self-adjoint extensions of H ,whi
h are in a one-to-one relationship with the isometriesfrom K+ onto K� [12℄.The de�
ien
y subspa
es K+ and K� are generated by�+ � ��=i and �� � ��=�i = ��+, respe
tively. Then,ea
h isometry U
 : K+ ! K� 
an be identi�ed with theparameter 
 2 [0; �) de�ned byU
�+ = e�2i
��: (15)The 
orresponding self-adjoint operator, H
 , is de�nedon a dense subspa
e [12℄D(H
) � D(Hy) = D(H)�K+ �K�; (16)where H is the 
losure of H . Fun
tions � 2 D(H
) 
anbe written as� = �0 +A ��+ + e�2i
��� ; (17)with �0 2 D(H) and A a 
onstant. Sin
e H
 is a restri
-tion of Hy, we haveH
� = Hy� = H�0 + iA ��+ � e�2i
��� : (18)In the following we take g � 0) 1 � � < 3=2. As wewill see, 
ondition (17) determines the behavior of � 2D(H
) near the origin. Taking the logarithmi
 derivativeof � we get, �0� = ei
�00 + 2A< �ei
�0+�ei
�0 + 2A< (ei
�+) : (19)In this expression, the terms 
oming from �+ give theleading 
ontributions for small x. In fa
t, in AppendixA we show that �0(x) = o(x�) and �00(x) = o(x��1).Then, for the right hand side of eq. (19) we get [13℄ (seeeq. (12)),�0(x)�(x) = 1� �x + (2�� 1)�( 12 � �)�(�� 12 )�
os (
 � 
1)
os (
 � 
2) � x2��2 + o(x2��2); (20)where we have 
alled 
1 = arg f�[(�2�+ 3� i)=4℄g and
2 = arg f�[(2�+ 1� i)=4℄g.Thus, the limit of eq. (19) for x! 0+ gives the appro-priate boundary 
ondition for the fun
tions in the domainof the parti
ular SAE . As we will see, this boundary 
on-dition will �nally determine a dis
rete spe
trum for H
 .

V. THE SPECTRUMThe boundary 
ondition spe
i�ed in eq. (20) 
hara
ter-izes the domain of a parti
ular SAE of the operator H ,H
 . In order to determine its spe
trum, we must �nd thesolutions of (8), �� as given in (12) with � 2 R, whi
hsatisfy this boundary 
ondition. Their behavior near theorigin is given by (see eq. (12) and [13℄),�0�(x)��(x) = 1� �x + (2�� 1)�( 12 � �)�(�� 12 )�� � 2�+1��4 �� ��2�+3��4 � � x2��2 + o(x2��2): (21)Comparison of eqs. (20) and (21) immediately leads usto � ��� �4 �� �1� �� �4 � = �(
; �); (22)where we have de�ned the parameters� = 2�+ 14 = 14 �2 +p1 + 4g� 2 [3=4; 1)�(
; �) = 
os (
 � 
1)= 
os (
 � 
2): (23)Eq. (22) determines a dis
rete spe
trum for ea
h SAE.In Figure 1. we plot both sides of eq. (22) as a fun
tionof �, for � = 4=5 and � = 1. The abs
iss� of the in-terse
tions of this two fun
tions give the 
orrespondingspe
trum.Noti
e that ea
h SAE 
an equivalently be 
hara
ter-ized by � 2 R [ f�1g. Then, we will also use thenotation H(�) to design this SAE.
-5 5 10 15

-3

-2

-1

1

2

3

FIG. 1. F (�) � �(���4 )�( 1����4 ) as a fun
tion of �, for � = 4=5.The solutions of F (�) = � give the spe
trum of the SAEidenti�ed by �.3



The spe
trum of H(�) is bounded from below, andpresents a negative eigenvalue for those SAE 
hara
ter-ized by � > �(�)=�(1 � �) (even though the potentialV (x) � 2pg � 0). Moreover, there is no 
ommon lowerbound; instead, any negative real is in the spe
trum ofsome SAE.For any value of g, there are two parti
ular SAE forwhi
h the spe
trum 
an be easily worked out (see eq.(22)):� For � = 0 the spe
trum is given by�n = 4(n+ 1� �); (24)with n = 0; 1; 2; : : :� For � = �1 the spe
trum is given by�n = 4(n+ �); (25)with n = 0; 1; 2; : : :For other values of �, the eigenvalues grow linearlywith n, 4(n� 1 + �) < �n < 4(n+ �): (26)The 
ase with g = 0It is instru
tive to 
onsider the parti
ularly simple 
ase ofthe harmoni
 os
illator in the half-line, for whi
h there is nosingularity in the potential. Indeed, for g = 0 (� = 1 or� = 3=4), the boundary 
ondition (eq. (20)) reads,�0(x)�(x) = �2� +O(x) (27)or, equivalently,limx!0+ ��0(x) + 2� �(x)	 = 0; (28)whi
h 
orresponds to Robin boundary 
onditions at the ori-gin. Diri
hlet and Neumann boundary 
onditions are ob-tained for � = �1 and � = 0, respe
tively.Let's now study the eigenfun
tions and eigenvalues of theself-adjoint extensions of H 
orresponding to di�erent valuesof �. Diri
hlet boundary 
onditions (� = �1)Sin
e � = 3=4, the eigenvalues (see eq. (25)) are given by�n = 4n+ 3; (29)where n = 0; 1; 2; : : :Sin
e the Hamiltonian (eq. (4)) 
orresponds in this 
aseto a parti
le with mass m = 1=2 and frequen
y ! = 2, theeigenvalues of this SAE 
an be written as �n = ![(2n + 1) +

1=2℄, whi
h 
oin
ides with the spe
trum of the odd parityeigenve
tors of the harmoni
 os
illator on the 
omplete realline.In fa
t, the eigenfun
tions are given by (see eq. (12) and[13℄), �n = 2�2n�1e� x22 H2n+1(x): (30)Neumann boundary 
onditions (� = 0)In this 
ase, the eigenvalues (see eq. (24)) are given by�n = 4n + 1; (31)where n = 0; 1; 2; : : :. This eigenvalues 
an be written as�n = !(2n+1=2), whi
h 
oin
ides with the even parity se
torof the harmoni
 os
illator spe
trum on the 
omplete real line.The eigenfun
tions are now given by (see eq. (12)),�n = 2�2ne�x22 H2n(x): (32)Robin boundary 
onditions (� 6= 0;�1)For �nite � 6= 0, the eigenfun
tions are given by (eq. (12)),�� = xe�x22 U �3� �4 ; 32 ; x2� ; (33)and the 
orresponding eigenvalues are determined by thetras
endental equation� � 3��4 �� � 1��4 � = �(
; 3=4): (34)Noti
e that, for general Robin boundary 
ondition, theground state is negative (less than the minimum of the po-tential) for � > �[ 34 ℄=�[ 14 ℄.VI. THE INTEGRAL REPRESENTATION FORTHE �-FUNCTIONThe spe
trum of ea
h SAE of the operator H in (4)is determined by eq. (22), for any given � 2 [�1;1).In this se
tion, we will study the pole stru
ture of theasso
iated �-fun
tion, de�ned as��(s) � TrnH�s(�)o =Xn ��s�;n: (35)Noti
e that, sin
e the eigenvalues grow linearly with n(see eq. (26)), ��(s) is analyti
 in the half-plane <(s) > 1.For �nite �, let us de�ne the holomorphi
 fun
tion,4



f(�) = 1� �1� �� �4 � � �� ��� �4 � ; (36)with 34 � � < 1. The eigenvalues of the self-adjointoperator H(�) 
orrespond to the zeroes of f(�) whi
h,
onsequently, are all real. They are also positive, withthe only possible ex
eption of the �rst one, a

ording tothe dis
ussion in the previous Se
tion.Moreover, the zeroes of f(�) are simple. To prove this,let's assume the 
onverse is true, i. e. there is a � 2 Rsu
h that f(�) = f 0(�) = 0. Taking into a

ount thatf 0(�) =  (1����4 )4�(1����4 ) � �  (���4 )4�(���4 ) == 14 � [ (1����4 )� (���4 )℄�(1����4 ) +  (�� �=4) f(�)� ; (37)we see that our assumption requires that (1� �� �=4) =  (�� �=4) ; (38)whi
h is not the 
ase for any � 2 R, if 34 � � < 1.Therefore, the �-fun
tion 
an be represented as theintegral on the 
omplex plane��(s) = 12�i IC ��s f 0(�)f(�) + �(��0;�)��s0;� ; (39)where C is a 
urve whi
h en
ir
les the positive zeroes off(�) 
ounter
lo
kwise. In eq. (39), �(y) = 1 for y > 0and �(y) = 0 for y � 0.Let us 
onsider the dominant asymptoti
 behavior ofthe quotient f 0(�)f(�) == � �1� �� �4 ��  ��� �4 ��4�1� � �(1����4 )�(���4 ) � + 14  (�� �=4): (40)For j arg(��)j < � and j�j ! 1, it is suÆ
ient to write (�� �=4) = log (��) +O(1); (41) (1� �� �=4)�  (�� �=4) = O(��1); (42)� �1� �� �4 �� ��� �4 � = O(�1�2�): (43)Consequently, for <(s) > 1 the path of integration in(39) 
an be deformed to a verti
al line, to get��(s) = �12�i Z i1+0�i1+0 ��s f 0(�)f(�) d�+ h(s); (44)where h(s) (the 
ontribution of the negative eigenvalue,if any) is a holomorphi
 fun
tion.

VII. POLE STRUCTURE OF THE �-FUNCTIONThe integral in eq. (44) de�nes ��(s) as an analyti
fun
tion in the half-plane <(s) > 1, whi
h 
an be mero-morphi
ally extended to the whole 
omplex s-plane. It
an be written as�(s) = � 12�i Z i1i f 0(�)f(�) ��s d��� 12�i Z �i�i1 f 0(�)f(�) ��s d�+ h1(s) == �e�is�=22� Z 11 f 0(i�)f(i�) ��s d���eis�=22� Z 11 f 0(�i�)f(�i�) ��s d�+ h1(s); (45)
where h1(s) is a holomorphi
 fun
tion.In Appendix B we work out the asymptoti
 expansionof f 0(�)=f(�), whi
h is given byf 0(�)f(�) � 14 log (��) + 14 1Xk=0 
k(�) (��)�k++ 1XN=1 1Xn=0CN;n(�; �) (��)�N(2��1)�2n�1; (46)where the 
oeÆ
ients 
k(�) are polynomials in � whoseexpli
it form is not needed for our purposes, andCN;n(�; �) == � �42��1��N �2�� 1 + 2nN � bn(�;N); (47)with bn(�;N) de�ned in eq. (B7) (see also eq. (B8)).As 
an be seen from eq. (46), the asymptoti
 expansionof f 0(�)=f(�) 
ontains the logarithmi
 term 14 log(��),and a series of non positive integer powers of �, both
oming from the  -fun
tion in the last term in the righthand side of (40). There is also a series of de
reasing �-dependent powers of �, whi
h 
omes from the �rst termin the right hand side of (40).For the dominant logarithmi
 term we get from (45)� 18� Z 11 �e�i�s2 log (e�i�2 �) + ei�s2 log (ei �2 �) ���s d�= sin(� s2 )8 (s� 1) � 
os(� s2 )4� (s� 1)2 = 14 1(s� 1) + h2(s); (48)5



where h2(s) is holomorphi
. The analyti
 extension ofthis term presents a unique simple pole at s = 1, with aresidue equal to 1=4.The remaining terms in the asymptoti
 expansion off 0(�)=f(�) are of the form Aj(��)�j , for some j � 0(see eq. (46)). Repla
ing this in eq. (45) we get�Aj2� Z 11 he�i�2 (s�j) + ei�2 (s�j)i ��s�j d� == �Aj� 
os��2 (s� j)� 1s� (1� j) == �Aj sin(�j)� 1s� (1� j) + h3(s); (49)
where h3(s) is holomorphi
.So, from ea
h power dependent term in the asymptoti
expansion of f 0(�)=f(�), proportional to (��)�j , we geta unique simple pole at s = 1 � j, with a residue givenby �(Aj=�) sin(�j).Noti
e that this residue vanishes for integer values ofj. In parti
ular, this is the 
ase for all the 
ontribution
oming from the asymptoti
 expansion of  (� � �=4) inthe last term in the right hand side of eq. (40), ex
ept forthe �rst one, the logarithmi
 term leading to eq. (48). Infa
t, this is the only singularity present in the � = �1and � = 0 
ases (see eq. (40)).But in general, for 34 � � < 1, there are also poles atnon integer values of s, as follows from (46).In 
on
lusion, besides the pole at s = 1 with residue1=4, for ea
h pair of integers(N;n); with N = 1; 2; 3; : : : ; and n = 0; 1; 2; : : : ; (50)the �-fun
tion of the SAE of H 
hara
terized by the pa-rameter �, ��(s), has a 
ontribution with a simple poleat the negative values = �N(2�� 1)� 2n 2 (�N � 2n;�N2 � 2n℄; (51)with a �-dependent residue given byRes (�)js=�N(2��1)�2n == (�1)N� CN;n(�; �) sin(2�N�): (52)This is our main result, establishing the existen
e of �-dependent poles of the �-fun
tion whi
h, in general, arenot lo
ated at a half an integer value of s. Moreover, theresidues depend on the SAE 
onsidered.Finally, noti
e that when � is a rational number, there
an be several (but a �nite number of) pairs (N;n) 
on-tributing to the same pole. They must satisfyn� n0N �N 0 = 12 � � = �pq 2 (�1=2;�1=4℄ ; (53)

where p; q 2 N.On the 
ontrary, when � is irrational the poles 
om-ing from di�erent pairs (N;n), also irrational, are not
oin
ident. A. Poles and residues of ��(s)Let us re
all that the logarithmi
 term in the expansion(46) leads to a pole at s = 1 (see eq. (48)) with a residuegiven by Res (�)js=1 = 14 ; (54)independently of the SAE 
onsidered.The other poles 
an be organized in sequen
es 
har-a
terized by the integer N = 1; 2; : : : In ea
h sequen
e,su

essive poles di�er by �2.For example, the poles 
orresponding to the pairs (N =1; n), with n = 0; 1; 2; : : :, are lo
ated at (see eq. (51))�1� 2n < s = 1� 2�� 2n � �12 � 2n; (55)and have residues given byRes (�)js=1�2��2n = �C1;n(�; �)� sin(2��): (56)Similarly, the poles arising from the (N = 2; n � 0)terms in the asymptoti
 expansion (46) are lo
ated at�2� 2n < s = 2� 4�� 2n < �1� 2n; (57)and have residues given byRes (�)js=2�4��2n = C2;n(�; �)� sin(4��): (58)Noti
e that the poles in the N -th sequen
e haveresidues proportional to �N (see eq. (47)).Finally, let us stress that a pole of ��(s) at a non integers = �N(2��1)�2n, as in (51), implies the presen
e of aterm in the small-t asymptoti
 expansion of Tr�e�tH(�)	of the form A[N(2��1)+2n℄ tN(2��1)+2n; (59)with a 
oeÆ
ient related to the residue byA[N(2��1)+2n℄ == �(�N(2�� 1)� 2n) Res ��(s)js=�N(2��1)�2n : (60)
6



B. �-fun
tion singularities from the asymptoti
expansion of the eigenvaluesThe singular behavior found for ��(s) 
an be 
on�rmed(at least for the �rst few poles) by determining from (22)the asymptoti
 expansion of the eigenvalues ��;n for n�1. Indeed, one 
an make the Ansatz��;n4 = 1� �+ n+ "; (61)and self-
onsistently determine " through su

essive 
or-re
tions. For the �rst terms we get��;n4 � 1� �+ n+ �� sin(2� �)n1�2 �++�� �1� 3�+ 2�2� sin(2� �)n�2��� �22� sin(4� �)n2�4 � + : : :; (62)where we have retained only powers of n greater than�2. This leads, for the �-fun
tion in eq. (35), to��(s) � 4�s �(s) + s 4�s (�� 1) �(s+ 1)++s (s+ 1) 4�s (�� 1)22 �(s+ 2)��s 4�s �� sin (2��) �(s+ 2�)��s (s+ 2�) 4�s �� (�� 1) sin(2� �) �(1 + s+ 2�)++s 4�s �22� sin(4� �) �(s� 1 + 4�) + : : : ; (63)where �(z) is the Riemann �-fun
tion, whi
h presents aunique simple pole at z = 1, with a residue equal to 1.This result shows a pole stru
ture in agreement withthe one previously des
ribed.VIII. PARTICULAR CASESIn this Se
tion we will show how our results redu
e tothe usual ones for g = 0 (when there is no singularity inthe potential). We will also show that, for � = 0 and� = �1, the �-fun
tion presents a unique simple pole.A. The � = 0 and � = �1 SAEThe �-fun
tion for the SAE 
hara
terized by � = 0 and� = �1 
an be exa
tly evaluated, sin
e in these 
ases

the spe
trum was expli
itly 
omputed in eqs. (24) and(25) respe
tively. We get�0(s) = 4�s 1Xn=0(n+ 1� �)�s = 4�s�(s; 1� �);��1(s) = 4�s 1Xn=0(n+ �)�s = 4�s�(s; �); (64)where �(s; q) is the Hurwitz �-fun
tion, whose analyti
extension presents only a simple pole at s = 1, with aresidue Res �(s; q)js=1 = 1. This leads, in both 
ases, toa unique simple pole for the �-fun
tion at s = 1, with aresidue equal to 1=4, in agreement with eq. (48).In fa
t, from eqs. (52) and (47) it is evident that all theresidues 
orresponding to negative poles vanish for � = 0.On the other hand, for � = �1, f 0(�)=f(�) redu
es to14 (���=4) (see eq. (40)), and the only term leading to asingularity is the logarithm in the asymptoti
 expansion(46), as already dis
ussed (see eq. (48)).B. The harmoni
 os
illator in the half-lineFor the harmoni
 os
illator in the half-line (g = 0 or� = 3=4) we still �nd a simple pole at s = 1, with residue1=4 (the only singularity for Dir
hlet or Neumann bound-ary 
onditions, as previously dis
ussed).For �nite �, the remaining singularities are lo
ated at(see eq. (51)),s = �N2 � 2n; N = 1; 2; 3; : : : ; n = 0; 1; 2; : : : ; (65)with residues given by (see eq. (52)),Res (�)js=�N2 �2n == (�1)N� CN;n (� = 3=4; �) sin�3�2 N�; (66)whi
h vanish for even N .Then, ea
h pole (ex
ept for the �rst one, at s = 1)
orresponds to a negative half-integer,s = �k � 1=2; k = 0; 1; 2: : : : (67)Moreover, it is 
lear that for �nitely many pairs (N;n)satisfying N + 4n = 2k + 1, the 
orresponding poles lieat the same point.Therefore, the residue of ��(s) at s = �k � 1=2 mustbe 
omputed by adding all these 
ontributions, 
hara
-terized by N = 2(k � 2n) + 1, with n = 0; 1; 2; : : : ; [k=2℄.We get Res (��(s))js=�k� 12 == (�1)k+1� [k=2℄Xn=0 C[2(k�2n)+1℄;n (� = 3=4; �): (68)7



For example, for k = 0, the residue isRes (��(s))js=� 12 = � 1� C1;0 (� = 3=4; �) = �� (69)and, for k = 1,Res (��(s))js=� 32 = 1� C3;0 (� = 3=4; �) = � 4� �3: (70)IX. CONCLUSIONSIn this arti
le we have analyzed the pole stru
ture ofthe �-fun
tion of the Hamiltonian des
ribing a quantumS
hr�dinger parti
le living in the half-line R+, subje
tto the singular potential V (x) = gx�2 + x2.We have spe
i�ed the domain of the adjoint of theHamiltonian, Hy, and determined the de�
ien
y sub-spa
es of H , initially de�ned on C10 (R+). We haveshown that, for �1=4 � g < 3=4, H admits nontriv-ial self-adjoint extensions whi
h depend on a 
ontinuousreal parameter �.For 
omputational 
onvenien
e, we have limited ouranalysis to the range 0 � g < 3=4.On
e determined the 
losure of H (studied in Ap-pendix A), we were able to 
hara
terize ea
h SAE H(�)by the behavior (singular, in general) near the origin ofthe fun
tions in the 
orresponding domain of de�nition.This relation also allowed for the identi�
ation of thespe
trum of H(�) with the zeroes of an analyti
 fun
tionf(�).The asymptoti
 expansion of f(�) (outlined in Ap-pendix B) led to the determination of the poles andresidues of the �-fun
tion asso
iated with H(�), ��(s).We have shown that the poles of ��(s) 
an be organizedin sequen
es 
hara
terized by an integer N = 1; 2; 3; : : :,and are lo
ated at s = �N(2� � 1) � 2n, with n =0; 1; 2; : : : and � = (1 +pg + 1=4)=2 2 [3=4; 1). Noti
ethat these values of s are not, in general, half an integer(whi
h are the expe
ted positions of the poles for a se
-ond order di�erential operator with smooth 
oeÆ
ientson a 
ompa
t segment), and they are irrational numbersfor irrational values of �.We have also found that the residues depend on theparameter � 
hara
terizing the SAE H(�).We have 
on�rmed this �-fun
tion pole stru
ture (forthe �rst poles) through the 
omparison with the resultsobtained from the asymptoti
 behavior of the eigenval-ues.These results also imply that the small-t asymptoti
expansion of the heat kernel of H(�) 
ontains powers oft whi
h (in general) are not half an integer, and that the
orresponding 
oeÆ
ients depend on the SAE.Finally, several parti
ular 
ases were analyzed, �ndingthat our results are 
onsistent with the known ones. Inparti
ular, for the harmoni
 os
illator (g = 0) in the half

line, subje
t to any lo
al boundary 
ondition at x = 0,the poles lie at half-integer values of s.A �nal remark is in order: Noti
e that the unusual polestru
ture previously des
ribed is a 
onsequen
e of havinga potential with a moderate singular behavior near theorigin. In fa
t, for g � 3=4, where the Hamiltonian H isessentially self-adjoint due to a stronger singular behaviorof V (x), the �-fun
tion simply redu
es to 4�s �(s; �) (seeeq. (13)), whi
h presents a unique pole at s = 1 withresidue 1=4.A similar pole stru
ture is obtained for the Hamilto-nian �-fun
tion of 
harged Dira
 parti
les living in (2+1)-dimensions, in the presen
e of both a uniform magneti
�eld and a singular magneti
 tube with a non-integer
ux. This problem was 
onsidered in [14℄, where it wasshown that the Hamiltonian restri
ted to a 
riti
al angu-lar momentum subspa
e admits nontrivial SAE, whosespe
tra are determined by a tras
endental equation sim-ilar to (22). These results will be reported elsewhere.ACKNOWLEDGEMENTSWe thank E.M. Santangelo and M.A. Mus
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ussions.The authors a
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tion we will justify to disregard the 
ontri-butions from the fun
tions in the domain of the 
losureH to the boundary 
ondition, eq. (20). Indeed, we willshow that if � 2 D(H) then�(x) = o(x�) and �0(x) = o(x��1) (A1)near the origin, for any � < 3=2.In order to determine the 
losure of the Hamilto-nian's graph we must 
onsider those Cau
hy sequen
esin D(H) = C10 (R+), f'ngn2N, su
h that fH'ngn2Nare also Cau
hy sequen
es. Noti
e that, sin
e the 
oef-�
ients in H are real (see eq. (4)), we 
an 
onsider realfun
tions.Let us 
all ' = 'n �'m, with n;m 2 N. Then '! 0and H'! 0 as n;m!1.Consider �rst the s
alar produ
t(';H') = Z 10 '��'00 + gx2 '+ x2'� dx == Z 10 �'02 + gx2 '2 + x2'2� dx � jj'jj jjH'jj ! 0(A2)8



for n;m!1. Therefore, for g > 0, we 
on
lude thatf'0n(x)gn2N; �'n(x)x �n2N and fx'n(x)gn2N (A3)are also Cau
hy sequen
es.We will now prove the followingLemma: Let f'ngn2N be a Cau
hy sequen
e in D(H) =C10 (R+) su
h that, for g > 0, 1 � a < 2 and g 6= (a2 �1)=4,fH'ngn2N; �'n(x)xa �n2N; and �'0n(x)xa�1 �n2N (A4)are also Cau
hy sequen
es. Then,� 'n(x)x1+a=2�n2N and �'0n(x)xa=2 �n2N (A5)are Cau
hy sequen
es too.Proof: As before, let ' = 'n � 'm. First noti
e that,for 1 � a < 2,Z 10 �x1�a=2 '(x)�2 dx � Z 10 ('(x))2 dx++ Z 11 (x'(x))2 dx � jj'(x)jj2 + jjx'(x)jj2: (A6)Then, from (A3), we see that nx1�a=2 'n(x)on2N is alsoa Cau
hy sequen
e.A straightforward 
al
ulation shows that�'(x)xa ; H'(x)� = Z 10 (�'0(x)xa=2 �2++ �g � a(a+ 1)2 �� '(x)x1+a=2�2 + �x1�a=2 '(x)�2) dx:(A7)Similarly,�'0(x)xa�1 ; H'(x)� = Z 10 (��a� 12 ��'0(x)xa=2 �2+g�a+ 12 �� '(x)x1+a=2�2 +�a� 32 ��x1�a=2 '(x)�2) dx:(A8)Now, taking into a

ount that the sum of fundamentalsequen
es is also a Cau
hy sequen
e, we see that�A '(x)xa +B '0(x)xa�1 ; H'(x)�! 0 (A9)

when n;m!1, for any pair of real numbers A and B.The 
oeÆ
ients of �'0(x)xa=2 �2 and � '(x)x1+a=2�2 in theexpression of the s
alar produ
t in (A9) areA� B�a� 12 � andA�g � a(a+ 1)2 �+B g�a+ 12 � (A10)respe
tively. One 
an see that, by 
hoosing one of themas zero, the other is non vanishing (ex
ept for g = (a2 �1)=4).It is easily seen that these results prove the Lemma.For a = 1, from (A3) and the Lemma, we 
on
ludethat �'n(x)x3=2 �n2N and �'0n(x)x1=2 �n2N (A11)are Cau
hy sequen
es.Let us �rst suppose that g is an irrational number.Then, applying iteratively the Lemma from (A11) one
an show that, for any positive integer k,� 'n(x)x2[1�(1=2)k℄�n2N and � '0n(x)x2[1�(1=2)k℄�1�n2N (A12)are Cau
hy sequen
es.Finally, for any given " > 0 there are integers k1 andk2 su
h that (1=2)k1 � " � (1=2)k2 . Taking into a

ountthat 1x2�" � 1x2[1�(1=2)k1 ℄ ; for 0 < x � 1;1x2�" � 1x2[1�(1=2)k2 ℄ ; for x � 1; (A13)one immediately 
on
ludes that �'n(x)x2�" �n2N is aCau
hy sequen
e.A similar 
on
lusion is easily obtained for�'0n(x)x1�" �n2N.Let us now suppose that g is a rational number. Then,from (A3) and (A11) it is seen that we 
an 
hoose anirrational a 2 (1; 3=2) from whi
h the Lemma 
an alsobe applied iteratively to arrive to the same 
on
lusions.In the following we will 
onsider the behavior of thefun
tions near the origin.For any " > 0, we 
an write9



x�� '(x) = Z x0 �y�� '(y)�0 dy == Z x0 y��+1�" ��� '(y)y2�" + '0(y)y1�" � dy: (A14)So, for x � 1, � < 3=2 and " small enough, we have��x�� '(x)�� � �Z 10 y2(��+1�")dy�1=2�j�j ��������'(y)y2�" �������� ++ ��������'0(y)y1�" ���������!n;m!1 0: (A15)Therefore, the sequen
e fx�� 'n(x)gn2N, with � < 3=2,is uniformly 
onvergent in [0; 1℄, and its limit is a 
ontin-uous fun
tion vanishing at the origin,limn!1 �x�� 'n(x)� = x�� �(x); (A16)limx!0+ �x�� �(x)� = 0: (A17)In parti
ular, for � = 0 we have the uniform limitlimn!1'n(x) = �(x); (A18)whi
h 
oin
ides with the limit of this sequen
e inL2(R+).On the other hand, we 
an also writeZ x0 y��+1H'(y) dy = �x��+1 '0(x)++ Z x0 y��+1�"�(��+ 1) '0(y)y1�" + g '(y)y2�"� dy++ Z x0 y��+2 y '(y) dy: (A19)
Therefore, for x � 1, � < 3=2 and " suÆ
iently small, wehave ��x��+1 '0(x)�� � �Z 10 y2(��+1) dy�1=2 jjH'(y)jj+�Z 10 y2(��+1�") dy�1=2�j�� 1j ��������'0(y)y1�" ��������+ g ��������'(y)x2�" ���������++�Z 10 y2(��+2) dy�1=2 jjy '(y)jj !n;m!1 0:(A20)Consequently, the sequen
e fx��+1 '0n(x)gn2N, with� < 3=2, is uniformly 
onvergent in [0; 1℄, and its limit isa 
ontinuous fun
tion vanishing at the origin,

limn!1 �x��+1 '0n(x)� = x��+1 �(x); (A21)limx!0+ �x��+1 �(x)� = 0: (A22)In parti
ular, for � = 1 we have the uniform limitlimn!1'0n(x) = �(x); (A23)whi
h 
oin
ides with the limit of this sequen
e in L2(R+)(see (A3)).Let us now show that �(x) = �0(x). Indeed, for x � 1,we have �����(x) � Z x0 �(y) dy���� �� j�(x) � 'n(x)j + ����Z x0 (�(y)� '0n(y)) dy���� �� j�(x) � 'n(x)j + jj�� '0njj !n!1 0: (A24)So, �(x) is a di�erentiable fun
tion whose �rst derivativeis �(x).Equations (A17) and (A22) imply that, given "1 > 0and � < 3=2,j�(x)j < "1 x� and j�0(x)j < "1 x��1 (A25)if x < Æ, for some Æ > 0 small enough. This proves ourassertion.APPENDIX B: ASYMPTOTIC EXPANSIONSIn this appendix we will 
ompute the asymptoti
 ex-pansion for f 0(�)=f(�) as given in eq. (40).The asymptoti
 expansion for the polygamma fun
tionappearing in the right hand side of eq. (40) 
an be easilyobtained from Stirling's formula [13℄, (�� �=4) � log (��) + 1Xi=0 
i(�)(��)�k ; (B1)where the 
oeÆ
ients 
i(�) are polynomials in � whi
hwe will not need to expli
itly know for our purposes.On the other hand, taking into a

ount (43), we 
anwrite asymptoti
ally for the �rst term in the right handside of eq. (40)
10



� �1� �� �4 ��  ��� �4 ��1� � �(1����4 )�(���4 ) �P1N=0 �N ��(1����4 )�(���4 ) �N � �1� �� �4 ��  ��� �4 �� ==P1N=0 �N ��(1����4 )�(���4 ) �N 4 dd(��) log ��(1����4 )�(���4 ) � ==P1N=0 �NN 4 dd(��) ��(1����4 )�(���4 ) �N : (B2)From the Stirling's formula [13℄ we getlog"� �1� �� �4 �� ��� �4 � # � (1� 2�) log(��4 )++( 1Xm=1am(�)(��)�2m); (B3)where the 
oeÆ
ients in the series are given byam(�) = 24m�12m+ 1 ��(1� �)2m � �2m�+��� 1=2m ��� �(1� �)2m + �2m�+ (2m+ 1) mXp=1 B2pp(2p� 1)��� 2m� 12p� 2 �h�2(m�p)+1 � (1� �)2(m�p)+1i�:(B4)Then, "� �1� �� �4 �� ��� �4 � #N �� ���4��N(2��1) 1Xn=0 bn(�;N) (��)�2n; (B5)where1Xn=0 bn(�;N) z�2n � eN 1Xm=1 am(�) z�2m : (B6)The 
oeÆ
ients bn(�;N) are polynomials in � and Ngiven bybn(�;N) = Xr1+2r2+:::+nrn=nNr1+r2+:::+rn �� a1(�)r1 a2(�)r2 : : : an(�)rnr1! r2! : : : rn! ; (B7)

where the sum extends over all sets of non negative in-tegers r1; r2; : : : ; rn su
h that r1 + 2 r2 + : : :+ n rn = n.For the �rst �ve 
oeÆ
ients we getb0(�;N) = 1;b1(�;N) = 83 N � �1� 3�+ 2�2� ;b2(�;N) = 3245 N � �5N � �1� 3�+ 2�2�2++6 ��1 + 10�2 � 15�3 + 6�4��b3(�;N) = 2562835 N � �1� 3�+ 2�2��� �360� 18 (�60 + 7N) �+ 35N2 �2�� 30 �72� 42N + 7N2� �3++5 �216� 378N + 91N2� �4��84N (�9 + 5N) �5 + 140N2 �6� ;b4(�;N) = 51242525 N � �1� 3�+ 2�2��� (�45360+ 36 (�3780+ 221N) ���252 �60� 9N + 5N2� �2++7 �32400� 8604N + 540N2 + 25N3� �3��315 ��240+ 36N � 32N2 + 5N3� �4++21 ��10800+ 9684N � 2700N2 + 275N3� �5��63 ��1200 + 3156N � 1420N2 + 175N3� �6++6N �9468� 10080N + 1925N2� �7��1260N2 (�12 + 5N) �8 + 1400N3 �9� : (B8)Now, repla
ing eq. (B5) in eq. (B2) we get� �1� �� �4 ��  ��� �4 ��4 �1� � �(1����4 )�(���4 ) � � � 1XN=1 1Xn=0 4N(2��1)���N �2�� 1 + 2nN � bn(�;N) (��)�N(2��1)�2n�1 �� 1XN=1 1Xn=0CN;n(�; �) (��)�N(2��1)�2n�1: (B9)Finally, eqs. (B1) and (B9) lead to the asymptoti
 ex-pansion for f 0(�)=f(�) in eq. (46).11
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