THE U(1)ANOMARY, TRE NON COMPACT KNDEX TEREREM,

R. MUSTO

Dipartimento di Fisica, Universita di Napol, Nupoli, Italy and INFN, Sezione di Napoli, Napoli, Ytaly
2. ORAFEARTAIGH and A. WIPF

School of Theoreticat Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dubin 4, Iveland ${ }^{1}$

Received 15 May 1986

Abstract

The fractionai discrepancy between he giobal U(1) chiras anomaty (described by a fux-integtal of gauge-fetcs and no: necessarity an integer on non-compact, ewtidean space-times) and the badex of the Dirac operator D is shown to be jast $\left(\delta_{+}(0)-\delta_{-}(0)\right) / \pi$ where $\delta_{ \pm}(0)$ are the ient-and righthandee zero energy phase sinfs.

It is generally accepted that once the quantity $\Gamma=$ in det(i) D), where D is the Dirac operator, is reguiarized so as to take care of both its infra-red (IR) and uita-violet (UV) divergences then in even ($d=2 n$) dimensions, its U(1) chiral variation $\delta \Gamma$, or chiral anomaty [1], is given by the fommia
$\delta \Gamma=8 \mathrm{ndet}\left(\mathrm{teg}(\mathrm{iD})=K / \alpha(x) \phi(x) d^{2 \pi} x\right.$,
$K=(2 i / n!)\left(\frac{1}{3} / 4 \pi\right)^{n}$,
where reg denotes both regularizations, of x) is the infnitesmal parmeter of U(1) chiral transforma. tions, and $\phi(x)$ is a pseuco-scakar which is a divergence of a local function of the gauge-potenthals i.e.
$\phi(x)=\varepsilon^{\pi_{1} \ldots \alpha_{2 n} F_{\alpha_{1} \alpha_{2}} \ldots F_{\alpha_{2 n-1} \alpha_{2 n}}=\partial_{\alpha} \phi_{\phi}(x) . ~ . ~ . ~ . ~}$
Furthermore, this formula holds not only if $\alpha(x)$ is purefy locat $(\alpha(x) \rightarrow 0$ as $|x| \rightarrow \infty)$, which is the case usualy considered in perturbative field theory [2], and if $a(x)$ is a constant $(a(x)=c$ for all x) which is the case usuatly considered in geometric discussions of the global anomaly, but
${ }^{3}$ Patt of thes work was done in cobaboration with 5. Abery, FU Berin.
also in the more general case that $o(x)$ is local in the sense that it may vary with x, but $a(x) \rightarrow c \neq 0$ as $|x| \rightarrow \infty$ (3).

In this paper we wish to establish three results concerning the chital anomaly (1). First, we wisk to show hat the tomua (1) has a natural decomposition into a local and a global (infra-red) pars i.e. that
$\frac{\partial \Gamma}{\partial \alpha_{, \mu}(x)}=\frac{\partial}{\partial a_{, \mu}(x)} \operatorname{lndet}(\eta)=\phi_{\alpha}(x)$,
$\frac{\partial R}{\partial c}=\oint \phi_{d}(x) \alpha s^{\alpha}$,
where $\partial \Gamma / \partial a_{, ~}$ contains no $\{R-d i v e r g e n t$, and $\partial \Gamma / \partial c$ no UV-divergent part. This decomposition is, of course, obvious on a compaci space, where it amounts to no more than the extraction of the zero modes of iD, bat our ponk is that there exists a naturak infra-red reguanzation for which th holds even on non-compact spaces, for which the continuous spectrum of 準 is not, in generak, bounded away from zero.

We then concentrate on the IR or, globai, chiral variation and our second resull is to show that this part is given by the fomma

$$
\begin{align*}
& \frac{\partial}{\partial c} n \operatorname{det}(i p)=2 \operatorname{ta} \Delta P \gamma_{5} \\
& \quad=2:\left(n_{+}-n_{-}\right)+\frac{2 i}{\pi} \sum_{k}\left(\delta_{+}^{k}(0)-\delta_{-}^{k}(0)\right) \tag{4}
\end{align*}
$$

where $\operatorname{tr}\left(\Delta P \gamma_{5}\right)$ denotes the jump at zero-energy in the trace measure associated with the spectrat projections $P(\lambda)$ of $-D^{2}, n+$ denote the left. and righthanded zero modes of iD, and $\delta_{ \pm}^{k}(0)$ means the Umit of the scattering phase shtits for $-y^{2}$ as the energy sends to zero (labelfed in a suitable angular momentum basis k). This formula shows that in the non-compact case the usuat zero-mode conmbution to the global anomaty is supplemented by a contribution from the conthuous spectum of \ddagger, and that the contribution has a simple physical interpetation in terms of phaseshifts.

Finaly, by thmanting the anomaly bl/oc from eqs. (4) and (3) one obtans the independent rem bationghip

$$
\begin{align*}
\hat{\phi}(x) d s_{c}^{4}= & 2 \dot{\varepsilon}\left(n_{+}-n_{-}\right) \\
& +\frac{2 i}{\pi} \sum_{k}\left(\delta_{+}^{k}(0)-\delta_{-}^{k}(0)\right) \tag{5}
\end{align*}
$$

between the surface integrat of the gauge-fields and the zeromodes and phase-shitits of the disferental operator - D 2. This formula is eviderty a generaization to non-compaot spaces of the Atyah-Singer index theorem [A], and since it is independent of the anomaty, our thind result is to derive it directiy ie using onty ordinary guantum reebkaical scaterng theory for the simplest case of a two-dimensional space $(d=2)$. The case $d=2$ has the added interest that the phase-sinits δ_{+}(0) reduce to the (supersymmetric) Bohm-Aharonov phase-shits [5]. Th may be amusing to note that eq. (5) actually incorporates three well-known but apparently mbormeted results, mamely, the Levinson theorem, the Atyoh-Singer index theorem and the Bobm-Abaronov theorer, as can be seen by putting the fux term, the phase-shitt term, and the bound state term respectively equal to zero?

To establish the above results we frst note that he $I R$ and $U V$ divergences of $T=r$ m(D) have wo very diferent origins. The \mathbb{R}-divergence comes from the fact the operator $\ln (\mathrm{ip})$ does not
exist when the spectrum of if is not bounded away from zero. This means that it can be removed by modifying the operator ib, and the usuab modification is to introćuce a smanl imagin ary mass-kem i.e. by ketnag $\ddagger \rightarrow i(b+m$. How ever, because m is not chirahy invariant ($m \rightarrow$ m exp($\left.2 \gamma_{s} \alpha\right)$ it is actually more convenient to replace m by a smali chiral coubled $M=n+i n \gamma_{5}$, h.e. $t o$ let $D \rightarrow(D+B)$ where the doubiet (m, n) rotates under chral transfomations (if desired M may be thought of as the (smal) vacurm expectathon value of a chral febl doublet [6] after a spontaneous breakdown of chiral symmetry). The UV-divergence, on the othes hand, comes from the fact that the trace of the operator ha $i(b)+M)$ does not exist, and thes it is removed by using one of the conventional UV-reguarization schemes. Having removed it in this way one may wnite
$\Gamma=t \operatorname{tr}_{\mathrm{U}} \ln (\phi+M)$,
where U denotes UV-regularizanion, and it makes sense to taik of chiral variations of I. it is then easy to see that the chinat variation of I decompo ses ratumally into two parts corresponding to the varation iD and M;

$$
\begin{align*}
\delta \Gamma & =\delta \Gamma_{D}+\delta \Gamma_{M} \\
& =\Gamma_{U}(D+M)^{-i} \delta D+t \Gamma(D+M)^{-i} \delta M \tag{7}
\end{align*}
$$

and the advantage of the decomposition is that it is simultaneously a decomposition into parts which are proportiona! to $x(x), \mu$ and $\alpha(x)$, and into parts which are IR- and UV-convergent respectively. That is to say,
$\delta \Gamma_{o}=r_{U}\left\{(\rho+M)^{-1}{ }_{i} \gamma^{\mu} \gamma_{5} \alpha(x)_{\mu}\right\}$,
which is ik-convergent in the sense that the limit $M \rightarrow 0$ may be taken inside the trace (and is actually onty midiy UV-divergent) and

$$
\begin{align*}
\varepsilon \Gamma_{M} & =\hat{r}\left((\phi+M)^{-1} 2 i \gamma_{5} M \alpha(x)\right. \\
& =2 \mathrm{i}\left[\left\{\frac{\rho^{2}}{\rho^{2}-p^{2}}-\frac{\rho^{2}}{\rho^{2}-\phi^{2}}\right] \alpha\{x)\right\}, \tag{9}
\end{align*}
$$

where p^{2} denotes the chirat invarian combination $\rho^{2}=m^{2}+n^{2}$ and $D_{ \pm}=\frac{1}{2}\left(1+\gamma_{5}\right) D$, wich is UV. convergent on account of the minus sig: (due to
γ_{5}). From now on we shall consider only the UV-onvergent variation $\delta \Gamma_{M}$ which contains all the infrared infomation.

When $\alpha(x)$ is constant and the zero-eigen values of ($-p^{2}$) are isotated (as happens typically in the compact case) one sees at once from (9) that
$\lim _{\rho \rightarrow 0} \frac{\partial \Gamma_{M}}{\partial \alpha}=2\left(n_{+}-n_{-}\right)$,
where $n_{ \pm}$are the muitiplicities of the keft- and righthanded zero modes of ib. ha general, however, the zero-eigenvalues of - p^{2} are not isolated (he continuous part of the spectrum stretches down to z gro) and eq. (10) must be modifed. By using the spectral represertations of $-p_{ \pm}^{2}$ it is evident that in this more gexeral case the format modification is of the form

$$
\begin{align*}
\lim _{p \rightarrow 0} \frac{\partial F_{m}}{\partial \alpha} & =2 \lim _{p \rightarrow 0} \rho^{2} \int_{0}^{\infty} \frac{d o(\lambda)}{\rho^{2}+\lambda} \\
& =2 i \sigma(0)=2 i \sigma_{+}(0)-2 \sigma_{-}(0), \tag{1}
\end{align*}
$$

where $o(\lambda)$ is the srace of the difference of the spectral measures $P_{+}(\lambda)-P_{-}(\lambda)$ where $-b_{ \pm}^{2}=$ $\int_{0}^{\infty} \lambda \mathrm{d} P_{ \pm}(\lambda)$ and $c(0)$ means the man of $o(\lambda)$ as λ tends to zero from the + direction. (Note that in contrast to the ordinary measures ($f, p(\lambda) f$) the measure $\sigma(\lambda)$ may have a disconthuity not associatec with a bound state. Note aiso that the totat trace $\sigma(\infty)$ is not necessarily unity, or even finite.)

What we now wish so show is that the formula (1) leads to ec. (4) i.e. $\sigma(\lambda)$ is just the sam of the phase shits This resuit is actually a consequence of a more general statement, namely, that for any Schrödinger hammonian H the projection valued spectral measure $P(\lambda)$ is just the loganithm of the S-matrix (on the mass-shems. That is to say, there is a general resuit

$$
\begin{align*}
& P_{0}(E) P(\lambda) P_{0}(E) \\
& \quad=k(E, \lambda)+P_{0}(E) \ln S(\lambda) P_{0}(E) \tag{12}
\end{align*}
$$

where $P_{0}(E)$ ate the projections onto scattering states of energy E of the free hamutonian and $k(E, \lambda)$ is a wniversal function (independent of H), and the result for $\theta(\lambda)$ then follows by noting that in $S=218$ and taking the trace of (12) for $P=\left(P_{+}-P_{-}\right)$. Since the general resul: (2) does
not appeat to be well-known (at least in this direct form) we now sketch the derivation. First by using the representation $(1 / 2 \pi i) \lim _{s+0}$ mil $(s-i c) /(s$ + in) for the characteristic function $\theta(s)$ of the positive real axis, we see that for any positive hamiltorian H,

$$
\begin{align*}
P(\lambda) & =\int_{0}^{\infty} d P(x) \theta(\lambda-x) \\
& =\frac{1}{2 \pi i} \lim _{\in \downarrow 0} \int_{0}^{\infty} d P(x) \ln \frac{\lambda-x-i \epsilon}{\lambda-x+i \epsilon} \\
& =\frac{1}{2 \pi} \operatorname{limin}_{\varepsilon \downarrow 10} \frac{\lambda-H-i \epsilon}{\lambda-H+i \epsilon},
\end{align*}
$$

an equation which expresses the projections $P(\lambda)$ as explicit functions of the operator. Eg. (12) then follows by sandwiching the logarithm of the identity
$\frac{\lambda-H 2-i \varepsilon}{\lambda-H+i \varepsilon}=\frac{1}{\lambda-H_{0}+i \varepsilon} \Sigma(\epsilon, \lambda)\left(\lambda-H_{0}-i \varepsilon\right)$,
where

$$
\begin{align*}
\Sigma(\varepsilon, \lambda)= & {\left[1-V\left(1+\frac{1}{\lambda-H+i \epsilon} V\right)\right.} \\
& \left.\times \frac{2 \varepsilon}{(\lambda-H)^{2}+\epsilon^{2}}\right] \tag{15}
\end{align*}
$$

$V=H-H_{0}$,
between the free-projections $P_{0}(E)$, and noting that the limit as $\Leftrightarrow \rightarrow 0$ of $\Sigma(\varepsilon, \lambda)$ is just the S-matrix $S(\lambda)$ as conventionally defined [7]. Thas finally

$$
\begin{align*}
& P_{0}(E)\left[P_{+}(\lambda)-P_{-}(\lambda)\right] P_{0}(E) \\
& \quad=\frac{1}{\pi} P_{0}(E)\left[\delta_{+}(\lambda)-\delta_{-}(\lambda)\right] P_{0}(E), \tag{16}
\end{align*}
$$

where $\delta_{ \pm}(\lambda)$ are the generalized phase shifts. On taking the trace in an anguar momentum basis (for fixed E) one then sees that $\pi \delta(\lambda)$ is just the sum of the conventional phase shifss at energy λ.

Our fanal task is to give a direct detivation of the generalized index theorem (5) using only the theory of differential equations. Such derivations are enomously simplifed by exploiting the fact
that the operator $-\phi^{2}$ is supersymmetric $[8]$, i.e.
$-\phi^{2}=\left\{Q^{+}, Q^{-}\right\}$,
where $Q^{ \pm}=\frac{1}{2}\left(1 \pm \gamma_{5}\right)$ ib $\frac{1}{2}\left(1 \mp \gamma_{5}\right)$
and in the two-dimenstonal case that we shall consider this reduces to the statement that

$$
i D=\left(\begin{array}{cc}
0 & i D_{1}+D_{2} \tag{18}\\
1 D_{1}-D_{2} & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & D_{+} \\
D & 0
\end{array}\right) .
$$

For simplicity we shall treat the case where the two-dmensional gauge field is spherically symmetric l.e. $F_{i j}(x)=\varepsilon_{i j} B(x)$ where $B(x)=B(r)$, and is of compact support i.e. there is a radius $r=a$ such that $B(r)=0$ Gor $r \geqslant a$, and only sketch the generalization to arbitrary smooth B-fields of finite flux. A great advankage of the supersymmetric formulation in the two-dimensional case is that the zero modes of - D^{2} are just the zero modes of the frst-order differential operators p i.e.
$D_{+} \varphi_{+}=0, \quad D-\varphi_{-}=0$,
respectively, and this circumstance allows as to obtain an expression for the flux through any circle of radus r (not necessarily $r \geq a$) in terms of the radial derivative and orbital angular momentum m of the fields, even without solving the equations explicitly. That is to say, by expressing (19) in polar coordinates (r, θ) and insegrating over 8 one has

$$
\begin{align*}
2 \pi \phi(r) & =\oint A_{g} r d \theta \\
& =-\oint \frac{\partial_{\theta} \Phi_{s}}{\varphi_{\varepsilon}} d \theta-\varepsilon \oint \frac{D, \varphi_{s}}{\varphi_{3}} r d \theta \\
& =-2 \pi m-\epsilon \oint \frac{D_{r} \varphi_{\varepsilon}}{\varphi_{\varepsilon}} r d \theta, \tag{20}
\end{align*}
$$

where m is the anguiar momentum of the field 9 . and $\varepsilon= \pm$ according to whether $\varphi_{c}=\varphi_{+}$or φ_{-}. Note that each integrat in (20) is seperately gaxge-invariant and that for $r \geqslant a, \phi(r)$, and hence the ($\boldsymbol{D}_{\mathrm{D}} \varphi$)-integrai become independent of r. From eq. (20) one can aiready find the bound states, since they must be smaller than r^{-1} both as $r \rightarrow 0$
and as $r \rightarrow \infty$. Hence they are just those for which
$m \varepsilon<1,(\phi+m) \epsilon>1$,
where ϕ denotes $\phi(r)$ for $r \geqslant a$ and we have used the fact that $\phi(0)=0$. It follows from (21) that $\phi \epsilon>0$. Hence for each sign of ϕ there can be bound states for only one choice of ϵ, anc ther: only if m has the same sign as $-\phi$ and $0 \leqslant|m|$ $<|\phi|-1$. In particular, for $|\phi| \leqslant 1$ there are no bound states of any kind ${ }^{\text {mi }}$. In this way one sees that (20) is alteady sufficient to estabish the integer part of the index theorem i.e.
$\left[\phi=n_{+}-n_{-}\right.$,
where $\{\phi$ denotes the integer part of ϕ for the generic case when ϕ is not an integer. This is the case in which we are most interested, but for the record it should be mentioned that if ϕ is integer (22) becomes ${ }^{\ddagger 1} \Delta n=|\phi|-1$ for $|\phi| \geqslant 2$.

Our main interest, however, is the fractionat part. For that we have to investigate the continuous part of the spectrum of $-p^{2}$, especially at low energy and that is described by the secondorder differential equations
$-D^{2} \psi=k^{2} \psi \Rightarrow\left(-D^{2}+\frac{1}{2} \varepsilon B\right) \psi_{\varepsilon}=k^{2} \psi_{\varepsilon}$,
$k^{2}=E>0, \quad \varepsilon= \pm 1$.
Athough we cannot completely solve these sec-ond-order differential equations explicitly, we are saved by the fact that we can solve them explicitly in the exterior region $r \geqslant a$, and we can approximate then by the zero-energy solutions in the interior region (for $k \rightarrow 0$) and have good control on the error because the inside region $r \leqslant a$ is compact. So the problem reduces essentially to matching the inside and outside solutions at $r=a$, and since the overall normakization does not matter for phase-shift analysis, and the system is spherically symmetric, the matching problem reduces to matching the log derivatives $\gamma=\left(r 0_{r} \psi\right) / \psi$ at $r=$

[^0]a. We now consider the ouside and inside solusions in tum.

Outside. In the radia gaxge $A_{r}=0$, the gaugepotental reduces to the usual $B A$-potential $A_{g}=$ ϕ / r outside, and since $B=0$, eq. (23) reduces to the Bessel equation of order W where $W=1 m+$中|, for each anguiar momentum m. Thus the general oukide soution (for non-integer W) is
$\psi=\sum \psi_{m}(r) \mathrm{e}^{\mathrm{img}}$,
$\psi_{m}(r)=\alpha_{i n}(k r)+\beta J_{-w}(k r)$,
where $f_{ \pm}$, are the conventional Bessel functions, and α and β are constants, whose ratio deemines the phase-shift. In fact, from the asympotic $(k r \rightarrow \infty)$ form of the Bessel functions
$\eta_{W}(k t) \rightarrow\left(\frac{1}{2} k r\right)^{-1 / 2} \cos \left(k r-\frac{1}{2} W \pi-\frac{1}{4} \pi\right)$,
ne sees at once that the scattering phase-shift relative to $\phi=0$) is given by
an $\delta=\left(\frac{\beta-\alpha}{\beta+\alpha}\right) \tan \left(\frac{1}{2} \pi V\right)$.
3) particuar $\tan \delta= \pm \tan \frac{1}{2} \pi W$ for $\alpha=0$ and $\}=0$ respectively.

Inside. As we have said, the inside solwions ψ nay be approximated by the inside part of the ero-energy solutions φ in (19) (whether or not the , themselves correspond to bound states), and ince all that we shall need for matching are the og-dervatives ($\left(\mathrm{O}_{7} \mathrm{in} \psi\right.$) theerror can be conrolled by controking the quantity $\left(r \partial_{r} \mathrm{~m}(\psi / \varphi)\right)_{a}$ nich from (23) is easily seen to be

$$
\begin{align*}
\left.\varphi \partial_{r} \operatorname{m}(\psi / \varphi)\right)_{a} & =-k^{2} \int_{0}^{a} \varphi \psi r \mathrm{~d} r / \varphi(a) \psi(a) \\
& =-k^{2} \int_{0}^{a} \varphi^{2} r d r / \varphi^{2}(a) . \tag{27}
\end{align*}
$$

Thus, to hrst order in k^{2}
(inside) $=\left(\frac{r \partial_{\mu} \psi}{\psi}\right)_{a}=\left(\frac{r \partial_{\mu} \varphi}{\varphi}\right)_{a}-(k a)^{2} A^{2}$,
${ }^{2}=\int_{0}^{a} \varphi^{2} r d r / a^{2} \varphi^{2}(a)>0$,
here Δ^{2} is strictly positive and independent of ${ }^{2}$. Heace, for matching, we need only know the ro-energy guantity $\left(r \partial_{r} \varphi / \varphi\right)_{a}$, and, as atready
emphasized in the bounc-state discussion, this can be obtaned from the fux-equation (20) without actually soiving for $p(r), r \leqslant a$ explicitly, in fact from (20) one has
$\left(r \partial_{r} \varphi / \varphi\right)_{a}=-\varepsilon(\phi+m)$
and thus finally
$\gamma($ inside $)=-\epsilon(\phi+m)-(k a)^{2} \Delta^{2}, \quad \Delta^{2}>0$.

Matching. To match with γ (inside) we mast now compute γ (ourside), and for this we use the fact that since a is fixed and $k \rightarrow 0$, the Bessel functions $J_{w}(k a)$ may be approwimated for $k \rightarrow 0$ by their values in the neighbounood of the origin. Thus for small k and fixed a one has

$$
\begin{align*}
\psi_{\text {outside }}(k a) \simeq & \frac{\alpha}{\Gamma(1+W)}\left(\frac{1}{2} k a\right)^{W} \\
& +\frac{\beta}{\Gamma(1-W)}\left(\frac{1}{2} k a\right)^{-W} \tag{31}
\end{align*}
$$

From this equation it is easy to see that

$$
\begin{equation*}
\frac{\beta}{\alpha}=\frac{\Gamma(1-W)}{\Gamma(1+W)}\left(\frac{1}{2} k a\right)^{2 W}\left(\frac{W-\gamma}{W+\gamma}\right), \tag{32}
\end{equation*}
$$

where $\gamma=\left(\frac{\rho \partial_{r} \psi_{\text {cutside }}}{\psi_{\text {ousside }}}\right)_{a}$
is the relationship between the ratio β / α and the matching \log-derivative γ. On making the match γ (inside) $=\gamma$ from (30) one then obtains

$$
\begin{align*}
\frac{\beta}{\alpha}= & \frac{\Gamma(1-W)}{\Gamma(1+W)}\left(\frac{1}{2} k a\right)^{W} \\
& \times \frac{W+c(\phi+m)+(k a)^{2} \Delta^{2}}{W-6(\phi+m)-(k a)^{2} \Delta^{2}}, \tag{33}
\end{align*}
$$

where $W=1 \phi+m$, as the equation to detemine β / α.

From eq. (33) one sees that the ratio $\beta / \alpha \rightarrow 0$ as $k \rightarrow 0$ and hence the phase shift is given by $\tan 8=-\tan (\pi W / 2)$ 误 all cases except whent $(\phi$ $+m)=W<1$, or, equivalently, $0<\varepsilon(m+\phi)<3$, in which cases the $\alpha / \beta \rightarrow 0$ as $k \rightarrow 0$ and $\tan \delta=$ $+\tan (\pi W / 2)$. Thus for each flux $2 \pi \phi$ and chiratisy ε there is only one special value m_{s} of mor
which the sign of the phase-shift is the reverse of the normal (BA) sign, and, frrthermore, since the insige solutions have so be regular at the origin, there is the further condition me $<$ from eq. (23), which show that the sign-reversal takes place for oniy one sign of ε for each given ϕ. In other words, the anomalous phase-shift an $\hat{\delta}=$ tan($\pi W / 2$) occurs for oniy one angular momenum sector $m=m_{\mathrm{s}}$ and ondy one chirality, and is vatue is just π thenes the fractional part f of ϕ, i.e.

$$
\begin{equation*}
\delta^{m}(0)=\delta_{+}^{m}(0)-\delta_{-}^{m}(0)=\pi f \delta_{m m_{s}} \tag{34}
\end{equation*}
$$

Combining this result with the result (22) for the bound states we see finally that

$$
\begin{align*}
\phi & =\{\phi\}+j=\left(n_{+}-n_{-}\right)+f \\
& =\left(n_{+}-n_{-}\right)+\frac{1}{\pi} \sum_{m}\left(\delta_{+}^{m}(0)-\delta_{-}^{m}(0)\right), \tag{35}
\end{align*}
$$

which, since $2 \pi \phi$ is just the fux-integral (1) for the two-dmensionat case, establishes the reswl for that case. in fact we have estabished a lithe more, namely, that the integer contribution actually cones from the angular momentum sectors $|m|$ $<|\phi|-1(m \phi \leqslant 0, \varepsilon \phi \geqslant 0)$, with unit mulniphicity for each m, and that the fractional contribution comes from only the "missing" angular momen-
 Note that the formula (35) holds also for the case of integer ϕ if one lets $f \rightarrow 1$ and $\delta_{+}-\delta_{-} \rightarrow \pi$ (not $f \rightarrow 0$ and $\hat{\delta}_{+}-\delta_{-} \rightarrow 0$). Those familiar with supersymmetric quantum mechanics will also note that the existence of contributions only for the angular momenta $\{m ;<\mid \phi\}-1(m \phi \leqslant 0, \varepsilon \phi \geqslant 0)$ implies that these are the ondy angular momentum sectors for which the supersymmetry is not spontaneously broken, ard this can be verifed drectly. Finaty it might be mentioned that, although we have restricted ourselves to the spienically symmetric, compack support case for clarity, there is no real diffuly in extending the results to the general two-dimensional case. This is because the Ende-fux condition $\int B(x) d^{2} x<\infty$ implies that B falls off as $r \rightarrow \infty$, and that the system is asymptotically spherically symmetric. (In the
mon-asymptotic region the angular momentum generalizes to a windiag mumber.)

After this work was completed we became aware of two other recent derivations $\{9,10]$ of the central formula (5). Bowever the approach in these wo derivations is quite different, in fact complementary, to ours. In particula: in both derivations the relationship between the kigh- and low-energy parts of the anomaly is used to obtain information about the low energy part (using the eikonat approximation in the case of ref. [10]) whereas we go immediately to the low-energy (giobai) anomaly and derive the information durectly using the rela. tion (9). Farthemore, in ref. [9] the index theorem (5) is verified for two examples, using conicutional methods, whereas we have verifed for only one of these examples, but our explicit exploitation of the supersymmetry of the Dirac operator explicthy leads to a considerable simpinfication of the proof.

Two of us (R.N., L.O'R.) thank F. Micodemi for discussions. R.M. thanks the DIAS for hospitality during a period when this work was carried out and highly appreciates a MPI-Crant (1984). A. W. wishes to thank the Deutsche Forschungsgemenschaik for financial support.

References

(1) B. Zumino, Y.S. Wu and A. Zee, Nact. Phys. B 239 (1984) 477.

2; S.L. Adier, Phys. Rev. 177 (1969) 2425;
J.S. Dell and R. Jackiw, Nwovo Cimento A 60 (1969)47; W.A. Batdeen, Phys. Rev. 184 (1969) 1848.
[3] M. Reuter, Phys.Rev. D 31 (1985) 1374.
[4] M. Atiyah and E. Singer, Ann. Math 87 (1968) 485; 87 (1968) 546;
K. Fuikawa, Piys, Rev 0 21 (1980) 2848.
[5] M. Peshikin, Phys. Rep. 80 (1981) 375.
(61 P. Di Vechia, R. Musto, F. Nicodemi and R. Petorino, Nuci. Puys. $3252(1985) 635$.
[7] W. Thirring, Quantum mechanics of atoms and molecules (Springer, New York-Wien, 1979).
[8] E. Witan, Nocl. Phys. B 185 (1981) 513.
[9] D. Boyanovsky and R. Biankenbecler, Phys. Rev. D 31 (1985) 3234.
[10] T. Jaroszewicz, Harvard Report No. HUT P.-86/B02 (1986).

[^0]: \#1 There is no eigenvalue for $|\phi|=1$, and onty $|\phi|-1$ eigenvahues for $|\phi|$ integer and $|\phi|>1$ because in two dimensions functions which fat of tixe r^{-1} are not square-inegrable. The discrepancy between this formula and the more conventional resull $|\Delta n|=|\phi|$ may be removed by changing the range of the phase shitt from the conventional range $0 \leqslant \delta<\pi$ tc $0<\delta \leqslant \pi$.

