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We investigate and compute spectral sums of the Wilson lattice Dirac operator for quenchedSU(3) gauge the-
ory. It is demonstrated that there exist sums which serve as order parameters for the confinement-deconfinement
phase transition and get their main contribution from the IRend of the spectrum. They are approximately pro-
portional to the Polyakov loop. In contrast to earlier studied spectral sums some of them are expected to have a
well-defined continuum limit.
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I. INTRODUCTION

Confinement and chiral symmetry breaking are promi-
nent features of strongly coupled gauge theories. If the
gauge group contains a non-trivial centerZ, then the traced
Polyakov loop [1, 2]

Lx = trc Px , Px =

Nt
∏

τ=1

U0(τ,x ) (1)

serves as an order parameter for confinement in pure gauge
theories or (supersymmetric) gauge theories with matter inthe
adjoint representation. The dynamics ofLx near the phase
transition point is effectively described by generalized Potts
models [3, 4]. Here we consider the space-independent ex-
pectation values〈Lx 〉 only and thus may replaceLx by its
spatial average

L =
1

Vs

∑x Lx , Vs = Nd−1
s . (2)

The expectation value〈L〉 is zero in the center-symmetric
confining phase and non-zero in the center-asymmetric decon-
fining phase.

Chiral symmetry breaking, on the other hand, is related to
an unusual distribution of the low lying eigenvalues of the
Euclidean Dirac operatorD [5]. In the chirally broken low-
temperature phase the typical distribution is dramatically dif-
ferent from that of the free Dirac operator since a typical level
densityρ(λ) for the eigenvalues per volume does not vanish
for λ → 0. Indeed, according to the celebrated Banks-Casher
relation [6], the mean density in the infrared is proportional to
the quark condensate,

〈ρ(0)〉 = −
1

π
〈0|ψ̄ψ|0〉. (3)

Which class of gauge field configurations gives rise to this un-
usual spectral behavior has not been fully clarified. It may
be a liquid of instanton-type configuration [7]. Simulations
of finite temperatureSU(3) gauge theory without dynamical
quarks reveal a first order confinement-deconfinement phase
transition at 260 MeV. At the same temperature the chiral con-
densate vanishes. This indicates that chiral symmetry break-
ing and confinement are most likely two sides of a coin ([8],
for a review see e.g. [9]).

Although it is commonly believed that confinement and chi-
ral symmetry breaking are deeply related, no analytical ev-
idence of such a link existed up to a recent observation by
Christof Gattringer [10]. His formula holds for lattice regu-
lated gauge theories and is most simply stated for Dirac op-
erators with nearest neighbor interactions. Here we consider
fermions with ultra-local andγ5-hermitean Wilson-Dirac op-
erator

〈y|D|x〉 = (m+ d)δxy −
1

2

d−1
∑

µ=0

(

(1 + γµ)U−µ(x)δy,x−eµ

+(1 − γµ)Uµ(x)δy,x+eµ

)

, (4)

whereU±µ(x) denotes the parallel transporter from sitex to
its neighboring sitex± eµ such thatU−µ(x+ eµ)Uµ(x) = 1
holds true. Since we are interested in the finite temperature
behavior we choose an asymmetric lattice withNt sites in the
temporal direction andNs ≫ Nt sites in each of thed − 1
spatial directions. We impose periodic boundary conditions
in all directions. The

dim(D) = V × 2[d/2] ×Nc, V = Nt × Vs, (5)

eigenvalues of the Dirac operator in a background field
{Uµ(x)} are denoted byλp. The non-real ones occur in com-
plex conjugated pairs sinceD is γ5-hermitian. IfNt andNs

are both even, thenλp → 2(d+m)−λp is a further symmetry
of the spectrum.

Following [10, 11] wetwist the gauge field configuration
with a center element as follows (see Fig. 1): All temporal
link variablesU0(τ,x ) at afixed timeτ are multiplied with an
elementz in the centerZ of the gauge group. The twisted con-
figuration is denoted by{zU}. The Wilson loopsWC for all
contractableloopsC are invariant under this twisting whereas
the Polyakov loopsPx pick up the center element,

WC(zU) = WC(U) and Px (zU) = zPx (U). (6)

The Dirac-eigenvalues for the twisted configuration are de-
noted byzλp. The remarkable and simple identity in [10, 11]
relates the traced Polyakov loopL to a particular spectral sum,

L =
1

κ

|Z|
∑

k=1

z̄k

dim(D)
∑

p=1

(zkλp)
Nt , κ = (−1)Nt2[d/2]−1V |Z|.

(7)
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FIG. 1: (Color online) Twist of the gauge field configuration with a
centre element of the gauge group.

The first sum extends over the elementsz1, z2, . . . in the cen-
terZ containing the group identitye for whicheλp = λp. The
second sum contains theNt’th power of all eigenvalues of the
Dirac operatorzkD with twisted gauge fields{zkU}. It is just
the trace or(zkD)Nt , such that

L =
1

κ

∑

k

z̄k tr (zkD)Nt ≡ Σ. (8)

We stress that the formula (8) holds whenever the gauge group
admits a non-trivial center. In [10] it was proved forSU(Nc)
with centerZ(Nc) andκ = 1

2 (−)Nt dim(D). In [11] the
Dirac operator for staggered fermions and gauge groupSU(3)
was investigated and a formula similar to (8) was derived.
Note that (8) is not applicable to the gauge groupsG2, F4 and
E8 with trivial centers.

For completeness we sketch the proof given in [10], slightly
generalized to incorporate all gauge groups with non-trivial
centers. The Wilson-Dirac operator contains hopping terms
between nearest neighbors on the lattice. A hop from sitex
to its neighboring sitex ± eµ is accompanied by the factor
− 1

2 (1 ∓ γµ)Uµ(x) and staying atx is accompanied by the
factorm + d. Taking theℓ′th power ofD, the single hops
combine to chains ofℓ or less hops on the lattice. In particular
the tracetrDℓ is described by loops withat mostℓ hops. Each
loopC contributes a term proportional to the Wilson loopWC .

On an asymmetric lattice withNt < Ns all loops with
length< Nt are contractableand since the corresponding
Wilson loopsWC do not change under twisting one concludes

tr zDℓ = trDℓ for ℓ < Nt. (9)

For any matrix group with non-trivialZ the center elements
sum to zero,

∑

zk = 0, such that
∑

k

z̄ktr
(

zkDℓ) = tr
(

Dℓ
)

∑

k

z̄k = 0 for ℓ < Nt. (10)

For ℓ = Nt only the Polyakov loops winding once around
the periodic time direction are not contractable. Under a twist
by {U} → {zU} they are multiplied byz, see (6). With

∑

k z̄kzk = |Z| we end up with the result (8) which gener-
alizes Gattringer formula to arbitrary gauge groups with non-
trivial center. What happens forℓ > Nt in (10) will be dis-
cussed below.

In [11] the average shift of the eigenvalues when one twists
the configurations has been calculated. It was observed that
aboveTc the shift is greater than belowTc and that the eigen-
values in the infrared are more shifted than those in the ultra-
violet. But the low lying eigenvalues are relatively suppressed
in the sum (7) such that the main contribution comes from
large eigenvalues. Indeed, if one considers thepartial sums

Σn =
1

κ

∑

k

z̄k

n
∑

p=1

zkλNt

p , n ≤ dim(D), (11)

where the eigenvalues are ordered according to their absolute
values, then on a63 × 4-lattice70% of all eigenvalues must
be included in (11) to obtain a reasonable approximation to
the traced Polyakov loop [11]. Actually, if one includes fewer
eigenvalues then the partial sums have a phase shift ofπ rela-
tive to the traced Polyakov loop. For largeNt the contribution
from the ultraviolet part of the spectrum dominates the sum
(7). Thus it is difficult to see how the nice lattice result (8)
could be of any relevance for continuum physics.

The paper is organized as follows: In the next section
we introduce flat connections with zero curvature but non-
trivial Polyakov loops. The corresponding eigenvalues of
the Wilson-Dirac operator are determined and spectral sums
with support in the infrared of the spectrum are defined and
computed. The results are useful since they are in qualita-
tive agreement with the corresponding results of Monte-Carlo
simulations. In section III we recall the construction of the
real order parameterLrot related to the Polyakov loop [4].
Its Monte-Carlo averages are compared with the averages of
the partial sums (11). Our results for Wilson-Dirac fermions
are in qualitative agreement with the corresponding results for
staggered fermions in [11]. In section IV we discuss spectral
sums for inverse powers of the eigenvalues. Their Monte-
Carlo averages are proportional to〈Lrot〉 such that they are
useful order parameters for the center symmetry. We show
that these order parameters are supported by the eigenvalues
from the infrared end of the spectrum. Section V contains
similar results for exponential spectral sums. Again we find
a linear or quadratic relation between their Monte-Carlo av-
erages and〈Lrot〉. It suffices to include only a small number
of infrared eigenvalues in these sums to obtain efficient or-
der parameters. We hope that the simple relations between
the infrared-supported spectral sums considered here and the
expectation value〈Lrot〉 are of use in the continuum limit.

II. FLAT CONNECTIONS

We checked our numerical algorithms against the analyt-
ical results for curvature-free gauge field configurations with
non-trivial Polyakov loop. For these simple configurationsthe
spatial link variables are trivial and the temporal link variables
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are space-independent,

Ui(x) = 1 and U0(x) = U0(τ), x = (τ,x ). (12)

The Wilson loopsWC of all contractableC are trivial which
shows that these configurations are curvature-free. We call
themflat connections. With the gauge transformation

Ω(τ) = P−1
τ , Pτ = U0(τ − 1)U0(τ − 2) · · ·U0(2)U0(1)

(13)
all link-variables of a flat connection are transformed intothe
group-identity. But the transformed fermion fields are not pe-
riodic in time anymore,

ψ(τ +Nt,x ) = P−1ψ(τ,x ), where P = PNt+1 (14)

is just the constant Polyakov loop. Since the transformed
Dirac operator is the free operator, its eigenfunctions areplane
waves,

ψ(x) = eipxψ0. (15)

These are eigenmodes of the free Wilson-Dirac operator with
eigenvalues{λp} = {λ±p }, where

λ±p = m±i|p̊|+
rp̂2

2
, with p̂µ = 2 sin

pµ

2
, p̊µ = sin pµ.

(16)
They are periodic in the space directions provided the spatial
momenta are from

pi ∈
2π

Ns
ni with ni ∈ ZNs

. (17)

Denoting the eigenvalues of the Polyakov loop by
e2πiϕ1 , . . . , e2πiϕNc , the periodicity conditions (14) im-
ply

p0 =
2π

Nt
(n0 − ϕj), n0 ∈ ZNt

, j = 1, . . . , Nc. (18)

Thus the eigenvalues of the Wilson-Dirac operator with a flat
connection are given in (16), with quantized momenta (17)
and (18). For each momentumpµ there exist2[d/2]−1 eigen-
valuesλ+

p and2[d/2]−1 complex conjugated eigenvaluesλ−p .
Next we twist the flat connections with a center-element,

for SU(Nc) with

zk = e2πik/Nc1, 1 ≤ k ≤ Nc. (19)

The spatial components of the momenta are still given by (17),
but their temporal component is shifted by an amount propor-
tional tok,

p0(zk) ∈

{

2π

Nt
(n0 − ϕj − k/Nc)

}

, 1 ≤ j, k ≤ Nc.

(20)
In the following we consider flatSU(3)-connections with
Polyakov loops

P(θ) =





e2πiθ 0 0
0 1 0
0 0 e−2πiθ



 =⇒ L = 1+2 cos(2πθ). (21)

For these fields the temporal component of the momentum
takes values from

p0(zk) ∈

{

2π

Nt
(n0 − jθ − k/3)

}

,

j ∈ {−1, 0, 1}, k ∈ {0, 1, 2}. (22)

We have calculated the spectral sums

Σ(ℓ) =
1

κ

∑

k

z̄k

dim(D)
∑

p=1

(zkλp)
ℓ
=

1

κ

∑

k

z̄k tr (zkD)
ℓ (23)

for vanishing mass. For flat connections the sums with powers
ℓ betweenNt and2Nt are strictly proportional to the traced
Polyakov loop,Σ(ℓ) = CℓL(θ). Gattringers result implies
CNt

= 1. The next two coefficients are related to the number
of loops of lengthNt +1 andNt +2 winding once around the
periodic time direction. One finds

CNt+1 = d(Nt + 1) and

CNt+2 =
d2

2
(Nt + 2)(Nt + 1) +

d− 1

4

(

Nt(Nt + 1) − 2
)

.

(24)

More generally, the relation
∑

z̄kz
ℓ
k = 0 for ℓ /∈ 3Z + 1

implies that the spectral sums (23) are linear combinationsof
the tracestrP3n+1(θ) for sufficiently small values of|3n+1|,

Σ(ℓ) =
∑

n: |3n+1|Nt≤ℓ

C
(n)
ℓ trP3n+1(θ). (25)

In Fig. 2 we depicted the sumsΣ(ℓ) on a4 × 123 lattice, di-
vided by the traced Polyakov loop and normalized to one for
θ = 0 for the flat connections and the powersℓ = Nt, 3Nt

and3.6Nt. Note that the powerℓ in (23) need not be an inte-
ger.

θ

0 0.5 1

1.00

0.98

0.96

∝ Σ(ℓ)/L

ℓ = Nt

ℓ = 3 · Nt

ℓ = 3.6 · Nt

FIG. 2: (Color online) Spectral sumsΣ(ℓ) divided by the traced
Polyakov loop as functions ofθ for different values ofℓ.

We have argued that the sumΣ(ℓ) must be a linear combina-
tion of trP andtrP−2 for ℓ between2Nt and4Nt. Actually,
up to ℓ ≈ 3Nt the sum is well approximated by a multiple
of trP . This is explained by the fact that for a givenℓ there
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are much more fat loops winding once around the periodic
time direction and contributing withtrP than there are thin
long loops winding many times around and contributing with
trP−2, trP4, trP−5, . . . . We shall see that similar results
apply to the expectation values ofΣ(ℓ) in Monte-Carlo gener-
ated ensembles of gauge fields.

Since the eigenvalues in the infrared are mostly affected
by the twisting [11] we could as well choose a spectral sum
for which the ultraviolet end of the spectrum is suppressed.
SinceΣ(ℓ) with ℓ ≤ 3Nt is almost proportional to the traced
Polyakov loop there exist many such spectral sums. They de-
fine order parameters for the center symmetry and may pos-
sess a well-defined continuum limit. For example, the expo-
nential sums

E(ℓ) =
1

κ

∑

k

z̄k

dim(D)
∑

p=1

e−ℓ·λp(zk U), (26)

are all proportional to the traced Polyakov loop for a factor
ℓ in the exponent between0.1 and2. In Fig. 3 we displayed
exponential sums for the flat connections on a4 × 123-lattice
and variousℓ between0.1 and2. Again we divided by the
traced Polyakov loopL(θ) and normalized the result to unity
for θ = 0.

10.50

θ

1.00

0.95

∝ E(ℓ)/L

ℓ = 1

ℓ = 0.1

ℓ = 2

FIG. 3: (Color online) Spectral sumsE (ℓ) divided by the traced
Polyakov loop as functions ofθ for different values ofℓ.

When we use Monte-Carlo generated configurations to cal-
culate the expectation values ofL andE(ℓ) we shall choose
ℓ = 1. For this choice the mean exponential sum will be pro-
portional to the meanL. Later we shall argue why this is the
case.

III. DISTRIBUTION OF DIRAC EIGENVALUES FOR SU(3)

We have undertaken extended numerical studies of the
eigenvalue distributions and various spectral sums for the
Wilson-Dirac operator inSU(3) lattice gauge theory. First
we summarize our results on the partial traces

Σ(ℓ)
n =

1

κ

∑

k

z̄k

n
∑

p=1

zkλℓ
p , n ≤ dim(D), |λp| ≤ |λp+1|.

(27)

Forn = dim(D) one sums over all eigenvalues of the Dirac-
operator and obtains the tracesΣ(ℓ) considered in (23). For
ℓ = Nt one finds the partial sumsΣn in (11). These have been
extensively studied for staggered fermions in [11]. According
to the result (7) the objectΣdim(D) is just the traced Polyakov
loop.

We did simulations on lattices with sizes up to83×4. Here
we report on the results obtained on a43×3 lattice with critical
couplingβcrit ≈ 5.49, determined with the histogram method
based on40 000 configurations. The dependence of the two
order parameters|L| andLrot (see below) on the Wilson cou-
pling β has been calculated for35 differentβ and is depicted
in Fig. 4. For eachβ between4 000 and20 000 independent

β

L

〈|L|〉
˙

Lrot
¸

5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

FIG. 4: (Color online) Dependence of the mean modulus ofL and the
center-transformed and rotatedL (see text) on the Wilson coupling
β on a43 × 3 lattice. The critical coupling isβcrit = 5.49.

configuration have been generated and analyzed. For our rel-
atively small lattices the two order parameters change grad-
ually from the symmetric confined to the broken deconfined
phase. Table I contains the order parameters for11 Wilson
couplings. For every independent configuration we calculated
thedim(D) = 2304 eigenvalues of the Wilson-Dirac opera-
tor. Then we averaged the absolute values of the partial traces
Σn for everyβ in Table I. In Fig. 5 the ratios

Rn =
〈|Σn|〉

〈|L|〉
(28)

are plotted for theseβ as function of the percentage of eigen-
values considered in the partial traces.
To retain information on the phase of the partial traces and
Polyakov loop we used the invariant order parameter con-
structed in [4]. Recall that the domain for the traced Polyakov
loop is the triangle shown in Fig. 6. The three elements in
the center ofSU(3) correspond to the corners of the trian-
gle. We divide the domain into the six distinct parts in Fig. 6.
The light-shaded region represents the preferred locationof
the traced Polyakov loopL in the deconfined (ferromagnetic)
phase, whereas the dark-shaded region corresponds to the hy-
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TABLE I: Dependence of the order parameters|L| andLrot on the Wilson couplingβ.

β 5.200 5.330 5.440 5.475 5.505 5.530 5.560 5.615 5.725 5.885 6.000

〈|L|〉 0.1654 0.1975 0.3050 0.3980 0.5049 0.5939 0.6865 0.7832 0.9007 1.0013 1.0631

〈Lrot〉 0.0318 0.0615 0.1859 0.3013 0.4296 0.5363 0.6452 0.7513 0.8770 0.9797 1.0444

% of lowest eigenmodes

Rn

5.200
5.330
5.440
5.475
5.505
5.530
5.560
5.725
6.000

0 10 20 30 40 50 60 70 80 90 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

FIG. 5: (Color online) Modulus of the eigenvalue sums starting from
the lowest eigenmodes on a43×3-lattice near the phase transition.
The distinct graphs are labelled with the Wilson couplingβ.
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FIG. 6: (Color online) Fundamental domainF of L obtained by
identifying Z(3) copies according to the depicted arrows.

pothetical anti-center ferromagnetic phase [12]. In the de-
confined phaseL points in the direction of a center element
whereas it points in the opposite direction in the anti-center
phase. To eliminate the superfluous center-symmetry we iden-
tify the regions as indicated by the arrows in Fig. 6. This
way we end up with afundamental domainF for the center-
symmetry along the real axis. EveryL is mapped intoF by

a center transformation. To finally obtain a real observable
we rotate the transformedL insideF onto the real axis. The
result is the variableLrot whose sign clearly distinguishes be-
tween the different phases.Lrot is negative in the anti-center
phase, positive in the deconfined phase and zero in the con-
fined symmetric phase. The objectLrot is a useful order pa-
rameter for the confinement-deconfinement phase transition
in gluodynamics [4].

We performed the same construction with the partial sums
Σn and calculated the ratios for the corresponding Monte-
Carlo averages

Rrot
n =

〈Σrot
n 〉

〈Lrot〉
(29)

for everyβ in Table I as a function of the percentage of eigen-
values considered inΣn. In Figs. 5 and 7 we observe a uni-

% of lowest eigenmodes

Rrot
n

5.330
5.440
5.475
5.505
5.530
5.560
5.725
6.000

0 10 20 30 40 50 60 70 80 90 100
-1.0

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1.0

FIG. 7: (Color online) Eigenvalue sums rotated to the fundamental
domain starting from the lowest eigenmodes on a43×3-lattice near
the phase transition. The distinct graphs are labelled withthe Wilson
coupling.

versal behavior in the deconfined phase with modulus of the
traced Polyakov loop larger than approximately0.4. If we in-
clude less than90% of the eigenvalues, then the partial sums
Σn have a phase shift ofπ in comparison withΣ = Σdim(D).
The last dip in Fig. 5 is due to this phase shift and indi-
cates the transition through zero that occurs whenΣn changes
sign. The same shift and dip has been reported for staggered
fermions on a63×4 lattice in [11]. For staggered fermionsΣn

andΣ are in phase forn ≥ 0.65 · dim(D). For Wilson-Dirac
fermions this happens only forn ≥ 0.9 · dim(D).
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A. Finite spatial size scaling of partial sums

We fixed the coupling atβ = 5.5 and simulated in the de-
confined phase onN3

s × 2-lattices with varying spatial sizes
Ns ∈ {3, 4, 5}. For this coupling the systems are deep in
the broken phase and we can study finite size effects on the
spectral sums. The results forΣrot

n are depicted in Fig. 8.

% of lowest eigenmodes

˙

Σrot
n

¸

Ns = 3

Ns = 4

Ns = 5

0 10 20 30 40 50 60 70 80 90 100
-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

FIG. 8: (Color online) Rotated eigenvalue sums starting from the
lowestλp on aN3

s ×2-lattice in the broken phase.

We observe that to a high precisionΣrot
n is approximately

independent of the spatial volume. The curves forNs = 4
and 5 are not distinguishable in the plot and as expected
∑

k z̄ktr(zkDNt) scales with the spatial volume of the sys-
tem. An increase ofNs affects the spectra for the untwisted
and twisted configurations alike – they only become denser
with increasing spatial volume. On the other hand, comparing
Figs. 7 and 8, it is evident that the graph of〈Σrot

n 〉 depends on
the temporal extent of the lattice.

B. Partial traces Σ
(ℓ)
n

The truncated eigenvalue sums (27) with different powersℓ
of the eigenvalues show an universal behavior that is nearlyin-
dependent of the lattice size. The main reason for this univer-
sality and in particular the sign ofΣ(ℓ)

n is found in the response
of the low-lying eigenvalues to twisting the gauge field. It
has been observed that for non-periodic boundary conditions
(which are gauge-equivalent to twisting the gauge field) the
low lying eigenvalues are on the average further away from
the origin as compared to periodic boundary conditions (or
untwisted gauge fields) [13–16]. This statement is very clear
for massless staggered fermions with eigenvalues on the imag-
inary axis. For example, the partial traces

Σ(1)
n ∝

n
∑

p=1

λp + z̄

n
∑

p=1

zλp + z

n
∑

p=1

z̄λp, |λp| ≤ |λp+1|.

(30)

with n≪ dim(D) and the traced Polyakov loop have opposite
phases. This is explained as follows: all sums in (30) are
positive and on the average the last two sums are equal. With
z + z̄ = −1 the last two terms add up to−

∑

zλp. Since the
low lying eigenvalues for the twisted field are further away
from the origin as for the untwisted field, the spectral sums
(30) are negative for smalln.

IV. TRACES OF PROPAGATORS

To suppress the contributions of large eigenvalues we intro-
duce spectral sumsΣ(ℓ) with negative exponentsℓ. Similar to
the Polyakov loop these sums serve as order parameters for
the center symmetry. In particular the spectral sums

Σ(−1) =
1

κ

∑

k

tr
( z̄k

zkD

)

and Σ(−2) =
1

κ

∑

k

tr

(

z̄k

zkD2

)

(31)
are of interest, since they relate to the Green functions ofD
andD2, objects which enter the discussion of the celebrated
Banks-Casher relation. Contrary to the ultraviolet-dominated
sums with positiveℓ are the sums with negativeℓ dominated
by the eigenvalues in the infrared. The operators{zD, z∈Z}
have similar spectra and we may expect thatκΣ(−1) has a
well-behaved continuum limit. Here we consider the partial
traces

Σ(−1)
n =

1

κ

∑

k

z̄k

n
∑

p=1

1
zkλp

, and

Σ(−2)
n =

1

κ

∑

k

z̄k

n
∑

p=1

1

(zkλp)2
, |λp| ≤ |λp+1|.

(32)

Since the Wilson-Dirac operator with flat connection pos-
sesses zero-modes we added a small massm = 0.1 to the
denominators in (32). In Fig. 9 the partial sumsΣ

(−1)
n on a

43 × 3 lattice are plotted. It is seen that for flat connections
the Σ

(−1)
n for smalln are excellent indicators for the traced

Polyakov loop. Thus it is tempting to proposeΣ
(−1)
n , Σ

(−2)
n

with n ≪ dim(D) as order parameters for the center symme-
try. To test this proposal we calculated the partial sums (32),
transformed to the fundamental domain and rotated to the real
axis, for Monte-Carlo generated configurations on a43 × 3
lattice for various values ofβ. The results in Fig. 10 are qual-
itatively similar to those for the flat connections. Taking into
account10% of the eigenvalues in the IR already yields the
asymptotic valuesΣ(−1),rot andΣ(−2),rot.

To find an approximate relation betweenΣ(−1) and the
traced Polyakov loop we applied the hopping-parameter ex-
pansion. To that end one expands the inverse of the Wilson-
Dirac operatorD = (m+ d)1− V in powers ofV ,

D−1 =
1

m+ d

∑

k

1

(m+ d)k

[

(m+ d)1−D
]k
. (33)

Inserting this Neumann series intoΣ(−1) in (31) and keeping
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1000 · Σ
(−1)
n

% of lowest eigenmodes

0 1005025 75

0

−10

−20

−30

L = 0.25

L = 0.50

L = 0.75

L = 1.00

FIG. 9: (Color online) The partial spectral sumsΣ
(−1)
n for the inverse

power and flat connections.

the leading term only yields

Σ(−1) =
(−1)Nt

(m+ d)Nt+1
Σ(Nt) + · · ·

(8)
≈

(−1)Nt

(m+ d)Nt+1
L.

(34)
To check whether the expectation values ofΣ(−1),rot andLrot

are indeed proportional to each other we have calculated these
values for Monte-Carlo ensembles corresponding to the11
Wilson couplings in Table I. The results in Fig. 11 clearly
demonstrate that there is such a linear relation.
A linear fit yields

〈Σ(−1),rot〉 = −0.00545 · 〈Lrot〉 − 4.379 · 10−6

(rmse = 2.978 · 10−5). (35)

For massless fermions on a43 × 3 lattice the crude approxi-
mation (28) leads to a slope−0.003906. This is not far off the
slope−0.00545 extracted from the Monte-Carlo data.

We have repeated our calculations for the spectral sum
Σ(−2),rot. The corresponding results for the expectation val-
ues in Fig. 12 show again a linear relation between the ex-
pectation values of this spectral sum and the traced Polyakov
loop.
This time a linear fit yields〈Σ(−2),rot〉 = −0.00582 · 〈Lrot〉−
8.035 · 10−5.

V. EXPONENTIAL SPECTRAL SUMS

After the convincing results for sums of inverse powers of
the eigenvalues we analyze the partial exponential spectral

% of lowest eigenmodes

D

Σ
(−1),rot
n

E

5.200
5.475
5.615
6.000

0 10 20 30 40 50 60 70 80 90 100
-7

-6

-5

-4

-3

-2

-1

0×10−3

% of lowest eigenmodes

D

Σ
(−2),rot
n

E

5.200
5.475
5.615
6.000

0 10 20 30 40 50 60 70 80 90 100
-7

-6

-5

-4

-3

-2

-1

0×10−3

FIG. 10: (Color online) The expectation values of the partial spectral
sumsΣ

(−1)
n andΣ

(−2)
n rotated to the fundamental domain starting

from the lowest eigenvalue on a43×3 lattice. The graphs are labelled
with β.

sums

En =
1

κ

∑

k

z̄k

n
∑

p=1

e−
zkλp

=⇒ E ≡ Edim(D) =
1

κ

∑

k

z̄k tr exp (−zkD)

(36)

Gn =
1

κ

∑

k

z̄k

n
∑

p=1

e−|zkλp|
2

=⇒ G ≡ Gdim(D) =
1

κ

∑

k

z̄k tr exp
(

−zkD† zkD
)

.

(37)

In particular the last expression is used in a heat kernel reg-
ularization of the fermionic determinant.κG has a well-
behaved continuum limit if we enclose the system in a box
with finite volume. We computed the partial sumsGn for
the flat connections and various values of the traced Polyakov
loop. In Fig. 13 we plotted those sums for which10% or less
of the low lying eigenvalues have been included. Similarly as
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˙

Lrot
¸

˙

Σ(−1),rot
¸

0 0.2 0.4 0.6 0.8 1
-7

-6

-5

-4

-3

-2

-1

0
×10−3

FIG. 11: (Color online) The expectation values ofΣ(−1),rot as func-
tions of〈Lrot〉 on a43 × 3 lattice.

˙

Lrot
¸

˙

Σ(−2),rot
¸

0 0.2 0.4 0.6 0.8 1
-8

-7

-6

-5

-4

-3

-2

-1

0
×10−3

FIG. 12: (Color online) The expectation values ofΣ(−2),rot as func-
tions of〈Lrot〉 on a43 × 3 lattice.

for the sums of negative powers of the eigenvalues we con-
jecture that the Gaussian sumsGn are good candidates for an
order parameter in the infrared.

The expectation values of the partial sumsErot
n andGrot

n

for Monte-Carlo generated configurations at four Wilson cou-
plings are plotted in Figs. 14 and 15. As expected from our
studies of flat connections, the Gaussian sums are perfect or-
der parameters for the center symmetry. They are superior to
the other spectral sums considered in this paper, since their
support is even further at the infrared end of the spectrum.
Fig. 16 shows the expectation values〈Grot

n 〉 with only 4.5%
or less of the infrared-modes included. The result is again in
qualitative agreement with that for flat connections in Fig.13,
although in the Monte-Carlo data the dips are washed out.

The Monte-Carlo results for the expectation values〈Erot〉
and〈Lrot〉 with Wilson couplings in Table I are depicted in

1000 · Gn

% of lowest eigenmodes
0 1052.5 7.5

−1

−2

0

−3

L = 0.25

L = 0.50

L = 0.75

L = 1.00

FIG. 13: (Color online) The partial Gaussian sumsGn for flat con-
nections with differentL.

% of lowest eigenmodes

˙

Erot
n

¸

5.200
5.475
5.615
6.000

0 10 20 30 40 50 60 70 80 90 100
-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

×10−3

FIG. 14: (Color online) Mean exponential sumsE rot
n on a43 ×3-

lattice nearβcrit. The graphs are labelled withβ.

Fig. 17. The quality of the linear fit

〈Erot〉 = −0.00408 · 〈Lrot〉 + 2.346 · 10−5

(rmse = 1.82 · 10−5), (38)

is as good as for the spectral sumΣ(−1).
To estimate the slope and in particular its dependence on the
lattice size we expand the exponentials inEn which results in

En = (−)Nt

∞
∑

p=0

(−1)p

(Nt + p)!
Σ(Nt+p)

n . (39)

SinceΣ(ℓ) is proportional to the traced Polyakov loop forℓ ≤
3Nt we conclude thatE = Edim(D) should be proportional to
L. We can estimate the proportionality factor as follows: in
the Wilson loop expansion oftrD(Nt+p) only loops winding
around the periodic time direction contribute. If we neglect fat
loops and only count the straight loops winding once around
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% of lowest eigenmodes

˙

Grot
n

¸
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6.000
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-0.5
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×10−3

FIG. 15: (Color online) Mean Gaussian sumsGrot
n on a43×3-lattice

nearβcrit. The graphs are labelled withβ.

% of lowest eigenmodes

˙

Grot
n

¸

5.200
5.475
5.615
6.000
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-2.5
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-0.5
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FIG. 16: (Color online) Zooming into Gaussian sumsGrot
n on a43×3-

lattice near the phase transition.

the periodic time direction, then there are

(m+ d)p ·

(

Nt + p

p

)

(40)

such loops contributing. Actually, forp ≥ Nt there are loops
winding several times around the time direction. But these
have relatively small entropy and do not contribute much.
Hence, with (39) we arrive at the estimate

E ≈ (−1)Nt

∑

p=0

(−1)p

(Nt + p)!
(m+ d)p ·

(

Nt + p

p

)

· L

=
(−1)Nt

Nt!
e−(m+d)L.

(41)

In 4 dimensions and form = 0 we obtain the approximate
linear relation

Nt! E ≈ (−1)Nt · 0.0183 · L. (42)

˙

Lrot
¸

˙

Erot
¸

0 0.2 0.4 0.6 0.8 1
-5

-4

-3

-2

-1

0

1

×10−3

FIG. 17: (Color online) The expectation value ofE rot as function of
〈Lrot〉 on a43 × 3 lattice.

For the linear fit (38) to the MC-data the slope is3!·0.00408 =
0.0245 instead of0.0183.

The Monte-Carlo results for the order parameters〈Grot〉
and〈Lrot〉 with Wilson couplings from Table I are shown in
Fig. 18. In this case the functional dependence is more accu-

˙

Lrot
¸

˙

Grot
¸

0 0.2 0.4 0.6 0.8 1
-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

×10−3

FIG. 18: (Color online) The expectation value ofGrot as function of
〈Lrot〉 on a43 × 3 lattice.

rately described by a quadratic function,

〈Grot〉 = − 0.000571 · 〈Lrot〉2 − 0.00156 · 〈Lrot〉

+ 1.061 · 10−5 (rmse = 1.453 · 10−5),
(43)

and this relation is very precise. Since in addition〈Grot
n 〉 ≈

〈Grot〉 already for smallnwe can reconstruct the order param-
eter〈Lrot〉 from the low lying eigenvalues of the Wilson-Dirac
operator.
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R̃rot
n
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Nt = 4

Nt = 5

0 10 20 30 40 50 60 70 80 90 100
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FIG. 19: (Color online) The rations̃Rrot
n as function of the num-

ber n of IR-eigenvalues included.100 eigenvalues corresponds to
approximately1% of all eigenvalues.

Scaling with Nt

On page 6 we discussed the finite (spatial) size scaling of
the MC expectation values〈Σrot

n 〉. We showed that they con-
verge rapidly to their infinite-Ns limit, see Fig. 8. Here we
study how the Gaussian sumsGn depend on the temporal ex-
tend of the lattice. To that end we performed simulations on
larger lattices with fixedNs = 6, variableNt = 2, 3, 4, 5 and
Wilson couplingβ = 6.5. We calculated the ratios

R̃rot
n =

κ

〈Lrot〉
〈Grot

n 〉, (44)

where we multiplied with the extensive factorκ in (7) since in
the partial sums

G̃n = κGn =
∑

k

z̄k

n
∑

p=1

e−|zkλp|
2

, |λp| ≤ |λp+1|. (45)

only a tiny fraction of the5184 to 12 960 eigenvalues have
been included. The order parameter〈Lrot〉 for the lattices with
Nt = 2, 3, 4, 5 is 1.9474, 1.40194, 0.932245, 0.523142. In
Fig. 19 we plotted the ratios̃Rrot

n for n from1 up to100. Note
that on the63 × 5-latticen = 100 means less than0.8% of all
12 960 eigenvalues. This figure very much supports our earlier

statements about the quality of the order parameters〈Grot
n 〉 or

〈G̃rot
n 〉.

VI. CONCLUSIONS

In this paper we studied spectral sums of the type

Sn(f) =
1

κ

∑

k

z̄k

n
∑

p=1

f (zkλp) (46)

where{zkλp} is the set of eigenvalues of the Wilson-Dirac
operator with twisted gauge field. Summing over alldim(D)
eigenvalues the sums overp become traces such that

S(f) =
1

κ

∑

k

z̄k trf (zkD) . (47)

For f(λ) = λNt one finds the spectral sumΣ which re-
produces the traced Polyakov loop [10]. Unfortunately this
lattice-result is probably of no use in the continuum limit.
Thus we have used functionsf(λ) which vanish for large (ab-
solute) values ofλ. The corresponding sums are order pa-
rameters which get their main contribution from the infrared
end of the spectrum. Of all spectral sums considered here,
the Gaussian sumsGn in (37) define the most efficient order
parameters. Besides theGn the spectral sums of inverse pow-
ers of eigenvalues are quite useful as well. This observation
may be of interest since these sums relate to the Banks-Casher
relation.

It remains to investigate the continuum limits of the spectral
sums considered in this paper. The properly normalizedGn

should have a well-behaved continuum limit. With regard to
the conjectured relation between confinement and chiral sym-
metry breaking it would be more interesting to see whether the
suitably normalized sumsΣ(−1) or/andΣ(−2) can be defined
in the continuum theory. Clearly, the answer to this interesting
question depends on the dimension of spacetime.
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