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1. Introduction

The study of two dimensional physical systemns has provided many important
insights into four dimensional physics. In this paper we shall (among other
things) investigate the behaviour of spinors coupled to gauge fields on arbitrary
Euclidean two dimensional manifolds. In particular we shall be interested in the
determinant of the Dirac operator. Indeed the determinant of any wave operator
contains all the one-loop physics associated with that operator; it is just the
exponential of the one-loop effective action. Our analysis is relevent to a number

of physical models of considerable interest, including:
1. Schwinger models on curved two-manifolds.
2. Thirring models on curved two-manifolds * .
3. Superstrings with the addition of world-sheet vector fields [2].

We evaluate the determinant using the zeta function technique. In the in-
terests of completeness a brief overview of the technique will be presented. We
shall then prove a theorem that generates an ordinary differential equation for
the determinant in terms of a Seeley-de Witt coefficient [3]. Integration of this
equation shall be our main technique for evaluating determinants. This integra-
tion is most easily carried out in two dimensions, and we shall concentrate on
this case. We also indicate how the techniques developed in this paper may be
used in evaluating determinants of wave operators defined on four dimensional

spacetime.

The organization of this paper is as follows. In section 2 we define the zeta
function and determinant of a differential operator. In section 3 we derive a
differential equation relating the determinants of a family of Dirac operators. In
section 4 we consider the conformal dependence of the ungauged Dirac operator.

In section 5 we add an Abelian gauge field. We find that on compact manifolds

* Note that Thirring models have been introduced into modern string theory by Bagger et al.

(.



with noncontractible loops there are gauge fields with vanishing field strength
which nevertheless influence both the eigenvalues and the determinant. In section

6 we address the non-Abelian case. Finally we have a few words to say about

Laplacians and also about four dimensions.



2. Defining the Determinant

Among the various definitions of determinant in use we find that for our
purposes the most convenient is the zeta function regulated determinant [4,5,6].
(An alternative definition of determinant is discussed in appendix IV). For any

two Hermitian matrices P,D we define

Srols) = tr'(PD™) = 3 (nIPln) (Aa)~*. (2.1)

Here A, and |n) are the eigenvalues and eigenvectors of D; and the primes on tr’

and 3" indicate that we should not include the zero eigenvalues of D. For finite

3:0) : (2.2)

Here det’(D) denotes the product of the nonzero eigenvalues of D. The matrix

matrices:

d
det'(D) = exp (—- Es-g,‘p(s)

D can be replaced by an arbitrary elliptic differential operator on a compact
manifold; equation (2.2) still yields a finite quantity which one defines to be the
zeta function regulated determinant. To see that this definition is sensible we

proceed by rewriting the above equation by use of a Mellin transform
$r.0 =Z {(n|Pln}(An)"*
e o}
P /dtt At} {n| P|n)
=Y ex n|P|n
F(S p n
o

___1_ i =1yt =Dt (2'3)
“T) 0/‘dtt tr' (Pe™*")
:r(ls) 0/dt A {tr(Pe_Dt) —~ tr(PK)} .

Here K is the projector onto the kernel of D, re., K = Zle [£) (1|, where #

is the number of zero-modes of D. Now suppose D is an elliptic second order



differential operator on a compact d-dimensional manifold. A classical result due

to Weyl [7] shows that asymptotically

n )2/(1'

Volume

An~ Ca- ( (2.4)

This is enough to show that the series converges absolutely for Re(s) > d/2; and
thus that ¢{s) is analytic in this region. To analytically extend ¢(s) to other values
of s we note that the heat kernel e_tD(E, ¢') on a compact Riemann manifold has
an asymptotic (small t) expansion {The Minakshisundaram-Pleijel asymptotic

expansion (8] } :

N
[e7tP)(¢, &) = (4mt) 4% exp|—d(&, ¢')2/4t]- {Z an(€, €Nt + O(tN“)} . (2.5)
0
Here d(¢, ¢') is the geodesic distance between £ and £'. The case of main interest
for our purposes is when the operator P is diagonal in position space, t.e., simply
a function P(z). In this case it is sufficient to investigate only the diagonal part

of the heat kernel

N
[e™*P)(¢,€) = (4mt) =% {Z an{€)t" + O(tN“)} - (2.6)

0

Tnserting this asymptotic expansion into the Mellin transform one verifies [5,9)
that ¢»p($) is a meromorphic function of s posessing only simple poles. If d is even
¢(s) has a finite number of simple poles at s = d/2,d/2—-1,...,2,1; with residues
(4m) 4% [ P(£) ao(€) NGT S T (47)~ %2 [ P(€) agja—1(§) Vg d%¢ . Further the
value of ¢(0) in this case is [ P{&){(47) ¥ %a4/5(¢) — K(£)}/7d%. If d is odd
there are an infinite number of simple poles at s = d/2,d/2—1,...,d/2 - n,.. .,
with residues (47r)"d/2fP(f) an(€) \/g‘ddf . In this case ¢(s) also posesses an
infinite number of zeros at s = 0, —1,~2,—3,.... In either case (d even or d odd)
¢(s) is analytic at s = 0, so the definition of the determinant makes sense and

gives a finite value.



3. A Generalized Anomaly Equation
for the Effective Action.

Consider a family [P, of first order elliptic Hermitian (self-adjoint) differential

operators that depend on a parameter 7. Suppose that

VaT
P, = N Ly (3.1)

Here f(z) is a (possibly matrix valued) function. The presence of the term

involving gr is due to the fact that Hermiticity must be defined relative to the

*

appropriate measure * . We shall be mainly interested in the Dirac operator, as

is suggested by our choice of notation. Its determinant is defined by:

det(D) = 1/ det(DY). (3.2)

Since the Dirac operator is self-adjoint its eigenvalues are real. The square root

is thus unambiguous up to an overall sign.

Consider the zeta function associated with J,’DE

e o]
1
= r—fts Lr! (7 tP7). (3.3)
0

Differentiating with respect to the parameter 7, and using the cyclic property

of the trace T yields

S0 o (e [, p )

=t [ (1=bamgnan) + 1@ - S@]- D2 P @)
= f%g—)-/t’%tr ([F(z)} CA”D?) .

* For instance, consider the “Laplacian” of appendix IIl. For §d acting on p-forms in d
dimensions, the measure induced factor is (v/go/gr) ! ~12P/4).

! This argument is only formal since P is not trace class; however a more careful analysis
leads to the same result.




Here we define F(z) to be the combination [~} (dIng,/dr) + f(z)! + f(z)]. Inte-
grating by parts, and noting that the boundary terms vanish [for Re(s) > d/2,
the asymptotic expansion for etP! guarantees that the contribution from ¢ = 0
vanishes; the contribution from ¢ = oo vanishes because the potentially dangerous

zero—modes do not contribute to the tr’ | we obtain

d¢r(s) 2s —1, 1 P
= —28¢r p2(s)

By using the definition of the determinant together with the known analyt-

icity properties of ¢ we see

dln de_t'],’DT 1 d d¢pz(s)
dr tdr ds |,
= +§F‘H’2(O) (3 6)

_ / JFr 4%z F(z){(am) a4y (z; DY) - K(z; D)}

Recall that K (z; J}Di) is the projection operator onto the zero-modes of J}Di [If £
is a matrix we interpret integration to include an implicit trace]. We summarize

this calculation as a

Theorem:
If
P, = \/g_o‘erﬂ Py e’/
Var
then
dIn d.et’lDT

encet ¥r / Vo diz F(){(47) " 2ay )y (z; DY) — K(z; P2)} (3.7)

dr
where we have defined F = [—}(dIng-/dr) + f(z)! + f(z)].
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Note that this equation for the variation of the one-loop effective action
with respect to 7 is a generalization of the chiral anomaly equation [10j. There
one has f = fT = ~50 and ¢, = go, corresponding to an infinetesimal chiral
transformation of the Dirac operator keeping the metric fixed. When we consider
conformal deformations of the gravitational background, however, the /g, term
is vital. The anomaly equation (3.7) is extremely useful since the first few Seeley-
de Witt coefficients are known [3,11]. Our basic strategy will be to use these

known coefficients to integrate the anomaly equation explicitly.

Before proceeding further it is useful to deal with the zero-modes. Let ¢;;

be an orthonormal basis for the zero-modes of [D,. Define the objects

Yir = exp(—7f)¥io; (3.8)

*

these are zero-modes * of JP,. Note in particular, that the total number of

zero-modes is independent of 7 . The ;. are in general not orthonormal, so we
define

(ke)is = ] N

(3.9)
= /\/g_sz:’O exp(—7f) exp(—7f) ¥j0.
Since
=3 s [(xr) TS, (3.10)
d’“tfz /\/;w” ~Ydlng,/dr) + f(z)' + f()] ¥j0n  (3.10)
we have

[ Vo @) Kz DY) =~ (1ndetl(e)). (3.12)

T

This enables us to rewrite the anomaly equation as a

* In the interest of generality, we point out that we could have allowed f to be r depen-
dent, the various factors of exp(—rf) should then be replaced by path-ordered integrals
Plexp(= [y £)]



Corollory:
&%l“ det' D, [det(x)] = / Vardis Flz) (4n) Y ag(z: DY) (3.13)

There is yet another form of the anomaly equation which is even simpler
but contains slightly less information. Define det(D) [without the prime!] in the
obvious manner: if ) has zero-modes then det]) = 0; if ) has no zero-modes

then det) = det'D. Then

Corollory:
-—d— det,] = (detD,) / NI [F (z) (4:'r)_d/2 ag (m@z)} {3.14)
dr: T T T [2\E

These last two forms of the anomaly equation are considerably more pleasent
to deal with since we can avoid a case by case analysis of the zero-modes. If the
dimensionality is odd then a(g/g) = 0; this reflects the fact that ¢rp(0) = 0 in

odd dimensions. Then the anomaly equation integrates trivially to
det' D, = det' D, - det(xr); detp, = detlD,. (3.15)

Finally we wish to point out that our generalized anomaly theorem holds for
second order differential operators (Laplacians) as well as for first-order (Dirac)
operators. Merely replace I by A in the statement of the theorem and its
corollories. [The proof is slightly different].



4. The Conformal Dependence of the Dirac Operator.

We write the Dirac operator as
D = ir"e”(8u + twua2®) (4.1)

where e, are n-beins; b = i[q“,fyb] and w,,; is the spin connexion defined by

Vet =0, that is wyep = ~Typy + ¥ 0pueva.

Now consider a conformal deformation: g, = ezaﬁw, e, = e’¢,", and define
€,#9,. Then

~

¢

HI

Wyab = C:)Ju.ab + 850 ébp, — Opo éau (4'2)

P =e (D + i(d - 1)7°da0)

N (4.3)
= exp(~[(d + 1)/2i0) - - exp(I(d — 1)/2}o)
We now apply our generalized anomaly equation to the objects
D, = exp(—{(d + 1)/2]70) - Dy - exp(((d — 1)/2]ra}; (4.4)

this family of Dirac operators satisfies the hypotheses of our generalized anomaly

equation with (dg/dr) =2¢-0-d, f = fl =[(d —1)/2]o, F = —0. We deduce

T In [det'D, fdet(nr)] = ~(4m)Y? [ o7 a2 o(a) eyl DY) (49

which may be integrated to obtain the effective action {note: S.g = Indet'D;
det(kg) = 1):

Seit = Sez + Indet(x)

)7 [ Vidiza(s { /Oldre”dad/z(m;@f)} o)

Now, any manifold is conformal to a manifold of constant scalar curvature *

{12]. Thus, we can without loss of generality choose § in such a way that

* This is the well known “Yamabe problem”.
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R < {+1,0,-1}. Our analysis then relates the computation of the Dirac de-
terminant on an arbitrary manifold to the presumably simpler case of constant
scalar curvature. In order to apply equation (4.6) we must compute the Seeley-
de Witt coeflicients ag/o. This is particularly simple in two dimensions or if the

number of dimensions is odd.

Dimensional analysis is sufficient to show that a)(*) = kR - I; where k
is a constant. To calculate k¥ note that (in any number of dimensions) p? =
~(DuD*) + LR - I; then a (P?) = ay(-D?) — 1R - 1. Since (—D?) acting on
spinors is in two dimensions locally related by a similarity transformation to A

acting on scalars, a;{—D?) = a;(A) - I = %R - I'; combining these results yields
2
a (P ):_11_2}3'1- (4.7)

This result for a; is valid in any number of dimensions [11]. Performing the

implicit trace, and using K = 8*2”[1% 4 2/3.0] gives

/01 dre oy (DY) = /01 dre®”” - (-1 (e_zm[}? + 7250]) = Hé(R + Ao) (4.8)
and
det'D = det'D) - det(x) - exp (24% / Vo R+ f&a]) . (4.9)

The basic structure of this result should be immediately recognisable to string

theorists.

We have already observed that for any odd number of dimensions a4/, = 0.
As a consequence the Dirac determinant is a conformal invariant in any odd

number of dimensions.
det' D = det' D - det(x); det]) = det ). (4.10)

Finally we point out that the computation for d = 4 is in principle straightfor-
ward; “all” one needs to do is to compute az(0*) and integrate. This computation

will be exhibited in a subsequent publication [13].

11



5. Abelian gauge fields.

We add an Abelian gauge field to the Dirac operator and consider
Y = ivte,H (0p + twuas B® —1A,) = D + 4. (5.1)

The first thing to notice is that the presence of A, does not affect the previous
analysis of conformal deformations. Consequently we need only concern our-
selves with spaces of constant scalar curvature. To proceed we specialise to two
dimensions. We would like to use the Hodge decomposition theorem. Unfortu-
nately, the Hodge decomposition applies only to one—forms defined globally on
the manifold. Now, the vector potential corresponding to a magnetic monopole
is not a globally defined one-form. In fact, the monopole number (equivalently
the first Chern class) is, in two dimensions, an obstruction to the global defintion
of the vector potential. We can, however, always decompose A = A"+ A% where
A™ is a “reference monopole field” and A° is globally well defined. We may now
apply the Hodge decompostion to A", while choosing the “reference monopole
field” to be one of constant field strength: # = w [ F/ [ w = nw/S. Here n is the

monopole number, w is the volume two-form, while S is the area of the manifold.

We may now write
Ay = (AM) 4+ €,Y8,x + hy + 3,0. (5.2)

Here x,0© are globally defined scalars while k, is a harmonic one-form. The ©
piece of A may be eliminated by a gauge transformation without affecting the

eigenvalues or determinant of ¥ . To handle the x piece we note [(vs)% = +1]:

b

yrea® = 140 (5.3)

(1]

~% eg* E,u.y dux = "';’Tb s eby avx. (5'4)

12



We now apply our generalized anomaly equation to the family

Y, =X (Dt 4+ H4) erX (5.5)

using gr = go; f = f! = vsx; F = 275X to obtain
d ! 1 2 2
= In [det'Y, /det(x,)] = Py Vardizys xai(z; V7). (5.6)

In any number of dimensions, Vz = —(V,V#)+R-I+iT* F,,; consequently
al(Vz) = ay(—V?) ~ ;}R - I —1X# F,,; using the special two dimensional relation

Tap = i%’*,{sezab we find
ar(P?) = LR T+ Sys(e” Fu) (5.7)

Performing the implicit spinorial trace and using £; = Fird«dx = F+71%Ax;
*F, = %E“VFW(T) = *F + 71Ax; we obtain

det'V = det' (I + z;n +#) - det(x) - exp (%/ x|Ax +2 *ﬁ’]) . (5.8)

This equation is a generalization of the flat space Schwinger model result [14].

Considerable information regarding the determinant det'(}) + 4 et K) can
be computed analytically, This determinant depends on the magnetic monopole
number n, the harmonic form h, and the spin structure of the manifold. To
describe the spin structure of a genus ¢ Riemann surface we first construct a
canonical homology basis. That is, we find a set of 2¢ curves a1 <i<g
such that o' intersects no curve except 5, which it intersects once, and b* inter-
sects no curve save a'. As a (complex) spinor is parallel transported around the
curve a* (resp. b') it picks up a phase e2me’ (resp. ez"i*ﬁi). The collection 8%, ¢
is a (complex) spin structure. We shall denote by ¥(8',9") a complex spinor

consistent with the spin structure 0, ¢'.

13



The canonical homology basis allows us to associate phases to the harmonic
one-form k. We define exp(s [, h) = e2™®" and exp(s fyih) = e2™®' | These
phases are important because if 1 (6*,¢"') is an eigenspinor of P, then (6 +
O ¢' + &) = (8, ¢') exp(t [ h) is an eigenspinor of J) + £ with the same
eigenvalue. Thus if we know det' ) for all spin structures we can deduce det' (D +
#) for all spin structures. The determinant det'lD+ of the chiral Dirac operator
for any spin structure has (for monopole number equal to zero) been calculated
by Alvarez-Gaume et al. [15]. The determinant det']}{6',¢") is the absolute

square of their result, modulo a sign ambiguity discussed previously:

2

det' P(6%,¢') = In(02)[? (5.9)

19[:;](00)

where n{{1) is a function of the modulii {15] (but is independent of the spin
structure), (1 is the period matrix of the manifold, and 4 is the Riemann theta
function of the surface. For genus 1, n({1) is related to the Dedekind eta function.
Adding a monople field does not change the fibre bundle arguments invoking the
Riemann theta function, we find that in our notation

: ‘ 2
1 gt
0{6 +

det'(D + 4™+ #50,8) = [n(,m)* 9 T L] 0/0)

(5.10)

where 1 is now a function both of the period matrix {modulii) and the monopole

number.

14



6. Non-Abelian gauge fields.

We consider now a non-Abelian gauge field so that A4 is a matrix. Our goal
is to present a decomposition of the gauge fleld which will allow us to generalize
the Abelian result * . Adopt complex coordinates z = z +1y; then the Hermitian
gauge field may be written 4 = A dz* = a + & where & = al. Now consider

gauge potentials of the form
a=ig (0 —iag)g;  a&=1ig[(d ~1a0)(gh) . (6.1)

Here g is an arbitrary non-singular matrix. Note that g posesses a unique polar
decomposition g = eX-U where U is a unitary matrix and x is a Hermitian matrix.
For the Abelian case this just reduces to the ordinary Hodge decomposition (5.2)
rewritten in complex coordinates, with ag playing the role of the monopole fleld

plus harmonic contributions.

For non—Abelian gauge potentials of the above form we proceed as in the
Abelian case. As usual, the gauge piece is irrelevant, so we consider a family of

Dirac operators with a, = 1¢7™X (8 — 1) e™X. Then

YV, =iv.(8 —1a;) +iy-(3 — ia-)

(6.2)
= TTX LY T

Repeating the Abelian analysis yields
1 [}
det'V = det' (V) - det(x) - exp (Er_/ dr f VIxXFL, e‘“’) (6.3)
0

We emphasize that the ansatz (6.1) is sufficiently general to cover a number
of interesting cases. We shall see in appendix I that on any manifold diffeomor-

phic to the plane « is always of type (6.1) with ag = 0. In appendix II we show

* Tf one attempts to use the Hodge decomposition one rapidly decides that this decomposition
1s “true but not useful”.

15



that in the field-free case (F = 0) « is always of type {6.1) with x =0 and o a
holomorphic one—form which may be written ag = c'w,. Here w; a basis of holo-
morphic one—forms and ¢' a set of commuting matrices. We may simultaneously
diagonalise all the ¢* in which case det'?’o becomes the product of operators such

as we considered in the Abelian case.

The formula (6.3) is very similar to that derived for the Abelian case. For
Abelian fields we had F, = F—i—r(*Ax]; so that the integration over r was trivial.

In the non-Abelian case we are not so lucky.

16



7. Conclusion

We have investigated the two-dimensional Euclidian Dirac operator and have
developed formulae for the evaluation of its determinant {equivalently, of the
one-loop effective action). Collecting eq. (4.9), (5.8), and (5.10) gives our final

result
2

t
© -det(k)-

det'D = (3,091 gi] 0)
exp (ﬁ;/ Vo R + Ao]) - (7.1)
exp (51;/\/5;([2 «F 4 ﬁx]) .

This formula explicitly shows how the determinant depends upon the curvature
(through the conformal factor ¢} and the vector potential (via x and F). The
dependence upon the Riemann modulii is more subtle. The determinant of the
two dimensional chiral Dirac operator is formally the square root of the result
just quoted; because of the holomorphic anomaly, however, there is some delicacy

in defining the square root precicely {15].

Our eventual goal is to apply some of the techniques of this paper to four
dimensional spacetime. Evaluating the gauge field dependence of the effective
action appears to be rather difficult though we have some hope of being able to
deal with the (anti)self-dual case. On the other hand, the effect of a conformal
deformation of a background metric seems computable — see the discussion of

section 4.

An important open problem is to generalise our ‘anomaly equation’ to the

(not conformally invariant) case of massive Dirac operators.

17



Appendix [.

Non-Abelian gauge fields on the plane.

In this appendix we shall demonstrate that in flat space any gauge field admits
the decomposition (6.1), even if the field strength is non-vanishing. Introduce
complex coordinates z = z + 1y and write the gauge field A = o + @ with
o = a(z,Z)dz and @ = al(z,Z)dz. The function @ may be expanded as a(z,%) =
Zn,m op,mz"Z"™. We associate to a a function of two complex variables 3(z,w) =
Zn,m op.m2"w™. Note that 3 is holomorphic in z and antiholomorphic in w and
that 8(z,w = Z) = «(z,%z). Viewed as a function of z (parametrised by @) the

form 3 = B{z,w)dz is field free, unlike o, and

0o (. ) = P exp|—i :ﬁ(iﬁ)] (L1)

is a well defined group element, antiholomorphic in w. Moreover,

a= i(g_lazg)’ (L.2)

w=z

independent of pg. Since 3 is a complex field, ¢ is not a unitary matrix. However,
g uniquely decomposes to the form g = eX - U with x Hermitian and U unitary.
Inserting this form for g into the above expression for o gives equation (6.1), with
ap = 0. Note that x vanishes at pp while U is the identity there. Now consider
a small gauge transformation (which, via a global gauge transformation can be
made the identity at a fixed py) and a Hermitian matrix x, in the Lie algebra g
of the gauge group which, vanishes at po. The object A defined through eq. {1.2)
is a gauge field, viz., a well defined g valued function. So one need never suffer
the calculation of x given A, one may define the A in terms of x. Up to a gauge
transformation all gauge fields A are obtained if all Hermetian x which vanish at

po are considered.

When ap = 0 we may interpret the integral of our generalised anomaly equa-

tion, (6.3) in terms of a Wess-Zumino effective action. To find a functional the

18



r-derivative of which is [ \/gx F we observe that the field strength can be written

a.s
F =ig'3(JtaJ)gt? (1.3)

where we have introduced the gauge invariant object J = g¢' = exp(27x). By
using the identities d = 8+ and *d = —19+13 (with the coordinate z determined
by the natural complex structure J,* = %eab ) one verifies that the natural

generalization of the Abelian effective action

1
Wo = —— fdJ1 .
o o | (AT AT dTT (L4)
has the r-derivative
W 1 -1y _ b / 15
ool / ir (x3(77190)) = = [ 1 (xa(77187). (L5)

The first term on the right hand is proportional to the variation of the functional
we seek. In the Abelian case the two terms are identical and Wy is (essentially) the
effective action. In the non-Abelian case, however, the two terms are different and
we must correct for the last one. As pointed out by Polyakov and Wiegmann [16]
this can be achieved by adding the so-called Wess-Zumino term {17] to Wy. Let
us introduce a 3-manifold 8, the boundary of which is M, and extend x in an
arbitrary smooth fashion through 8. Denoting exterior differentiation on 8 by

da, the 7 derivative of
v -1 3
Wwz=-—— | t dsJ 1.6
Wz 247r/ r (J7 dsgJ) (1.6)
B

hecomes

dWw z i -1

- = — [ tr(da(xdJ d

2 - = [ uldslxasas™)
8

(1.7)

1

4

br(x A(J 1)) +i/tr(xé(rlaj)).

47
M

5
o
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Now, adding Wy and Wy -z the undesired term in (1.5) cancels and
L (Wo + Wi )ui]tr( F) (1.8)
dr ° W2~ ar X '

as required. From {6.3) and (1.7) we conclude that the effective action for massless

fermions on a 2-manifold interacting with a non-Abelian background reads
Sest = S% 4 Indet(k) + Wy + Wi 2. (1.9)

where Sgﬁ contains only the harmonic part of the gauge potential. By using {(4.9)
we may furthermore integrate out the conformal part of the gravitational field. In
particular, on a conformally flat manifold with vanishing first cohomology-group

we have

1
Sef = In det(K.) + é:l— [ oo + Wy + Wy . (1.10)
i

Here x contains both the gravitational and gauge zero-mode contributions.

Finally we observe that if one considers Hermetian gauge fields on the punc-
tured plane, the auxilliary form § remains well-defined but the group element
(1.1) does not; homologically distinct paths connecting pg with p can give differ-
ent values for gp, (p) reflecting possible harmonic contributions to A. We discuss

how to treat these harmonic contributions in appendix II.
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Appendix II.

Non-Abelian gauge fields for F' =0.

Let A be a gauge field with vanishing field strength defined on a two dimen-
stonal manifold M. Even though A has vanishing field strength it may not be
pure gauge: a genus g manifold admits 2¢ harmonic one—forms which can con-
tribute to A and which cannot be gauged away. Thus we expect A to have the

form

A=U"Yd+ Mh)U (IL.1)

with h; a basis of harmonic one—forms and U a unitary matrix. We shall choose
to have U represent a ‘small’ gauge transformation, that is, one deformable to
the identity. Even if U is allowed to be ‘large’, however, A will still generally have
harmonic contributions. The main result of this appendix is that the coefficient

matrices, M*, may be chosen to commute.

One manifestation of the harmonic one—forms on M is that the group element

dpo(p) = Pexp [—i[p A] (1L.2)
Po
(P is the path ordering symbol) is not well defined; homologically distinct paths
connecting po with p give different values for gp,(p) and reflect the harmonic
contribution to A. In order to sort out this harmonic contribution we associate a
well defined group element g(7y) to any closed curve v by g{y) = P exp[—ifq A] =
exp[—tM (7)]. Note that M(~) is not uniquely determined (even though g(+) is),
an issue which will concern us (and which we shall resolve) shortly. The path

ordering ensures that the matrices g(+) satisfy
g(1)g(+') = g(+" o ") (IL.3)

for any two curves ' and +/. This relation is useful because any closed curve is

homologous to one generated by elements ~*, of the first homology group Hi(M).
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So if we know the matrices ¢(+*) we can readily compute g(y) for any closed curve
~. The homology group is Abelian which implies that the matrices g{~*) com-
mute. The M(+') also commute, their ambiguous nature notwithstanding. Let k;
be a basis of real harmonic one—forms dual to the homology basis ~*: fq. hy = 6;
For any choice of the M(~*) the object gy, (p) = exp|[—1¢ ;:’ 3, M (~")h,;] depends
on the homology class of the path connecting py to p, but Up, = 5501 gp, is well
defined. We have not needed to include a path ordering symbol in the definition

of §p, because the M (') commute.

From equation (I1.2} one sees that
A =ig g = U g7 (gU) = (UTHd + M(v)hi)U. (11.4)

Both the M(~') and the U in this decomposition of A are ambiguous. We would
like to give a prescription for resolving this ambiguity. To this end, let A:f(’y{) and
M (~') be two sets of matrices such that g(v') = exp|—iM (7*)] = exp|—iM(v})].
These sets lead to matrices U or U in the decomposition of A. We shall oblige
the M(~") (resp. M(~")) to be elements of the Lie algebra g of the gauge group
so that U (resp. U) are unitary matrices, t.e., represent gauge transformations.
In general, they represent large gauge transformations. The M(’yi) and M (")
are all mutually commuting. Thus they can all be diagonalised simultaneously.

In this diagonal basis

. N i . . ] ; P 2
M(,Tf.) - M(,Yl) _ anleJ; U= exp(—Z?Tinlj-AJ/ hi) U (11'5}
Po
t
.

resolving the ambiguities in eq. (I1.4) is to choose the nij so that U is a small

gauge transformation. To see that it is always possible to do this, choose any

for integers n'; and a basis A’ of diagonal matrices in g. Our prescription for

M(’)«") and imagine decomposing each member of the one-parameter family of
gauge flelds A; = sA (0 < s < 1). Choose M3:1(’7‘) = M(’yi) and require the
J\;Is('y") to vary smoothly with s. For s = 0, and in a diagonal basis (the diagonal
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bases also vary smoothly with s), Mo (') = 27rniJ-Aj. These n"j are the integers

we need. That is to say, for M (%) = M(+*) — 2ﬂ"n"j,\j, Us=o = 1.
Thus we have confirmed that, given a base point py, any gauge field with

vanishing field strength may be uniquely decomposed:
A=U"Md+ Mnr)U (11.6)

where U is a small gauge transformation which is the identity at py, and M* =
M('\/i) are a set of mutually commuting matrices in the Lie algebra of the gauge
group. Conversely, given a small gauge transformation (which, via a global gauge
transformation can be made the identity at a fixed pg) and a collection of mutually
commuting matrices M*, the object A defined by eq. (11.6)is a gauge field, viz.,
a well defined g valued function. So one need never suffer the calculation of the
M given A, one may define the A in terms of the M*. Up to a (small) gauge
transformation all gauge fields A are obtained if all sets of mutually commuting

matrices of the form M® == n’j)\-? are considered.
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Appendix III.

Laplacians on differential forms.

A natural defintion of the kinetic energy for a p-form is

(HI.1)
— | (*dw A dw) = Zp'(dw , dw)

after an integration by parts L = ﬁ(w,&dw}. We may thus define a Laplacian
acting on forms by A = 6d. This is not the usual Hodge-de Rham Laplacian
Ag_qn = 6d + d§. The Laplacian (6d) is more interesting physically in that it
implies a gauge invariance under w — w + d§. In particular acting on one—forms
(6d) yields the ordinary kinetic energy for Abelian gauge fields. Consider the
effect of a conformal deformation g = e*°§; one easily sees that this influences

the Hodge duality operator: * = ¢/?(¢=22)13 Consequently

A = 7B d)geold=20-2)y (I11.2)

Now choose p = (d/2) — 1 [representing zero forms in two dimensions —
scalars in string theory; one forms in four dimensions — Electromagnetism; two
forms in six dimensions + torsion on Calabi-Yau manifolds]. Then A = el 2 A

Applying our generalized anomaly equation to this Laplacian on (d/2) - 1 forms

yields:

f—i; in [det’A,/det(x.)]| = (4722 f \/é:dd:ca(x)ad/z(x; Ay) (111.3)

Thus many of our comments concerning the Dirac operator apply equally well to

the operator (6d) acting on {d/2) — 1 forms.
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Appendix I'V.

An Alternative Definition for the Determinant

There are, unfortunately, a number of different definitions for the determinant
of a differential operator in common usage. A rather popular variant is the
“proper time regularization”. See e.g. Alvarez [18] or Schwarz [5]. Motivated

by the following identity (valid for finite matrices)
[eo)
IndetA — IndetB = — / ¢ {tr(e_m) — tr(e_tB)} dt (IV.1)
0
one defines a regulated determinant by

In Det!(D?) = ~ f £=11r! (=07 gt (Iv.2)

Schwarz [5] , uses the asymptotic expansion of the heat kernel to define a
(cut-off independent) determinant from equation (IV.2). For the Dirac operator
one may define Det'()%) by:

£ 7—(d/2)

ki (G~ (4/2))
InDet'(D?) = lir% {ln Detl(D?) + Z /aj C — [[ ag/y — #]lne} :
- (IV.3)

The determinant Det defined in this way is not equal to the zeta function
definition, there is however a simple relationship (which is not supposed to be

obvious}

det'(P?) = Det'(D?) - exp ll“'(l){[ / (4m) ™% ag5\/g) — #} . (IV.4)
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