Spectral sums of the Dirac-Wilson Operator and their relation to the Polyakov loop
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We investigate and compute spectral sums of the WilsowréaRlirac operator for quenchét/ (3) gauge the-
ory. Itis demonstrated that there exist sums which servedes parameters for the confinement-deconfinement
phase transition and get their main contribution from theii of the spectrum. They are approximately pro-
portional to the Polyakov loop. In contrast to earlier stubspectral sums some of them are expected to have a
well-defined continuum limit.
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I. INTRODUCTION Although itis commonly believed that confinement and chi-
ral symmetry breaking are deeply related, no analytical ev-

nent features of strongly coupled gauge theories. If thé&Christof Gattringer [10]. His formula holds for lattice reg
gauge group contains a non-trivial ceny then the traced lated gauge theories and is most simply stated for Dirac op-

Polyakov loop [1, 2] erators with nearest neighbor interactions. Here we censid
fermions with ultra-local ands-hermitean Wilson-Dirac op-
N¢ erator
Ly =trePs, Pz=]]Uo(r, ) (1)
d—1
T=1 1
(y[Dlz) = (m + d)day — ) Z ((1 TV (2)0y,2—e,

serves as an order parameter for confinement in pure gauge =0
theories or (supersymmetric) gauge theories with mattiran o

adjoint representation. The dynamicsof near the phase +1-7 )U"(x)éy’”e“)’ )
transition point is effectively o!escrlbed by ge_nerallzemt@ wherel.,(z) denotes the parallel transporter from sitéo
models [3, 4]. Here we consider the space-independent exg neighboring siter = e, such that/_,(z + e,,)U,(z) = 1
pectation valuesL,) only and thus may replace, by its  hqds true. Since we are interested in the finite temperature

spatial average behavior we choose an asymmetric lattice withsites in the
1 temporal direction andVy > N sites in each of thd — 1
L=— ZL‘”’ V, = NI-1, (2)  spatial directions. We impose periodic boundary condgion
Vs 5 in all directions. The
The expectation valuéL) is zero in the center-symmetric dim(D) =V x old/2l w N, V=N, x Vi, (5)
confining phase and non-zero in the center-asymmetric decon
fining phase. eigenvalues of the Dirac operator in a background field

Chiral symmetry breaking, on the other hand, is related tq U, (z)} are denoted by,. The non-real ones occur in com-
an unusual distribution of the low lying eigenvalues of theplex conjugated pairs sinc® is vs-hermitian. If Ny and N
Euclidean Dirac operatd? [5]. In the chirally broken low- are both even, thek, — 2(d+m)— )\, is a further symmetry
temperature phase the typical distribution is dramatiadift of the spectrum.
ferent from that of the free Dirac operator since a typicatle Following [10, 11] wetwist the gauge field configuration
densityp()) for the eigenvalues per volume does not vanishwith a center element as follows (see Fig. 1): All temporal
for A — 0. Indeed, according to the celebrated Banks-Cashdink variableslU,(r, ) at afixed timer are multiplied with an
relation [6], the mean density in the infrared is proporéilo  element: in the centeZ of the gauge group. The twisted con-

the quark condensate, figuration is denoted by*U}. The Wilson loops/V, for all
contractabldoopsC are invariant under this twisting whereas
(p(0)) = _l<0|1[,¢|0>. 3) the Polyakov loop®,, pick up the center element,
7T

Which class of gauge field configurations gives rise to this un We(TU) =We(U) and Po(°U) = 2P5(U).  (6)
usual spectral behavior has not been fully clarified. It mayrne Dirac-eigenvalues for the twisted configuration are de-
be a liquid of instanton-type configuration [7]. Simulaon poteq by=\,. The remarkable and simple identity in [10, 11]

of finite temperat_uré]U (3) gauge theory withOU'F dynamical re|ates the traced Polyakov loépo a particular spectral sum,
quarks reveal a first order confinement-deconfinement phase

transition at 260 MeV. At the same temperature the chiral con |Z|  dim(D)
densate vanishes. This indicates that chiral symmetrykbrea 7, = = Z Zn Z (Zk,\p)Nf k= (—1)Neold/2-1y Z)
ing and confinement are most likely two sides of a coin ([8], A =1

for areview see e.g. [9]). (7
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>k Zkze = |Z] we end up with the result (8) which gener-
alizes Gattringer formula to arbitrary gauge groups with-no
trivial center. What happens fdr> N; in (10) will be dis-
cussed below.

In [11] the average shift of the eigenvalues when one twists
the configurations has been calculated. It was observed that
aboveT, the shift is greater than belo#. and that the eigen-
values in the infrared are more shifted than those in tha-ultr
violet. But the low lying eigenvalues are relatively supgsed
T in the sum (7) such that the main contribution comes from

large eigenvalues. Indeed, if one considergthrial sums

2 Uo(z)

I =N ,
= zk: %k Z‘;Mpf, n < dim(D),  (11)
—
FIG. 1: (Color online) Twist of the gauge field configuratioitwa

centre element of the gauge group. where the eigenvalues are ordered according to their aesolu
values, then on &* x 4-lattice 70% of all eigenvalues must
be included in (11) to obtain a reasonable approximation to
the traced Polyakov loop [11]. Actually, if one includes faw
eigenvalues then the partial sums have a phase shiftela-
tive to the traced Polyakov loop. For lardg the contribution
from the ultraviolet part of the spectrum dominates the sum
(7). Thus it is difficult to see how the nice lattice result (8)
could be of any relevance for continuum physics.
_ 5 ze ) Ne — : . .
= sz tr (D) =X (8) The paper is organized as follows: In the next section
we introduce flat connections with zero curvature but non-

We stress that the formula (8) holds whenever the gauge groJEV'aI _Polyak_ov loops. The corresp(_)nding eigenvalues of
admits a non-trivial center. In [10] it was proved 6/ (N, e Wilson-Dirac operator are determined and spectral sums
with centerZ(N.) and x 1(=)M dim(D). In [11] the with support in the infrared of the spectrum are defined and

. A d. The results are useful since they are in qualita-
Dirac operator for staggered fermions and gauge g compute y q
P gd gauge grii(s) OItlve agreement with the corresponding results of MontdeCar

was investigated and a formula similar to (8) was derive simulations. In section Il we recall the construction oé th
Note that (8) is not applicable to the gauge groGpsF, and
(8) PP gauge gropsty real order parametek™* related to the Polyakov loop [4].

B with trivial centers. Its Monte-Carlo averages are compared with the averages of
For completeness we sketch the proof given in [10], slightl
P P g [10], slig yhe partial sums (11). Our results for Wilson-Dirac ferngon

generalized to incorporate all gauge groups with nondtivi i hth di St

centers. The Wilson-Dirac operator contains hopping term&'€ in ualitative agreement with the corresponding re

between nearest neighbors on the lattice. A hop fromusite Steggered fermions in [11]. In section IV we discuss spéctra
sums for inverse powers of the eigenvalues. Their Monte-

to its neighboring site: & ¢, is accompanied by the factor Carl ional Bt b that th

—3(1 F v*)U,(z) and staying at: is accompanied by the arfolavearages are prop(:rtlorr:a {6™*) such that t ?/)\//arer]

factorm + d. Taking the/’th power of D, the single hops US€ful order parameters for the center symmetry. \We show
that these order parameters are supported by the eigesvalue

combine to chains of or less hops on the lattice. In particular . : )
the traceir D' is described by loops witat most hops. Each from the infrared end of the spectrum. Section V contains
' similar results for exponential spectral sums. Again we find

loopC contributes a term proportional to the Wilson |00 . _ . : :
On an asymmetric lattice wittV; < N, all loops with a linear or quadratic relation between their Monte-Carlo av
S - .
length < N, are contractableand since the corresponding erages andL.wt>' It sufﬁc;es to include only a S’.“a” r?“.mber
Wilson loopsW, do not change under twisting one ConcludesOf infrared eigenvalues in these sums to obtaln_ efficient or-
der parameters. We hope that the simple relations between

tr*Df = tr D¢ for ¢ < N;. (9) the infrared-supported spectral sums consiqlered hgrehaand t
expectation valuéL ") are of use in the continuum limit.
For any matrix group with non-triviaf the center elements
sum to zeroy . z; = 0, such that

The first sum extends over the elemesitsz,, . .. in the cen-
ter Z containing the group identityfor which®, = X,,. The
second sum contains th¢ 'th power of all eigenvalues of the
Dirac operatof* D with twisted gauge field§*+U}. It is just
the trace o** D)™, such that

I1. FLAT CONNECTIONS

> ztr(*DY) =tx(D) Y zm =0 for £< N (10)
g g We checked our numerical algorithms against the analyt-

For ¢ = N, only the Polyakov loops winding once around ical results for curvature-free gauge field configuratiorits w

the periodic time direction are not contractable. Underiattw non-trivial Polyakov loop. For these simple configuratites

by {U} — {*U} they are multiplied byz, see (6). With spatial link variables are trivial and the temporal linkiaétes
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are space-independent, For these fields the temporal component of the momentum

takes values from
Ul(z)=1 and Uy(x) =Us(r), == (r,z). (12)

The Wilson loops/V, of all contractable” are trivial which po(zk) € {Q—W (ng — job — k/3)} ,
shows that these configurations are curvature-free. We call Ne
themflat connectionsWith the gauge transformation je{-1,0,1}, ke{0,1,2}. (22)
Qr) =P, Pr=Us(r — 1)Us(T —2)---Up(2)Up(1) We have calculated the spectral sums
(13)
all link-variables of a flat connection are transformed ithte dim(D)

1 1
group-identity. But the transformed fermion fields are netp X0 ==> "z Y (™)) ==z tr (*D)" (23)
riodic in time anymore, - p=1 R

(T 4+ Ny, ) =P "(r,z), where P =Py, (14) forvanishing mass. For flat connections the sums with powers
¢ betweenN; and2N; are strictly proportional to the traced
is just the constant Polyakov loop. Since the transformeqbo|yakov loop,2(¥) = CyL(#). Gattringers result implies
Dirac operator is the free operator, its eigenfunctionpiaee ¢, — 1. The next two coefficients are related to the number
waves, of loops of lengthV; + 1 and NV, + 2 winding once around the
V(@) = P, (15) periodic time direction. One finds

These are eigenmodes of the free Wilson-Dirac operator withCNH“1 = d(
eigenvalueg ), } = {\:¥}, where

N;+1) and

d—

d? 1
Crerz = 5 (N +2)(Ne + 1)+ —— (NN +1) = 2).

n2
)\;t = m:l:i|]5|+%, with  p,, = 2sin%, Pu = sinp,,. (24)
(16)  More generally, the relatiol z,z. = 0for ¢ ¢ 3Z + 1
They are periodic in the space directions provided the apati jmplies that the spectral sums (23) are linear combinatidns
momenta are from the tracesr P>"*1(9) for sufficiently small values of8n+1,

27 .

i € E?’Li with n; € ZNS- (17) Z(E) _ § Cé”) tr 7)3n+1(9)' (25)
. . n: |3n+1| Ny <t

Denoting the eigenvalues of the Polyakov loop by

e?mer, .. e?m¥ne, the periodicity conditions (14) im- | Fig. 2 we depicted the sumB® on a4 x 123 lattice, di-
ply vided by the traced Polyakov loop and normalized to one for
o 0 = 0 for the flat connections and the powers= N;, 3NV,
Py = m(no —¢j), no€Zn, j=1,...,N.. (18) and3.6NN,. Note that the powetin (23) need not be an inte-
ger.

Thus the eigenvalues of the Wilson-Dirac operator with a flat
connection are given in (16), with quantized momenta (17)
and (18). For each momentum there exis(@/21~! eigen- x 2O /L
values\; and2!/2/~! complex conjugated eigenvalugs. £= Ny
. . . 1.00
Next we twist the flat connections with a center-element,
for SU(N.) with

£=3- Ny
2 =N 1<k < N (19) 0981
The spatial components of the momenta are still given by; (17) £=3.6-Ny
but their temporal component is shifted by an amount propory g6 |
tional tok, . 0
0 0.5 1

2m _
po(er) € {ﬁ (no — @5 - k/NC)}, 1<jk<N.
' (20)  FIG. 2: (Color online) Spectral sums(® divided by the traced

In the following we consider flalSU(3)-connections with ~FOlyakov loop as functions effor different values of.

Polyakov loops ) )
We have argued that the sunf”) must be a linear combina-

e 0 0 tion of tr P andtr P2 for £ betweer2 N, and4 N;. Actually,
P(9) = 0 1 0 = L =1+42cos(270). (21) uptol = 3N, the sum is well approximated by a multiple
0 0 e 20 of tr P. This is explained by the fact that for a givénhere
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are much more fat loops winding once around the periodi¢-orn = dim(D) one sums over all eigenvalues of the Dirac-

time direction and contributing withr P than there are thin
long loops winding many times around and contributing with
tr P2 tr P, trP~°,.... We shall see that similar results
apply to the expectation values BfY) in Monte-Carlo gener-
ated ensembles of gauge fields.

operator and obtains the tracE” considered in (23). For
¢ = N, one finds the partial suns, in (11). These have been
extensively studied for staggered fermions in [11]. Acdogd
to the result (7) the objedly;., (p) is just the traced Polyakov
loop.

Since the eigenvalues in the infrared are mostly affected We did simulations on lattices with sizes upfox 4. Here
by the twisting [11] we could as well choose a spectral sumwe report on the results obtained o#’a 3 lattice with critical

for which the ultraviolet end of the spectrum is suppressed
SinceX(®) with ¢ < 3N, is almost proportional to the traced

couplingf.,iy =~ 5.49, determined with the histogram method
based ont0 000 configurations. The dependence of the two

Polyakov loop there exist many such spectral sums. They desrder parameterd.| and L' (see below) on the Wilson cou-
fine order parameters for the center symmetry and may pogling 5 has been calculated 86 different and is depicted

sess a well-defined continuum limit. For example, the expoin Fig

nential sums
dim(D)

1 z
PIGIE —02, (R U)

are all proportional to the traced Polyakov loop for a factor
¢ in the exponent betwedhl and2. In Fig. 3 we displayed
exponential sums for the flat connections ofia 123-lattice
and various/ between0.1 and2. Again we divided by the
traced Polyakov loog.(¢) and normalized the result to unity
for g = 0.

(26)

OCSM)/L

0.95

0 1

FIG. 3: (Color online) Spectral sum8'® divided by the traced
Polyakov loop as functions éffor different values of.

When we use Monte-Carlo generated configurations to Calt'or Th
culate the expectation values bfand£() we shall choose v, 'to - cver
n

¢ = 1. For this choice the mean exponential sum will be pro-
portional to the meaih.. Later we shall argue why this is the
case.

I11. DISTRIBUTION OF DIRAC EIGENVALUESFOR SU(3)

We have undertaken extended numerical studies of th

. 4. For eaclp betweent 000 and20 000 independent

14

— (LD
o <Lrot>

L

FIG. 4: (Color online) Dependence of the mean modulus ahd the
center-transformed and rotatéd(see text) on the Wilson coupling
B ona4® x 3 lattice. The critical coupling ie.i, = 5.49.

configuration have been generated and analyzed. For our rel-
atively small lattices the two order parameters change-grad
ually from the symmetric confined to the broken deconfined
phase. Table | contains the order parametersl fowilson
couplings. For every independent configuration we caledlat
the dim(D) = 2304 eigenvalues of the Wilson-Dirac opera-
en we averaged the absolute values of the partiadrac
y3 in Table I. In Fig. 5 the ratios

(1%nl)
(IL])

are plotted for thesg as function of the percentage of eigen-
values considered in the partial traces.

To retain information on the phase of the partial traces and
Polyakov loop we used the invariant order parameter con-

R, =

(28)

eigenvalue distributions and various spectral sums for thetructed in [4]. Recall that the domain for the traced Pabyak

Wilson-Dirac operator inSU (3) lattice gauge theory. First
we summarize our results on the partial traces

1 " .
20 =L a Y n<dm®), Dyl Pyl
k p=1

(27)

loop is the triangle shown in Fig. 6. The three elements in
the center ofSU(3) correspond to the corners of the trian-
gle. We divide the domain into the six distinct parts in Fig. 6
The light-shaded region represents the preferred location
the traced Polyakov loop in the deconfined (ferromagnetic)
phase, whereas the dark-shaded region corresponds to-the hy



TABLE |: Dependence of the order parametpisand L™ on the Wilson coupling3.

Jo] 5.200 5.330 5.440 5.475 5.505 5.530 5.560 5.615 5.725 5.885 .0006
(|L|) 0.1654 0.1975 0.3050 0.3980 0.5049 0.5939 0.6865 0.7832 00D.9 1.0013 1.0631
(L*°%) 0.0318 0.0615 0.1859 0.3013 0.4296 0.5363 0.6452 0.7513 770.8 0.9797 1.0444
14 : a center transformation. To finally obtain a real observable
we rotate the transformell inside F onto the real axis. The
12r result is the variablé&*°* whose sign clearly distinguishes be-
tween the different phase&r°t is negative in the anti-center
10 phase, positive in the deconfined phase and zero in the con-
fined symmetric phase. The object°t is a useful order pa-
08r rameter for the confinement-deconfinement phase transition
Rn in gluodynamics [4].
06f We performed the same construction with the partial sums
3., and calculated the ratios for the corresponding Monte-
04f Carlo averages
Erot
0.2 R;Ot _ EL?Oti (29)
0.0¢

30 40 50 60 70 80

% of lowest eigenmodes
FIG. 5: (Color online) Modulus of the eigenvalue sums stgrfrom

the lowest eigenmodes ora x 3-lattice near the phase transition.
The distinct graphs are labelled with the Wilson couplihg

251 3z
20F 1
15 1
10t \

Im 0.0f b‘ - 3 1
os] 4> |
20 L |

A5} .

20} 1

25} 1

FIG. 6: (Color online) Fundamental domaif of L obtained by
identifying Z(3) copies according to the depicted arrows.

for everyg in Table | as a function of the percentage of eigen-
values considered il,,. In Figs. 5 and 7 we observe a uni-

1.0 T

08

0.6

04r

0.2

R 01
0.2+
04}
-0.6

-0.81

-1.0
0

% of lowest eigenmodes

FIG. 7: (Color online) Eigenvalue sums rotated to the funeliatal
domain starting from the lowest eigenmodes off & 3-lattice near
the phase transition. The distinct graphs are labelled thahVilson
coupling.

versal behavior in the deconfined phase with modulus of the
traced Polyakov loop larger than approximat@l. If we in-
clude less than0% of the eigenvalues, then the partial sums

pothetical anti-center ferromagnetic phase [12]. In the deX, have a phase shift af in comparison with = ¥ 4;,(p).
confined phasé. points in the direction of a center element The last dip in Fig. 5 is due to this phase shift and indi-

whereas it points in the opposite direction in the anti-eent

cates the transition through zero that occurs whgrthanges

phase. To eliminate the superfluous center-symmetry we idersign. The same shift and dip has been reported for staggered
tify the regions as indicated by the arrows in Fig. 6. Thisfermions on &3 x 4 lattice in [11]. For staggered fermiois,

way we end up with dundamental domaitf for the center-
symmetry along the real axis. Evefyis mapped intaF by

andX are in phase forn > 0.65 - dim(D). For Wilson-Dirac
fermions this happens only far > 0.9 - dim(D).
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A. Finitespatial size scaling of partial sums with n < dim(D) and the traced Polyakov loop have opposite
phases. This is explained as follows: all sums in (30) are

We fixed the coupling a8 = 5.5 and simulated in the de- POsitive and on the average the last two sums are equal. With
confined phase o3 x 2-lattices with varying spatial sizes z + 2 = —1 the last two terms add up te  _ “A,.. Since the
the broken phase and we can study finite size effects on tH€om the origin as for the untwisted field, the spectral sums
spectral sums. The results far°t are depicted in Fig. 8. (30) are negative for smad.

16 1
waf [ M= ] IV. TRACESOF PROPAGATORS
1.2t N.=5 I . .
To suppress the contributions of large eigenvalues we-intro
10} 1 duce spectral sums(®) with negative exponents Similar to
sl | the Polyakov loop these sums serve as order parameters for
(=) the center symmetry. In particular the spectral sums
06f |
L | _ 1 Zk _ 1 Zk
0.4 Z( 1) = E Ztr (%) and E( 2) = E Ztr <ZkD2>
02f 1 k k
5 (31)
00 1 are of interest, since they relate to the Green functior® of
02} i andD?, objects which enter the discussion of the celebrated
o4 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Banks-Casher relation. Contrary to the ultraviolet-dcatea
"0 10 20 30 40 50 60 70 80 90 10C  sSums with positive are the sums with negativedominated

% of lowest eigenmodes by the eigenvalues in the infrared. The opera{6®, z <€ Z}
have similar spectra and we may expect tha{—!) has a
FIG. 8: (Color online) Rotated eigenvalue sums startingnfthe  well-behaved continuum limit. Here we consider the partial

lowest), on aN2 x 2-lattice in the broken phase. traces
We observe that to a high precisiafjt is approximately sy 1 3 i 1 and
independent of the spatial volume. The curvesfar= 4 noT g - k - ),

p:

and 5 are not distinguishable in the plot and as expected
>, Zetr(**DM) scales with the spatial volume of the sys- (—2) 1 _ 1

. : =— < )
tem. An increase ofV, affects the spectra for the untwisted X P Zk: k 2; A2’ [Apl < [Apt1l
and twisted configurations alike — they only become denser

with increasing spatial volume. On the other hand, comgarin gince the Wilson-Dirac operator with flat connection pos-
Figs. 7 and 8, itis evident that the graph(af;*) depends on  gegses zero-modes we added a small mass 0.1 to the
the temporal extent of the lattice. denominators in (32). In Fig. 9 the partial sui§ ) on a

43 x 3 lattice are plotted. It is seen that for flat connections

the Zﬁl_l) for smalln are excellent indicators for the traced
Polyakov loop. Thus it is tempting to proposg ), ¥

) ) ) with n < dim(D) as order parameters for the center symme-
The truncated eigenvalue sums (27) with different powers (-, 1q test this proposal we calculated the partial sumg, (32

of the eigenvalues show an universal behavior thatis n&&rly {ransformed to the fundamental domain and rotated to the rea
dependent of the lattice size. The main reason for this unive axis, for Monte-Carlo generated configurations of*ax 3
sality and in particular the sign &, is found in the response |attice for various values of. The results in Fig. 10 are qual-

of the low-lying eigenvalues to twisting the gauge field. Ititatively similar to those for the flat connections. Takimgo

has been observed that for non-periodic boundary conditionaccount10% of the eigenvalues in the IR already yields the
(which are gauge-equivalent to twisting the gauge field) theasymptotic valuex(—1)-rot andx(—2).rot,

low lying eigenvalues are on the average further away from To find an approximate relation betwedH—!) and the

the origin as compared to periodic boundary conditions (otraced Polyakov loop we applied the hopping-parameter ex-
untwisted gauge fields) [13-16]. This statement is veryrcleapansion. To that end one expands the inverse of the Wilson-

for massless staggered fermions with eigenvalues on thgtimapirac operatoD = (m + d)1 — V in powers of/,
inary axis. For example, the partial traces

(32)

S

=
Il

B. Partial traces ESf)

—1

1 1
_m+dzk:(m+d)k

E%I)O(Z/\p+zzz)‘p+zzz)‘pv [Apl < [Apal-
p=1 p=1 1

-
(30) Inserting this Neumann series infd—") in (31) and keeping
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0 10 20 30 40 50 60 70 80 90 10C
| | | % of lowest eigenmodes
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FIG. 9: (Color online) The partial spectral suii§ Y for the inverse
power and flat connections.

the leading term only yields

Nt Ny
n(=1) — Lz(l\h) N (Qsj) LL.
(m 4 d)Net1 (m 4 d)Net1 6l T ]
To check whether the expectation value&6f V)7t and L " 4

0 10 20 30 40 50 60 70 80 90 10C

are indeed proportional to each other we have calculategthe % of lowest eigenmodes

values for Monte-Carlo ensembles corresponding tolthe

Wilson couplings in Table g The_ results n Fig. 11 clearly FIG. 10: (Color online) The expectation values of the pasjeectral
demonstrate that there is such a linear relation. (-1) (—2) ; !
Ali fit vield sumsY;, ’ andX, ~’ rotated to the fundamental domain starting
Inear fit yields from the lowest eigenvalue onid x 3 lattice. The graphs are labelled
with 3.

(R0t = —0.00545 - (L) — 4.379 - 10
(rmse = 2.978-107°). (35)  sums

n

Z Zk Z e~ *Ar
k P:i (36)
= & = Edimp) = — Z Zi trexp (=**D)
K
k

For massless fermions ordd x 3 lattice the crude approxi- &, =
mation (28) leads to a slope0.003906. This is not far off the
slope—0.00545 extracted from the Monte-Carlo data.

We have repeated our calculations for the spectral sum
(=21t The corresponding results for the expectation val-

3=

ues in Fig. 12 show again a linear relation between the ex- G, — 1 ZE Xn:e,lzmp‘z

pectation values of this spectral sum and the traced Polyako "k - ¥ f

loop. = (37)
This time a linear fit yield¢x(—2)r0t) = —0.00582- (L) — = G = Gaim(p) = 1 Z Zp trexp (_ZkDT ka) _
8.035-1075. k=

In particular the last expression is used in a heat kernel reg

ularization of the fermionic determinantxG has a well-

behaved continuum limit if we enclose the system in a box

with finite volume. We computed the partial suris for

the flat connections and various values of the traced Polyako
After the convincing results for sums of inverse powers ofloop. In Fig. 13 we plotted those sums for whibhf% or less

the eigenvalues we analyze the partial exponential spectraf the low lying eigenvalues have been included. Similady a

V. EXPONENTIAL SPECTRAL SUMS



x10~3

-3F 4
<E(—1),r0t>
4+ 4

0 0.2 04 056 0.8 1
<Lrot>

FIG. 11: (Color online) The expectation valuesséf )"t as func-
tions of (L*°") on a4® x 3 lattice.

0 0.2 04 Ot6 0.8 1
<Lrot>

FIG. 12: (Color online) The expectation valuesstf 2"t as func-
tions of (L™°%) on a4® x 3 lattice.

for the sums of negative powers of the eigenvalues we con-
jecture that the Gaussian suis are good candidates for an

order parameter in the infrared.
The expectation values of the partial sugjs' and gr°*

_3 1 L 1
0 2.5 7.5 10

5
% of lowest eigenmodes

FIG. 13: (Color online) The partial Gaussian sugsfor flat con-
nections with different.

0.0

x1073
-0.5F

-1.01

-5}

<grot> -20
-2.5¢

-3.01

40F ) ) P

45 L L L L L L L L
0 10 20 30 40 50 60 70 80

% of lowest eigenmodes

FIG. 14: (Color online) Mean exponential surfig’* on a4® x 3-
lattice neam.ris. The graphs are labelled with

Fig. 17. The quality of the linear fit

(%) = —0.00408 - (L*°%) +2.346 - 10°

(rmse = 1.82-107°), (38)

is as good as for the spectral s ).

To estimate the slope and in particular its dependence on the

for Monte-Carlo generated configurations at four Wilson-cou
plings are plotted in Figs. 14 and 15. As expected from ou
studies of flat connections, the Gaussian sums are perfect or
der parameters for the center symmetry. They are superior to
the other spectral sums considered in this paper, since thei
support is even further at the infrared end of the spectrum.
Fig. 16 shows the expectation valug*) with only 4.5%  gjncex(®) is proportional to the traced Polyakov loop fox
or less of the infrared-modes included. The result is again i 3N, we conclude thaf = &, should be proportional to
qualitative agreement with that for flat connectionsin B8, ;" \ve can estimate the proportionality factor as follows: in
although in the Monte-Carlo data the dips are washed out. 1, Wwilson loop expansion af D7) only loops winding
The Monte-Carlo results for the expectation valy&g*) around the periodic time direction contribute. If we negfat
and (L*°*) with Wilson couplings in Table | are depicted in loops and only count the straight loops winding once around

}attice size we expand the exponential€jnwhich results in

=3 g

(39)
p=0 +



0.0
x1073
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5.200
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-1.0F 5.615 |
<grot > 6.000
n
-1.5F B
2.0+ \_ . ]
-25
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% of lowest eigenmodes

10C

FIG. 15: (Color online) Mean Gaussian sugfs® on a4 x 3-lattice
nearf.it. The graphs are labelled with

0.0 <
x1073

-0.5

-1.0 E
<grot>
n
, 5.200 T
20 5.475 e
5615
6.000
25 L L L L L L L L
o 05 1 15 2 25 3 35 4 45

% of lowest eigenmodes
FIG. 16: (Color online) Zooming into Gaussian sugis® on a4>x3-

lattice near the phase transition.

the periodic time direction, then there are

Pﬁj*'P)

(m + d)P-( (40)

such loops contributing. Actually, far > N, there are loops

winding several times around the time direction. But thes
have relatively small entropy and do not contribute much.

Hence, with (39) we arrive at the estimate

St ()

p=0

E ~
(41)
(_I)Nt —(m+d)
—t e L.

Ny!
In 4 dimensions and fom = 0 we obtain the approximate
linear relation

N! &~ (=1)V-0.0183 - L. (42)

x1073
0
1k
<grot> -2
3+
4+
-5 L L L L L
0 0.2 0.4 0.6 0.8 1
<Lrot>

FIG. 17: (Color online) The expectation value&F* as function of
(L") on a4® x 3 lattice.

For the linear fit (38) to the MC-data the slop8i€).00408 =
0.0245 instead 010.0183.

The Monte-Carlo results for the order paramet&f&t)
and(L*°t) with Wilson couplings from Table | are shown in
Fig. 18. In this case the functional dependence is more accu-

0.5

x10~3
0.0 q

-0.5F b
-1.0f b
<grot>
-15}F b

201 4

251 4

_30 1 1 1
0 0.2 0.4 0.6 0.8 1

<Lrot>

é:IG. 18: (Color online) The expectation value@?* as function of

(L*°*) on a4® x 3 lattice.

rately described by a quadratic function,

(G%) = — 0.000571 - (L)% — 0.00156 - (L™")

43
+1.061-107°  (rmse = 1.453-107°), 43)
and this relation is very precise. Since in additighi®) ~
(Gr°*) already for smalh we can reconstruct the order param-
eter(L°*) from the low lying eigenvalues of the Wilson-Dirac
operator.
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statements about the quality of the order paramé&tgfs) or
— Ny =2 <g~rot>_

VI. CONCLUSIONS

firot In this paper we studied spectral sums of the type

i) == a D F () (46)
k p=1

where {**),,} is the set of eigen:/alues of the Wilson-Dirac
operator with twisted gauge field. Summing overdith(D)
eigenvalues the sums oyebecome traces such that

S(f) = = 3zt (+D). (47)
k

FIG. 19: (Color online) The ration&:°* as function of the num-

— O\ ; ;
ber n of IR-eigenvalues included100 eigenvalues corresponds to For f(A) = A™ one finds the spectral suml which re- .
approximatelyl % of all eigenvalues. produces the traced Polyakov loop [10]. Unfortunately this

lattice-result is probably of no use in the continuum limit.
Thus we have used functiorig)\) which vanish for large (ab-
Scaling with N solute) values of\. The corresponding sums are order pa-
rameters which get their main contribution from the infchre
Oind of the spectrum. Of all spectral sums considered here,
the Gaussian sunt, in (37) define the most efficient order
parameters. Besides tg the spectral sums of inverse pow-
ers of eigenvalues are quite useful as well. This obsenvatio
[nay be of interest since these sums relate to the Banks-Cashe
relation.

It remains to investigate the continuum limits of the spactr
sums considered in this paper. The properly normalizgd
should have a well-behaved continuum limit. With regard to
the conjectured relation between confinement and chirat sym
metry breaking it would be more interesting to see whether th

where we multiplied with the extensive factoin (7) since in  suitably normalized sums(—" or/and-(~2) can be defined
the partial sums in the continuum theory. Clearly, the answer to this inténgs
guestion depends on the dimension of spacetime.

On page 6 we discussed the finite (spatial) size scaling
the MC expectation valueZ°*). We showed that they con-
verge rapidly to their infiniteNy limit, see Fig. 8. Here we
study how the Gaussian surfis depend on the temporal ex-
tend of the lattice. To that end we performed simulations o
larger lattices with fixedVy = 6, variableN; = 2,3,4,5 and
Wilson couplings = 6.5. We calculated the ratios

K

Rrot _
n <Lrot>

(Gn), (44)

~ n z 2
G =rGn = 2y e ™ < ] 45)
ko p=l Acknowledgments
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