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We investigate the finite-temperature and -density chiral Gross-Neveu model with an axial UA(1)
symmetry in 1 + 1 dimensions on the lattice. In the limit where the number of flavors Nf tends to
infinity the continuum model has been solved analytically and shows two phases: a symmetric high-
temperature phase with a vanishing condensate and a low-temperature phase in which the complex
condensate forms a chiral spiral which breaks translation invariance. In the lattice simulations we
employ chiral SLAC fermions with exact axial symmetry. Similarly to Nf → ∞, we find for 8
flavors, where quantum and thermal fluctuations are suppressed, two distinct regimes in the (T, µ)
phase diagram, characterized by qualitatively different behavior of the two-point functions of the
condensate fields. More surprisingly, at Nf = 2, where fluctuations are no longer suppressed, the
model still behaves similarly to the Nf →∞ model and we conclude that the chiral spiral leaves its
footprints even on systems with a small number of flavors. For example, at low temperature the two-
point functions are still dominated by chiral spirals with pitches proportional to the inverse chemical
potential, although in contrast to large-Nf their amplitudes decrease with distance. We argue that
these results should not be interpreted as the spontaneous breaking of a continuous symmetry, which
is forbidden in two dimensions. Finally, using Dyson-Schwinger equations we calculate the decay of
the UA(1)-invariant fermion four-point function in search for a BKT phase at zero temperature.

I. INTRODUCTION

A surprising amount of physical phenomena in
particle- and condensed-matter physics are well described
by four-Fermi theories. For instance, they are employed
to model low-energy chiral properties of Quantum Chro-
modynamics (QCD). The effective four-Fermi theory de-
scribing the dynamics of nucleons and mesons goes back
to Nambu and Jona-Lasinio (NJL) [1] and is built upon
interacting Dirac fermions with chiral symmetry, paral-
leling the construction of Cooper pairs from electrons in
the BCS theory of superconductivity.

In fact, most of our knowledge about QCD at inter-
mediate baryon densities stems from the study of NJL-
type effective theories, since in this regime one needs non-
perturbative methods but cannot use lattice field theory
techniques due to the complex-action problem. In a simi-
lar spirit, a four-Fermi current-current interaction among
leptons (and quarks) was proven to give an accurate phe-
nomenological description of the weak interaction at low
energy p2 � m2

W. In the pioneering work by E. Fermi the
currents are made up from the proton, neutron, electron
and neutrino fields [2]. In four spacetime dimensions in-
teracting Fermi theories, such as the NJL model or Fermi
theory, are non-renormalizable and thus can only serve as
effective (low-energy) approximations which need to be
UV completed. For the two examples given these com-
pletions are of course known.

The dynamical creation of a condensate from strong
fermion interactions as seen in NJL-type models inspired
many theories of the breaking of electroweak symmetry,
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such as technicolor (see the review [3]) and the top-quark
condensate [4].

Four-Fermi theories in two spacetime dimensions are
renormalizable and asymptotically free (some are inte-
grable or even soluble) and share certain features with
their cousins in four dimensions. The most prominent
examples are the Thirring model with a current-current
interaction [5], which is S-dual to the sine-Gordon model,
and the Gross-Neveu (GN) model with a scalar-scalar in-
teraction [6], which serves as a toy model for the theory
of strong interactions.

With the discovery of novel materials (like Dirac and
Weyl semimetals in two and three spatial dimensions)
and the development of experimental techniques (for ex-
ample optical lattices to trap atoms) we have witnessed
a steadily increasing interest in models describing inter-
acting fermions. Such models in lower dimensions de-
scribe one-dimensional and planar systems, such as poly-
mers [7–11], graphene [12, 13] or high-Tc superconductors
[14, 15], to name some prominent examples.

Interacting Fermi theories at finite temperature and
density were mainly investigated in the limit of a large
number of fermion flavors Nf . For Nf → ∞ the saddle-
point approximation becomes exact and one can solve the
corresponding gap equation analytically on the set of ho-
mogeneous condensates. But, for the (1+1)-dimensional
GN model at low temperature and large chemical poten-
tial the relevant solutions of the gap equation are actually
inhomogeneous in space. They have been constructed in
[16] for the GN model with discrete and in [17, 18] for the
chiral GN model with continuous chiral symmetry. These
remarkable analytic results for Nf → ∞ prove the exis-
tence of inhomogeneous phases, which are regions in pa-
rameter space where the chiral condensate acquires a spa-
tial dependence, indicating the spontaneous breakdown
of not only chiral symmetry alone but in a combination
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with spacetime symmetries (see [19] for a review).
Are these inhomogeneous phases at large densities an

artifact of the large-Nf limit as suggested by various
no-go theorems in two spacetime dimensions? To ad-
dress this question, a better understanding of interacting
Fermi systems at finite Nf with regards to inhomoge-
neous phases is required. But the spontaneous break-
ing of translation invariance is not merely of academic
interest: Systems where an inhomogeneous state devel-
ops spontaneously have been extensively discussed in the
condensed-matter literature. A prominent example is
the inhomogeneous pairing inside a superconductor in a
magnetic field, predicted by Larkin, Ovchinnikov, Fulde
and Ferrell (LOFF phase) [20, 21]. Similar types of pair-
ings can occur in many other physical systems, ranging
from supersolids to ultracold atomic gases (see the re-
views [22, 23]). The UV cutoff which is inherent in all
condensed-matter systems inhibits a direct translation
of these findings to quantum field theory and particle
physics where one removes the cutoff during the process
of renormalization.

A first attempt to investigate the fate of inhomoge-
neous phases at finite Nf has been made in recent lattice
studies [24, 25], where the existence of spatially varying
chiral condensates in the (1 + 1)-dimensional GN model
with 2, 8, and 16 flavors was confirmed. The present work
serves as a follow-up, providing a similar analysis of the
chiral Gross-Neveu (cGN) model with a continuous axial
symmetry, characterized by the Lagrangian

L = ψ̄i/∂ψ +
g2

2Nf

(
(ψ̄ψ)2 + (ψ̄iγ∗ψ)2

)
, (1)

where g2 denotes a dimensionless coupling constant and
the two-dimensional matrix γ∗ = iγ0γ1 is the analog of
γ5 in two spacetime dimensions. The summation over
Nf flavors of fermions is implied in the fermion bilinears
entering Eq. (1).

Below we shall see that the results of our simulations
with chiral SLAC fermions resemble the analytical find-
ings of the large-Nf limit [17, 18]. The analysis of the
GN model in [24] has already given clear evidence that
the chiral and doubler-free SLAC fermions and naive
fermions yield comparable results in the continuum limit,
with the former converging considerably faster.1 Us-
ing SLAC fermions has the additional advantages that
the lattice cGN model is invariant under axial UA(1)
transformations and that we can study the system with
Nf = 2 without encountering a sign problem. With naive
fermions the GN and cGN models have no sign problems
only for Nf a multiple of 8. In the present work, however,
we want to investigate how much the models at finite fla-
vor number differ from the analytic solutions at infinite
Nf , for which Nf = 8 might be too large, see [24]. We

1 The same observation applies to supersymmetric Yukawa models
[26, 27].

do not use Wilson fermions since we are mainly inter-
ested in the chiral properties of cGN models. Staggered
fermions, on the other hand, may lead to wrong results
for interacting Fermi systems, as has been demonstrated
in [28–30].

Our work is organized as follows. In Sec. II we sum-
marize relevant facts about the finite-temperature and
-density cGN model with Lagrangian (1) in the contin-
uum, which will be used in the subsequent sections. In
Sec. III the lattice cGN model with chiral SLAC fermions
is presented, relevant observables are introduced and the
lattice setup is discussed. Section IV contains our sim-
ulation results on the inhomogeneous condensation of
the scalar and pseudo-scalar bilinears and their inter-
relation. We calculate the phase diagram in the (T, µ)
plane for various lattice sizes and lattice constants in or-
der to study the thermodynamic and continuum limits.
We shall see that even for the smallest accessible value
Nf = 2 the results resemble those for the exact solution
of the system with Nf →∞. Towards the end we exploit
Dyson-Schwinger equations to study the UA(1)-invariant
fermion four-point function in the infrared.

II. ANALYTICAL CONSIDERATIONS

A. Symmetries and reformulations

The chiral GN model with Lagrangian (1) most promi-
nently features a global axial UA(1) symmetry,

ψ(x )→ eiαγ∗ψ(x ) , ψ̄(x )→ ψ̄(x ) eiαγ∗ , (2)

with a continuous parameter α ∈ R. In this work we
denote spacetime coordinates by bold letters, for example

x =

(
t
x

)
. (3)

The continuous axial symmetry is to be compared with
the discrete Z2 symmetry of the model considered in
[24, 25]. Further symmetries of the model include a
flavor-vector symmetry that ensures the factorization of
the fermion determinant, parity and charge conjugation
symmetry responsible for the absence of the sign problem
for even Nf (see [24] for details) and, of course, Euclidean
spacetime symmetry.

As is usually done we introduce the complex auxiliary
field ∆ in order to bring the Lagrangian (1) to the equiv-
alent form

L = iψ̄
(
/∂ + P+∆ + P−∆∗

)
ψ +

Nf

2g2
|∆|2 , (4)

where P± = 1
2 (1± γ∗) are the chiral projectors. This

Lagrangian is invariant under the axial transformations
(2) supplemented by

∆(x ) 7→ e−2iα∆(x ) . (5)
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One can show the equivalence of Lagrangians (4) and (1)
by using the equations of motion for the auxiliary field
∆. This equivalence persists on the quantum level be-
cause the ∆ integration in the path integral is Gaussian
and can be done analytically, leading back to Eq. (1).
It is no more difficult to obtain the following Dyson-
Schwinger (DS) equations relating the expectation values
of the auxiliary fields to the symmetry-breaking chiral
condensates:2

〈ψ̄P+ψ〉 =
iNf

2g2
〈∆∗〉 , 〈ψ̄P−ψ〉 =

iNf

2g2
〈∆〉 . (6)

For later use we introduce two further parametrizations
of ∆ in terms of its real and imaginary parts σ and π and
in terms of its absolute value ρ and phase θ:

∆ = σ + iπ = ρ eiθ . (7)

In order to study finite baryon densities we also introduce
a chemical potential µ for the fermion number density
ψ̄γ0ψ, such that the Lagrangian takes the form

L = ψ̄iDψ +
Nf

2g2
ρ2 , (8)

where the Dirac operator D is defined as

D = /∂ + µγ0 + ρeiγ∗θ . (9)

It is understood that this operator acts on all flavors in
the same way, such that in the multi-flavor case we may
use the same symbol as for one flavor.

While there is no gauge invariance in this model, one
can still trade the compact field θ for an imaginary vector
potential

Aµ =
i

2
εµν∂νθ (ε01 = 1) (10)

in the following sense:

D = eiγ∗θ/2
(
i /D + ρ

)
eiγ∗θ/2 , (11)

where the covariant derivative Dµ is defined as

Dµ = ∂µ − iAµ + µδµ0 . (12)

Since the main focus in our work is on homogeneous
and inhomogeneous phases of the finite-temperature and
finite-density cGN model we impose that ψ, ψ̄ are anti-
periodic and ∆, ∆∗ are periodic in Euclidean time with
period β, where β is the inverse temperature. We fur-
thermore impose that all fields are periodic in the spatial
direction with period L.

2 In 1 + 1 dimensions the condensates vanish for finite Nf . Later
we shall study DS equations for bilinears of the condensate fields.

Integrating out the fermions in the partition function
yields an effective bosonic theory in which the auxiliary
bosons become dynamical via fermion loops,

Z =

∫
D∆ e−NfSeff [∆] , (13)

with the effective action

Seff [∆] = − ln detD +
1

2g2

∫
d2x ρ2(x ) . (14)

We used that the fermion determinant of the multi-flavor
model is (detD)Nf with the one-flavor operator D ap-
pearing in Eq. (14). A convenient (and widely adopted)
way of renormalizing this formal expression is a choice
of the bare coupling g2 such that Seff for T = 0 and
µ = 0 takes its global minimum at some prescribed pos-
itive value ρ(t, x) = ρ0. The corresponding gap equation
in the thermodynamic limit,

1

g2
=

1

2π

∫ Λ

0

p dp

p2 + ρ2
0

, (15)

yields the cutoff dependence of the bare coupling.

B. Large-Nf results

In the large-Nf limit the saddle-point approximation
to the path integral (13) becomes exact and the grand
potential Ω proportional to the minimum of the effective
action (14) on the space of auxiliary fields,

LΩ(T, µ, L) = − 1

Nf
logZ

Nf→∞−→ min
∆

Seff [∆] . (16)

This means that in the large-Nf limit the path integral
is localized at the minimizing configuration ∆min. It fol-
lows, for example, that the expectation value of ∆ is
equal to ∆min.

The condition of a (local) minimum, maximum or sad-
dle point is expressed by the gap equation

0 =
δSeff

δ∆∗
, (17)

which has been extensively studied in the literature. A
constant solution ∆ of this equation can be mapped into
the constant real solution |∆| by an axial rotation. But,
for real ∆ the effective action of the cGN model simplifies
to that of the GN model. Hence, if ρ0 solves the GN gap
equation then ρ0e

iθ with constant θ solves the cGN gap
equation.

On can show that for temperatures above the critical
temperature

Tc

ρ0
=
eγ

π
≈ 0.567 (18)

and for all µ the cGN model (in the large-Nf limit) is
in a symmetric phase with a vanishing condensate field
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[31]. Here γ is the Euler-Mascheroni constant. More
surprising is the fact that below Tc and for all µ 6= 0 there
are no homogeneous solutions of the gap equation which
minimize Seff . Instead, the minimizing configurations are
helixes with pitch π/µ,

∆(x ) = ∆(x) = ρ̄(T ) e2ik(µ)x , (19)

so-called chiral spirals, with a temperature-dependent
amplitude ρ̄(T ) and k(µ) = −µ in the large-Nf limit.
For vanishing chemical potential the chiral spiral degen-
erates to a homogeneous configuration, which relates to
the large-Nf solution of the Z2 GN model at µ = 0. We
conclude that the profile function ρ̄(T ) is just the conden-
sate of the GN model at µ = 0, which decreases mono-
tonically in T until it vanishes at Tc. The large-Nf phase
diagram in the (T, µ) plane is depicted in Fig. 1.
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FIG. 1: The phase diagram of the cGN model in the large-Nf

limit (see [18]). One critical temperature Tc for all µ marks the
transition from chiral spirals at T < Tc to the symmetric phase at
T > Tc. Units are set by the condensate ρ0 at zero temperature

and zero chemical potential.

C. Spontaneous symmetry breaking in low
dimensions

Under rather natural assumptions the existence of per-
fect long-range order (as opposed to quasi -long-range or-
der) in lower dimensions is excluded by the celebrated
Coleman-Hohenberg-Mermin-Wagner theorem [32–35].
This theorem states that continuous symmetries cannot
be spontaneously broken at finite T in low-dimensional
systems with short-range interactions. In particular, for
zero-temperature systems the theorem says: The con-
tinuous symmetries cannot be spontaneously broken in
(1 + 1)-dimensional quantum systems. If a continuous
symmetry were spontaneously broken, then the system
would contain Goldstone bosons, which is impossible in
two spacetime dimensions because massless scalar fields

have an IR-divergent behavior [35]. Discrete symmetries,
on the other hand, can still be spontaneously broken in
two dimensions.

There is a domain-wall proof of the theorem, of which
the basic intuition is to rotate the field or, in a spin-model
language, the values of spins in a finite region with an ar-
bitrarily small energy cost. This is achieved by creating a
domain wall of finite thickness interpolating between the
regions with rotated and unrotated spins. If the sym-
metry group were discrete, there would be no smooth
interpolation and hence a finite cost for creating domain
walls.

The increasing strength of fluctuations (thermal and
quantum) in the IR with decreasing dimension d is known
from the (Euclidean) free scalar field with propagators

〈φ(x )φ(0)〉 m→0
=


− 1

2 |x| d = 1 ,

− 1
2π log |x | d = 2 ,
1

4π|x | d = 3 .

(20)

The interpretation of the IR divergence in d = 1 and 2
is that the field fluctuations cannot stay centered around
a mean. It implies that far away from a given spacetime
point the field takes completely different values than at
the given point. This happens in one and two dimensions
where the fluctuations move the field arbitrarily far from
an initial value such that it has no well-defined average.

This reasoning should apply to translation invariance
as well: If the distance between two neighboring particles
on a wire fluctuates by δx, then the nth particle’s sepa-
ration fluctuates as

√
n δx and thus diverges for large n.

These large fluctuations destroy any long-range order in
the position of the particles and R. Peierls concluded that
a one-dimensional equally spaced chain with one electron
per ion is unstable [36]. In higher dimensions (d ≥ 3) the
fluctuation-induced correlations fall off at large distances
and are not strong enough to destroy long-range order.

Furthermore, based on the powerful energy-entropy ar-
gument it has been argued that any spontaneous symme-
try breaking (SSB) should be disallowed in 1 + 1 dimen-
sions at finite temperature [32]. In the argument one
considers a small number N of local perturbations of an
ordered state (e.g. aligned spins in the Ising model). The
entropic contribution of these perturbations to the free
energy is ∝ N lnN while the energy penalty is only ∝ N .
Thus, the entropic contribution can overcome the energy
barrier and destroy the order. This perspective is directly
applied to the discrete GN model in [37].

Hence, the breaking of translation invariance in the
(1 + 1)-dimensional GN model seems to be excluded on
general grounds. On the other hand, the no-go theo-
rems do not apply in the large-Nf limit where the an-
alytical solution shows that the finite-temperature and
finite-density equilibrium state is not translation invari-
ant. What may happen at finite Nf is a subtle issue and
has been discussed (including the underlying assumptions
of certain no-go theorems) in [24].

Besides the questions raised in [24] there are more
points to be clarified with regards to the applicability
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of the no-go theorems: It is not obvious whether the
effective action Seff [∆] containing the non-local fermion
determinant is short ranged enough to ensure the con-
vergence of certain integrals, which is assumed in [33].
Although [34] treats fermions as well, the result is based
on sufficient convergence (in form of f sum rules) and
gives itself an example of violation.

We emphasize that the no-go theorems allow for a BKT
phase with quasi-long-range order expressed by slowly
decaying correlations ∝ 1/|x |α and a BKT transition to
a massive phase with short-range correlations ∝ e−m|x |

[38, 39]. There is no symmetry breaking and no order
parameter involved in the strict sense, but the slowly de-
caying correlations of a BKT phase allow for large regions
of one distinguished local state.

D. Perturbations of chiral spirals

How are the inhomogeneous phases of the GN and cGN
models in the large-Nf limit compatible with the no-go
theorems discussed above? In a way the large parameter
Nf takes over the role of an extra spatial dimension. For
example, in the domain-wall argument given above the
energy penalty is multiplied by the large number Nf and
in the limit Nf →∞ may overcome the entropy gain.

This and further heuristic arguments can be substan-
tiated by a systematic expansion in the small parameter
1/Nf , whereby one assumes that for finite Nf the contin-
uous UA(1) axial symmetry is not spontaneously broken.
Under an axial rotation the radial field ρ is left invari-
ant and θ is shifted by a constant. This means that an
invariant effective action is a functional of the form [40]

Seff = Seff [ρ, ∂µθ] . (21)

This effective action is used to calculate expectation val-
ues of functions of ∆ = ρeiθ and its complex conjugate
field ∆∗. However, in the continuum model a condensate
〈∆〉 cannot form (it would break the axial symmetry)
and with chiral SLAC fermions and the ergodic rHMC
algorithm it averages out in lattice simulations, see Sec.
III B. Thus, following our previous studies [24, 25], the
correlator

C(x) = 〈∆∗(t, x)∆(t, 0)〉 (22)

will be of particular interest to us.
For Nf →∞ the path integral is localized at the chiral

spiral (19) and we find

C(x) = ρ̄2e−2ikx . (23)

Clearly, for finiteNf we must admit small deviations from
the chiral spiral,

∆(x ) =
(
ρ̄+ δρ(x )

)
e2ikx+iδθ(x) , (24)

and expand the effective action in powers of the fluctu-
ation fields δρ and δθ. An explicit calculation at zero

temperature and in an infinite volume shows that the
term linear in the fluctuation fields vanishes if the bare
GN coupling depends on ρ̄ according to

1

g2
=

1

2π
log

Λ2 + ρ̄2

ρ̄2
and k + µ = 0 . (25)

The first relation is recognized as the gap equation of the
Z2 GN model. For large volumes the wave number k be-
comes continuous and the second relation can be fulfilled
for all µ. Since the effective action only depends on k
via k + µ, this relation implies that Seff is independent
of both k and µ. In a finite box with quantized k, how-
ever, the background field ρ̄ and the effective action will
generically depend on k + µ.

The contribution quadratic in the fluctuation fields is
rather lengthy and has divergent terms which all cancel
when one uses the gap equation (25). If in addition the
wave number of the chiral spiral obeys k + µ = 0, then
one obtains

Seff = V Ueff(ρ̄) +
1

2π

∫
δρK∆ asinh

(√
−∆
2ρ̄

)
δρ

+
1

2π

∫
δθ

(
ρ̄2

K∆
asinh

(√
−∆
2ρ̄

)
+
∆

8

)
δθ + . . . ,

(26)

where the dots indicate higher-order terms, the integrals
extend over the spacetime volume and we introduced the
(non-local) operatorK∆ containing the Laplace operator,

K∆ =

(
1− 4ρ̄2

∆

)1/2

. (27)

In a low-energy approximation we may perform the gra-
dient expansion, which yields the simple expression

Seff = V Ueff(ρ̄)

+
1

2π

∫ (
δρ2 +

(∇δρ)2

12ρ̄2
− (∆δρ)2

120ρ̄4
+ . . .

)
(28)

+
1

16π

∫ (
(∇δθ)2 − 1

3ρ̄2
(∆δθ)2 + . . .

)
+ . . . ,

containing the standard kinetic terms plus higher deriva-
tive terms. The first term under the first integral is just
the second-order term in the expansion of Ueff(ρ̄ + δρ)
in powers of δρ. Thus, up to second order the effective
action for ρ = ρ̄+ δρ and δθ at low energies has the form

Seff =
1

4π

∫
d2x ρ2

(
log

ρ2

ρ̄2
− 1
)

+
1

24π

∫
d2x

( (∇ρ)2

ρ̄2
− (∆ρ)2

10ρ̄4

)
(29)

+
1

16π

∫
d2x

(
(∇δθ)2 − 1

3ρ̄2
(∆δθ)2

)
+ . . . ,

where we inserted the explicit form of the effective po-
tential at zero temperature and the dots indicate cubic
and higher-order terms and higher derivative terms. We
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see explicitly that ρ describes a massive field and δθ a
massless would-be Nambu-Goldstone mode. At large Nf

the latter decouples from the system while at finite Nf it
destroys perfect long-range order.

To study long-range correlations we can safely neglect
contributions from the massive field and obtain, for large
but finite Nf , the valid approximation

C(x) ≈ ρ̄2e−2ikx
〈
eiδθ(t,0)−iδθ(t,x)

〉
. (30)

It holds information about the dominant wave numbers
of typical configurations in an ensemble. Due to the loga-
rithmic divergence in the correlator of the massless scalar
field one finds for x→∞

〈
eiδθ(t,0)−iδθ(t,x)

〉
→

{
x
− 1
Nf T = 0 ,

e−x/ξβ T > 0 ,
(31)

such that in a BKT phase with quasi-long-range order
the amplitude of the oscillating correlator decays fairly
slowly, following a power law. At finite temperature the
correlation length, given by

ξβ =
2Nf

πT
α , α = 1 + 2

∑
n≥1

(−1)n(nβρ̄)K1(nβρ̄) , (32)

where K1 denotes a modified Bessel function of the sec-
ond kind, is finite. The coefficient α increases mono-
tonically with the inverse temperature β from α = 0 to
α = 1. This means that the correlation length diverges
in the large-Nf limit or for T → 0.

III. LATTICE FIELD THEORY APPROACH

A. Objectives and observables

The previous discussion makes clear that we should not
expect to see SSB in the cGN model with UA(1) symme-
try. Indeed, there are stronger arguments against perfect
long-range order in this model than in the GN model with
Z2 symmetry. However, the difference between a spon-
taneously broken and a BKT phase at zero temperature
most likely appears on exponentially large length scales
that cannot be reached in our lattice simulations, see, for
instance, [41]. It could very well happen that on phys-
ically relevant length scales one can hardly distinguish
between quasi-long-range and perfect long-range order.
Furthermore, we shall see that even the distinction be-
tween a massive symmetric phase and a BKT phase at
low temperatures is non-trivial if one allows for contri-
butions of the first excited state.

Either way we will find striking similarities between
the cGN model with only two flavors and the model with
Nf →∞, which, for µ 6= 0, shows SSB of translation in-
variance. If similar observations apply to more realistic
models in higher dimensions then this could be relevant
for the physics of compact neutron stars, heavy-ion col-
lisions or condensed matter in small systems.

We shall see that for 8 flavors the correlation function
C(x) in (22) has the form (30) predicted by the effective
low-energy Lagrangian and can be hardly distinguished
from the large-Nf result (23). For example, at low tem-
perature its discrete Fourier transform F [C](k) is peaked
at the dominant wave number

kmax =
1

2
argmax

k
|F [C](k)| , (33)

which for large Nf is given by the chemical potential,

kmax
Nf→∞−→ µ , (34)

while for Nf = 2 we find kmax < µ. Notice that we
have included a factor of 1/2 in Eq. (33), in line with the
introduction of k in Eq. (19) as half the wave number. We
will use this convention for k and kmax in the remainder
of this work.

The spatial correlation function C(x) also encodes the
distinction between the massive symmetric and BKT
phases in its decay properties,

|C(x)| x→∞−→


e−x/ξβ massive symmetric ,

x
− 1
Nf BKT ,

const. symmetry-broken .

(35)

For a comparison we included the asymptotic behavior in
a symmetry-broken phase. The temperature-dependent
correlation length ξβ was defined in Eq. (32).

B. Lattice setup

We discretize two-dimensional Euclidean spacetime to
a finite lattice with Ns and Nt lattice sites in the spatial
and temporal directions respectively, such that L = Nsa
is the spatial extent, T = 1/Nta is the temperature and
a denotes the lattice constant.

In our simulations we employ chiral SLAC fermions
[42, 43], which discretize the dispersion relation in mo-
mentum space, leading to a non-local kinetic term in po-
sition space. They have proven advantageous over other
fermion discretizations for low-dimensional fermionic the-
ories, see e.g. [24]. The use of SLAC fermions restricts
Ns to be odd and Nt to be even. For further details we
refer to sections 2.1 and 4.1 of [26]. Note that our lat-
tice setup is the same as in [24], with the only difference
that besides a scalar field σ we now have an additional
pseudo-scalar field π and both fields enter the complex
condensate field ∆ via Eq. (7).

For an easy comparison with the analytic results we ex-
press physical quantities in units of the expectation value
〈ρ〉 at T = µ = 0, denoted by ρ0. This is analogous to the
scale σ0 in our previous studies [24, 25]. One should stress
that this neither assumes any form of symmetry break-
ing nor is in conflict with any no-go theorem because a
non-vanishing expectation value of ρ does not break any
symmetry. Fig. 2 shows histograms of

∑
x ∆(x ) in the
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FIG. 2: Distributions of 1
ρ0NsNt

∑
t,x ∆(t, x) in the complex plane for 2 flavors, Ns = 63, a ≈ 0.46 and µ = 0 at various temperatures.

The red crosses mark the origin and are included for visual clarity.

complex plane for µ = 0 and 12 different temperatures.
For these histograms we used ensembles with O(104) con-
figurations each. We clearly observe that the distribution
of ∆ is angle independent or UA(1) invariant. At low
temperature it is ring shaped with its maximum at ρ > 0,
while at high temperature it turns into a Gaussian-like
distribution and the maximum moves to ρ = 0.

In the actual simulations, however, the quantity ρ0 is
surprisingly hard to determine. App. A sheds some light
on the details of this procedure. In summary, we used3

〈ρ〉 ≈ 1

NsNMC

∑
τ,x

∣∣∣ 1

Nt

∑
t

∆(τ)(t, x)
∣∣∣ , (36)

with τ = 1, . . . , NMC enumerating the Monte Carlo (MC)
configurations. This yields a good signal at low temper-
atures where 〈ρ〉 is required.

For most of our simulations, we used one of three dif-
ferent spatial extents Ns = 63, 127, 255 and lattice con-
stants aρ0 ≈ 0.46, 0.19, 0.08 in order to study both the
continuum limit and the infinite-volume limit. We vary
the temperature by changing the number of lattice points

3 Notice that this is not identical to taking the absolute values and
MC averages of the distributions shown in Fig. 2. For a more
detailed discussion about the order of taking absolute values and
averages, see App. A

in the temporal direction, Nt, at fixed a and we vary a by
changing the coupling 1/g2 in Eq. (8). For these lattices
we map out phase diagrams in the (T, µ) plane. More de-
tails as well as a table summarizing all parameter settings
are given in App. D.

Experience with interacting fermion models teaches us
[24] that systems exhibiting (quasi-)long-range inhomo-
geneous structures can have rather long thermalization
times when running simulations with randomly gener-
ated initial configurations, e.g., using a Gaussian distri-
bution. As a way to counteract this problem, we employ
a different approach for the majority of results presented
in this work and perform a systematic ”freezing out” in
the following way: Starting at high temperatures with
Nt � Ns, where thermalization times are not an issue,
we generate at least 1000 configurations to ensure proper
thermalization. We then map the last of these configura-
tions to a lower-temperature lattice with N ′t > Nt by sim-
ply repeating the data in the temporal direction and use
it as a seed configuration on the larger lattice. This re-
duces the thermalization period (where no measurements
are performed) if the temperature step is small. In our
simulations we systematically approach lower and lower
temperatures using this ”freeze-out” procedure. This
way we experienced significantly less ”getting stuck” in
some far from typical configurations, although it could
still not be completely prevented from happening.

A cross-check with thermalized results using standard
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Gaussian-distributed initial configurations yields equiva-
lent results, with the ”freezing” method having notice-
ably better thermalization properties and thus overall
smoother results. As an additional cross-check we also
performed the inverse procedure, i.e., a ”heating”, for a
handful of parameters in order to exclude any hysteresis
effects caused by the ”freezing” method.

As can be seen from Fig. 3, where we show the Fourier
transform of Cσσ(x) (to be defined in Eq. (37)) computed
via each of the three methods, the ”frozen” and ”heated”
results agree very well, indicating that hysteresis effects
are negligible. The fact that the ”independent” results,
i.e. the ones obtained by using Gaussian-distributed ini-
tial configurations, show some deviation is likely to be
attributed to their lower statistics and worse thermaliza-
tion properties.

         / 0              0.44        0.87        1.31
frozen
independent
heated

         / 0              0.44        0.87        1.31
frozen
independent
heated

0.0 0.2 0.4 0.6 0.8 1.0 1.2
k/ 0

0.000

0.025

0.050

0.075

0.100

0.125

0.150

[C
](k

)/
2 0

FIG. 3: The Fourier transform of Cσσ(x) as a function of k for
the three different methods mentioned in the main text on a

48× 127 lattice for aρ0 ≈ 0.46 and different µ. The temperature
is the second lowest considered, i.e. we compare several ”freezing”
steps with a single ”heating” step. The vertical lines indicate the

maxima of the ”frozen” results at the lowest temperature.

The vertical lines in Fig. 3 show the peak positions,
which were estimated with the ”freezing” method, for the
lowest temperature considered. We see that for the high-
est density (µ/ρ0 ≈ 1.31 in the figure) the peak positions
of the two lowest temperatures differ. This dependence
on temperature is not seen in the large-Nf limit and is
caused by bosonic fluctuations.

For small µ on our smallest lattice, where homogeneous
configurations dominate, we furthermore compared with
a ”cold start”, which amounts to starting the simulation
from ∆(0)(t, x) = 1 + i. Again we found matching results
except for the lowest temperatures where the cold start is
expected to suffer from severe autocorrelation problems.
A detailed analysis of autocorrelation effects can be found
in App. B.

C. Lattice estimators

We have argued that spatial correlation functions are
useful tools to probe for inhomogeneous phases since they
avoid the destructive interference one would encounter
when directly calculating chiral condensates on the lat-
tice. We consider the two spatial correlators

Cσσ(x) =
1

NtNs

∑
t,y

〈σ(t, y + x)σ(t, y)〉 ,

Cσπ(x) =
1

NtNs

∑
t,y

〈σ(t, y + x)π(t, y)〉 ,
(37)

where the sums extend over all lattice sites and 〈 · 〉 de-
notes the Monte Carlo average. If these correlators show
an oscillating behavior, one can infer the existence of
inhomogeneities. The unbroken UA(1) symmetry (5) im-
plies that for any temperature and chemical potential

Cσσ(x) = Cππ(x) and Cσπ(x) = −Cπσ(x) . (38)

Also note that the fermion determinant is invariant when
σ and µ both change their signs, such that

〈σ(x )π(y)〉µ = −〈σ(x )π(y)〉−µ , (39)

from which we conclude that

Cσπ(x) = Cπσ(x) = 0 for µ = 0 . (40)

We see that additional correlators that arise from inter-
changing σ ↔ π in Eq. (37) are not independent and we
refrain from using them in subsequent equations to save
some space. In the measurements, however, we do not
implement the symmetries (38) and instead use all four
correlators Cσσ, Cσπ, Cπσ and Cππ in order to reduce
statistical correlations. From Eq. (22) one obtains

C(x) = 2(Cσσ(x) + iCσπ(x)) (41)

and the property (40) means that C is real for vanishing
µ.

In [24] we introduced the minimal value

Cmin = min
x
Cσσ(x)


> 0 homogeneous

≈ 0 symmetric

< 0 inhomogeneous

(42)

to map out the entire phase diagram of the (discrete)
GN model. This parameter is negative if there is (quasi-)
long-range order with oscillating Cσσ(x) and is also useful
for discussing the physics of the chiral GN model. For
the chiral model the choice of Cσσ might seem arbitrary
but because of (38) any quadratic correlator of a linear
combination of σ and π would serve the same purpose.

It is important to note that taking the minimum is a
global operation that disqualifies this quantity as a lo-
cal observable. Furthermore, this minimum might (and
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actually commonly will) be taken for small spatial sepa-
rations x. In such cases, Cmin does not probe the long-
range behavior of the system.

We estimate the dominant wave number kmax as given
by Eq. (33), but calculated from Cσσ instead of C. Some-
times we quote results in terms of the integer-valued dom-
inant winding number νmax, related to kmax via

νmax =
L

π
kmax . (43)

From analytical studies [40, 44] it is expected that the
UA(1)-invariant fermionic four-point function of the GN
model,

C4F(x ;y) =
〈
ψ̄(1 + γ∗)ψ(x )ψ̄(1− γ∗)ψ(y)

〉
, (44)

at zero temperature and zero fermion density should have
a power-law behavior in the limit of large separations,

C4F(x ;y) ∼ c |x − y |−
1
Nf , (45)

where c is some constant. Similarly to the spatial correla-
tion functions (37) for the condensate fields we introduce
the spatial correlation function for the Nf fermionic lat-
tice fields,

C4F(x) =
1

NtNs

∑
t,y

C4F(t, y + x; t, y) . (46)

The asymptotic form (45) would imply a power-law decay

C4F(x) ∼ c x−
1
Nf for x� 1 . (47)

Dyson-Schwinger equations (see App. C) relate C4F(x) to
the spatial correlation functions of the condensate fields,

C4F(x) = −2

(
Nf

g2

)2

(Cσσ(x) + iCσπ(x)) , (48)

since the contact term in Eq. (C5) does not contribute
for large x. Since Cσσ and Cσπ are easily accessible in
lattice simulations we shall use this relation to study the
infrared properties of C4F. For µ = 0 the latter is real,
see (40).

From the effective low-energy approximation outlined
in Sec. II D we expect that the phase of the complex
condensate field, θ = arg(∆), holds important informa-
tion about the existence of inhomogeneous structures.
We thus studied the space dependence of its expectation
value, defined in the following way:

〈θ(x)〉 = arg
(〈

∆̄(x)
〉)

, (49)

where the bar indicates time averaging, i.e.,

∆̄(x) =
1

Nt

∑
t

∆(t, x) . (50)

We chose this (unusual) order of time- and MC averaging
to suppress statistical uncertainties. Although the two
averages in (49) do not commute the given prescription is
justified since the configurations are essentially constant
in time direction, see Fig. 4 for an example configuration
of the σ field.

0 20 40 60 80 100 120
x/a

0

20

40

60

t/a

4

2

0

2

4

/
0

FIG. 4: Typical configuration of σ(x ) on a 72× 127 lattice for
µ/ρ0 ≈ 0.44 and aρ0 ≈ 0.46.

IV. NUMERICAL RESULTS

In previous studies of the discrete GN model [24, 25],
2, 8 and 16 flavors have been investigated with the focus
on Nf = 8 in order to compare different types of chiral
fermions4 and their suitability to investigate inhomoge-
neous phases. But Nf = 8 is still close to Nf =∞ in the
sense that on an intermediate scale quantum fluctuations
away from the chiral spiral are suppressed. To be more
precise, if the BKT scenario were correct, then, for in-
stance, in order to obtain a decay to half the amplitude
a crude estimate using C(x) ∼ |x|−1/8 yields

C(x′)

C(x)
=

1

2
⇒ |x′| = 256 |x| (51)

at the very least. Thus, in order to make any meaning-
ful statements about such an amplitude decay we would
require around O(103) lattice points at sufficiently small
temperature (large temporal extent). This does not take
into account severe autocorrelation problems, finite-size
effects and contributions from excited states that might
all spoil the signal. This crude estimate motivated us
to study the long-range behavior for Nf = 2 in [24], for
which the same estimate yields feasible 40 lattice points.

A. Overview for Nf = 8

Although our focus is on 2 flavors we performed one
parameter scan in (T, µ) for Nf = 8, Ns = 63 and aρ0 ≈
0.41 in order to compare with results for the discrete
GN model. Some of our results are depicted in Fig. 5.
Fig. 5a shows the phase diagram extracted from Cmin (see
Eq. (42)), which is to be compared with Fig. 1 for infinite
flavor number and is also the equivalent of Fig. 7 in [24].
We see that the phase diagram agrees well with the large-
Nf prediction for small chemical potential (µ < 0.5ρ0)
and at least shows the predicted structure at larger µ.

4 Nf = 8 is the smallest number of flavors where naive fermions
have no sign problem.
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(a) Phase diagram via Cmin from
Eq. (42).
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(c) Dominant winding number νmax

from Eq. (43) and Eq. (33) for
T/ρ0 ≈ 0.030. The linear fit has a slope

of 7.91± 0.10.

FIG. 5: Collection of results for Nf = 8, Ns = 63, aρ0 ≈ 0.41.

At vanishing chemical potential Cmin is positive for
small temperatures, indicating predominantly homo-
geneous configurations with non-vanishing amplitudes.
They relate to the homogeneously symmetry-broken
phase at large Nf . In Fig. 5b we see that in this regime
Cσσ(x) is a positive and monotonically decaying func-
tion (blue curve) and Cσπ(x) ≈ 0 in agreement with
(40). Raising the temperature we find a small tem-
perature regime around T ∼ 0.3ρ0 where we observe
a sudden drop of the amplitude such that the µ = 0
data mimic a second-order phase transition. In the high-
temperature regime the non-zero correlator Cσσ falls off
even more rapidly. This (would-be) transition tempera-
ture at µ = 0 is approximately equal to the one found in
the discrete GN model in [24]. This was to be expected
since in the large-Nf limit the GN and cGN models at
vanishing chemical potential have the same critical tem-
perature. It is also not surprising that for Nf = 8 the
transition temperature is significantly lower than in the
large-Nf limit (cf. Eq. (18)), where quantum fluctuations
are suppressed. The symmetric high-temperature regime
at µ = 0 extends to non-vanishing chemical potential
(orange curve in Fig. 5b).

At low temperature and non-vanishing fermion density
we can clearly confirm that the dominant contributions
to the path integral come from chiral–spiral-like config-
urations. An example of this is shown in Fig. 5b (green
curve). Such configurations are the cause of the large
region of negative values in Fig. 5a. The transition line
to the region where oscillations are no longer dominant
is roughly a line of constant temperature for small chem-
ical potential (µ < 0.5ρ0), as expected from the large-Nf

solution. For large chemical potential it tilts upwards
unexpectedly, thereby enlarging the regime where inho-
mogeneities are found. This effect was also observed in
[24] for Nf = 2 in the discrete GN model and is related
to short- and intermediate-range phenomena that will be
discussed later. Nevertheless, the fact that we encounter
it already for Nf = 8 strengthens the point that quan-
tum fluctuations are much stronger in the chiral model

compared to the discrete one.
For Nf = 8 the winding numbers (43) of the inho-

mogeneous configurations match the large-Nf expecta-
tion very well if one accounts for the discretization of the
wave number due to the finite box size, as can be seen in
Fig. 5c (note that νmax is integer valued by definition).
As in [25] there is a tendency for the lattice data to lie
slightly below the Nf = ∞ expectation. The linear fit
through the origin yields a slope of roughly 7.91, which
is lower than the large-Nf value L/π ≈ 8.27, but well
within the expected accuracy of the large-Nf expansion
O(1/Nf) ∼ 10%.

We remark that autocorrelations appear to be under
control. However, due to limited statistics we cannot rule
out the existence of another, larger, autocorrelation scale
at low temperatures, see App. B for details.

B. Deviations of Nf =2 from the large-Nf limit

After discussing the results for Nf = 8, which in many
ways confirm the large-Nf expectations, we now study
the 2-flavor cGN model for which we expect sizable de-
viations from the large-Nf solution.

To monitor the fluctuations in the system at finite tem-
perature and density, we measure the dominant wave
number (33) of the equilibrium ensemble. It character-
izes important configurations for the given set of control
parameters and tells us which chiral spiral is favored in
the rough landscape defined by the effective action with
its many local minima. This analysis presupposes that
chiral spirals are the dominant configurations even for
Nf = 2 or that the non-dominant winding numbers are
suppressed. We shall see that this is a valid assumption
at small temperatures.

Fig. 6 shows such histograms for 3 values of T and 3
values of µ. As expected, the data show three distinct
peaks, one for each value of µ. At the lowest tempera-
ture and µ 6= 0 the peaks are pronounced with over 80%
of the configurations sharing the same dominant wave
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FIG. 6: Histograms of kmax for Nf = 2, Ns = 63, aρ0 ≈ 0.46 and
various values of temperature and chemical potential.

number. Increasing the temperature then broadens the
peaks. Concerning the question of spontaneous symme-
try breaking, one should stress three features:

1. While the peaks flatten significantly for rising tem-
perature, they do not vanish completely. At tem-
peratures as high as ∼ 0.5ρ0 we could still make
out small bumps (not shown in Fig. 6). Thus, even
at these high temperatures the system knows about
the inhomogeneity arising from its finite density.

2. There is no qualitative (or even sudden) change
in these distributions that could characterize a
second-order phase transition. Instead the flatten-
ing of the peaks is a rather smooth process.

3. Even at low temperatures (e.g. T ≈ 0.05ρ0), well
inside the would-be symmetry-broken regime, the
contributions from concurrent frequencies are sig-
nificant (around 10−20% in the example). The in-
terference of these contributions is the mechanism
which, crucially, prevents a breaking of symmetry.

The features 1 and 2 discussed above are clearly visi-
ble in the spatial correlators depicted in Fig. 7. At low
T and non-vanishing µ we clearly observe remnants of a
chiral spiral, see Fig. 7a. From Fig. 7b we see that both
correlators are oscillating with a phase shift of π/2. This
is the parameter region where there are sharp peaks in
Fig. 6. At higher temperature the peaks flatten and the
correlators show damped oscillations as shown in Fig. 7c.
Notice, however, that even in this regime we still find
Cmin < 0, i.e., this is classified as a region of spatial
inhomogeneities according to our definition. Here we ob-
serve a clear deviation from the large-Nf solution. Since
the oscillations in Fig. 7c are only seen on short scales
we must be cautious when interpreting a negative Cmin

as a signal for inhomogeneities. As already stressed be-
fore, a negative Cmin ensures that there are oscillations

on some length scale but this scale can be – and certainly
is for large parts of the blue region of the phase diagram
– a short or intermediate one. Finally, at even higher
temperatures one again finds correlation functions with
Cmin ≈ 0, indicating a symmetric region.

Similarly to Nf = 8 we determined the dependence of
the dominant winding number in Eq. (43) on the chem-
ical potential and we present the results in Fig. 8. As
expected, the (dominant) winding numbers for Nf = 2
deviate considerably from those in the large-Nf limit and
those for Nf = 8, cf. Fig. 5c. One might conjecture that
the winding numbers decrease with decreasing Nf .

C. Phase diagram for Nf =2

One could expect a qualitatively different ”phase dia-
gram” for the cGN model with 2 flavors as compared to
the large-Nf diagram depicted in Fig. 1. In order to test
this expectation we calculated Cmin defined in Eq. (42)
on a grid in the space of control parameters µ and T
on lattices with Ns = 63, 127 and 255 lattice points in
the spatial direction. We studied both an infinite-volume
extrapolation at (approximately) fixed lattice constant
aρ0 ≈ 0.46 and a continuum extrapolation at (approxi-
mately) fixed physical volume.

The diagrams for systems with constant lattice spac-
ing in Fig. 9 show that the infinite-volume limit signifi-
cantly shrinks the red (Cmin > 0, i.e. predominant homo-
geneous contributions) region without affecting the blue
and green region of predominant inhomogeneous resp.
symmetric configurations. There are three rather differ-
ent phenomena at work here:

1. The simplest one is just geometrical: When we en-
large the spatial volume, we can fit larger wave-
lengths into the finite box. For small µ the pitch of
the chiral spiral would exceed the box size, which
means that the chiral spiral does not fit into the
box. Such a suppression of chiral spirals with large
pitches disappears for larger volumes. Hence, the
region of predominant homogeneous configurations
must shrink in the direction of non-vanishing µ.

2. Finding a shrinking of the Cmin > 0 region in
the temperature direction is clear evidence against
spontaneous symmetry breaking. In fact, the (qual-
itative) behavior of the apparent transition temper-
ature and the condensate is well understood by a
comparison of the analytically known correlation
length Eq. (32) with the box size. We can thereby
clearly identify the remnant condensates that were
measured as finite-size effects.

3. The transition from the blue (Cmin < 0, i.e. pre-
dominant inhomogeneities) to the green (Cmin ≈ 0,
i.e. predominantly symmetric) regime can be eas-
ily understood as the following short-range effect:
At finite temperature there are two length scales
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FIG. 7: Correlators Cσσ and Cσπ (from Eq. (37)) for Nf = 2, Ns = 63, µ/ρ0 ≈ 1.14 and aρ0 ≈ 0.46. (a): 3D plot of the correlators at
T/ρ0 ≈ 0.030 showing the chiral spiral. (b): The same data as in (a) but in 2D. (c) 2D plot of the correlators at higher temperature.
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FIG. 8: νmax as a function of µ for Nf=2, Ns = 63, aρ0 ≈ 0.46
and T/ρ0 ≈ 0.030. The linear fit has a slope of 6.82± 0.17.

in the system (besides the finite box size), i.e.
the temperature-induced finite correlation length
ξβ from Eq. (32) and the predominant wavelength
inversely proportional to µ (up to discretization due
to the finite box size). Obviously, for Cmin to be
negative, the amplitude, which decays due to ξβ ,
must not have dropped to (almost) vanishing val-
ues at separations where the first minimum of the
oscillations occurs. Since the latter is given by µ
(up to a constant factor), the transition line from
blue to green signals that the temperature scale
takes over as the shortest relevant scale from the
chemical potential. This is not really a qualitative
change. As this is independent of the much larger
box size, it is not affected by the infinite-volume
limit.

An interesting, but unfortunately hard to quantify ob-
servation is the following. While on smaller lattices (e.g.
Ns = 63) the data tend to fluctuate around only one
background configuration, like a chiral spiral with a fixed
winding number, larger lattices admit changing the wind-
ing number more often as opposed to less often. An ex-

ample is depicted in Fig. 11, which shows a time series
of the modulus ρ(τ) of the spacetime average of ∆̄(τ) de-
fined in Eq. (A2) of App. A. Even for vanishing chemical
potential and low temperature, the regime in the phase
diagram where we set the scale and where the dominant
configurations are homogeneous, we still find several oc-
casions on which there are dominant inhomogeneous con-
tributions.

For most of the MC time ρ(τ) fluctuates about a con-
stant value. During this time the real part Cσσ of C de-
fined in (22) is almost constant and the imaginary part
Cσπ is small (recall that 〈Cσπ〉 = 0). But at several MC
times, e.g. τ ≈ 1100 or 3860, the field ρ(τ) drops and the
real and imaginary parts of C(x) show the profiles typi-
cal for a chiral spiral. While the lower left plot in Fig. 11
is representative for most of the configurations, the sud-
den drops in the time series are strongly correlated with
the appearance of inhomogeneous configurations as seen
in the lower right panel. That this is only seen on large
lattices is counterintuitive at first since autocorrelation
times usually increase with the system size and it is also
the opposite of what was observed for the Z2 GN model
during the work on [24, 25]. However, the fact that con-
siderable phase fluctuations on large scales are allowed is
the analytically predicted mechanism for avoiding spon-
taneous symmetry breaking, see Sec. II. From that per-
spective, it supports the analytical claims. Obviously,
Fig. 11 showcases a large autocorrelation time τ , which,
however, is under control due to good statistics of the
order of & 20τ .

The phase diagrams for systems with approximately
constant physical volume and successively smaller lattice
spacing are shown in Fig. 10. As can be seen, we find in-
homogeneities5 for all our lattice spacings and the results
are consistent with their existence in the continuum limit.
Unfortunately, setting the scale in a partially conformal

5 As discussed previously, these are probably all short- and inter-
mediate ranged, although their range does exceed the finite box
size at low temperatures.
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FIG. 9: Infinite-volume extrapolation: phase diagrams for fixed lattice spacing and Ns = 63, 127 and 255.
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FIG. 10: Continuum extrapolation: phase diagrams for decreasing lattice constant. The color coding is different from Fig. 9.
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FIG. 11: Monte Carlo time series of ρ(τ) defined in (A2) (top)
with the ∆∗x∆0 correlator at τ = 2604 (bottom, left) and τ = 3856
(bottom, right) for Nt = 72, Ns = 255, g−2 = 1.0540 and µ = 0.

system is a very subtle issue as the dominant fluctuations
have no scale at all (at zero temperature). Since the de-
tails of this scale setting procedure are highly non-trivial
(see App. A), we must leave a more detailed analysis to
a future publication.

As is discussed in detail in App. B, our simulations
suffer from large autocorrelations. For a large region
in parameter space on all geometries these autocorrela-
tions are under control due to sufficient statistics. How-
ever, close to the critical line at T = 0 autocorrelation

times diverge and the shown data should only be re-
garded as qualitative in the sense that they surely cap-
ture the important phenomena found in large but finite
regions of space but might be off quantitatively due to
autocorrelation-related suppression of subdominant local
minima. However, the discussion of App. B makes it clear
that these will not affect our conclusions.

We conclude that we observe inhomogeneous struc-
tures in the cGN model with only 2 flavors – similarly
as in the large-Nf model. The notable difference is that
– in accordance with pertinent no-go theorems – these are
incoherent on sufficiently large scales thereby hindering
spontaneous symmetry breaking. A comparable study of
the Z2 GN model with 8 flavors in [24] led to a similar
conclusion: inhomogeneous structures persist in the in-
finite volume limit. We cannot say for certain whether
this remarkable feature survives the continuum limit of
the cGN lattice models.

D. Decay properties of C4F

We analyzed the decay properties of C4F(x) as given
by Eq. (48) on a 72 × 63 lattice with aρ0 ≈ 0.46, i.e. at
a temperature T ≈ 0.03ρ0. In order to study its infrared
behavior we computed the connected correlation func-
tion. Motivated by the asymptotic forms (31) predicted
by the low-energy effective action we fit the data points
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via a (symmetrized) algebraic function

C4F(x) =
α

xβ
+

α

(L− x)β
, (52)

as well as a double-cosh ansatz,

C4F(x) =

2∑
i=1

γi cosh

[
mi

(
x− L

2

)]
, (53)

and show the results in Fig. 12.
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FIG. 12: Modulus of the connected four-point function C4F (from
Eq. (48)) with algebraic and exponential fits whose fit parameters

are given in (54) and (55).

The fit parameters for a power-law decay are

α

ρ2
0

= 6.52± 0.02 , β = 0.521± 0.001 (54)

and for an exponential decay we find

γ1

ρ2
0

= 3.2515± 4 · 10−4 ,
m1

ρ0
= (5.76± 0.03) · 10−2 ,

γ2

ρ2
0

= (4.4± 0.3) · 10−3 ,
m2

ρ0
= 0.531± 0.006 .

(55)

These results confirm similar findings obtained for the
Z2 GN model, namely that it is very difficult to dis-
tinguish between power-law and exponential decays on
the lattices with Ns = 63, which was also to be ex-
pected following the previous discussion and [41]. How-
ever, from the perspective of our analytical discussion,
where we predicted a massive phase for any T > 0 with
the mass vanishing in the limit T → 0, there is a very
well-motivated explanation. Eq. (32) predicts

m1 = 1/ξβ ≈ 2 · 10−2ρ0 , (56)

which is reasonably close to the fitted value (remember
that we expanded in O(1/Nf) ∼ 50% for Nf = 2) and
explains its seemingly unnaturally small magnitude.

On the other hand, we find that the value β ≈
0.52 is only marginally larger than the theoretical zero-
temperature prediction of β = 0.5 for two flavors in

Eq. (35). This result – although not precisely a proof
– is in astonishing agreement with the analytical predic-
tion coming from an expansion around Nf =∞� 2 and
furthermore beautifully reveals how the massive phase
more and more approximates the conformal behavior at
zero temperature by the unexpectedly large mass ratio
m2/m1 ≈ 10.

E. The phase field θ

In this section we analyze 〈θ(x)〉. This discussion
should be regarded as complementary to the previous
analysis of the correlators in the sense that we now use
a quantity directly related to the fields. It will further
substantiate our previous findings.

We show the x dependence of the average 〈θ(x)〉, as
defined in Eq. (49), on a 72 × 63 lattice for aρ0 ≈ 0.46
and for three values of the chemical potential in Fig. 13.
For vanishing µ the argument of the averaged complex
condensate field ∆ is constant, which means that the lat-
ter does not wind. For the intermediate value µ ≈ 0.88ρ0

the average angle is an almost linear function of x and
the complex condensate winds 6 times when one moves
along the spatial direction. When one further increases
the chemical potential to µ ≈ 1.31ρ0, the slope of the
(almost) linear mapping x 7→ 〈θ(x)〉 increases and the
condensate winds 9 times.
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FIG. 13: Angle of the averaged scalar field, 〈θ〉 = arg(〈∆̄〉),
calculated from time-averaged fields σ̄ and π̄, as a function of the

spatial coordinate for different µ at Nt = 72.

We see that the winding number of the chiral spiral
around the spatial direction increases with increasing µ.
In fact, the winding number extracted from the averaged
field 〈θ(x)〉 perfectly agrees with the dominant winding
number defined in Eq. (43) and depicted in Fig. 8. To
summarize: at low temperature 〈θ(x)〉 calculated from
(49) is almost a linear function of x with a slope propor-
tional to µ. In agreement with the analysis based on the
dominant wave number we detect a chiral spiral with a
winding number proportional to µ.
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V. CONCLUSIONS

In the present work we studied the (1+1)-dimensional
chiral Gross-Neveu model with chiral SLAC fermions and
exact axial UA(1) symmetry on the lattice. Our two main
results are summarized in the following.

First, we have strong and multiple evidence that the
analytical prediction from an expansion in 1/Nf well de-
scribes the qualitative features of the cGN model with
2 flavors. As expected we see no spontaneous symme-
try breaking with long-range order in the strict sense,
and our results suggest that at T = 0 there is a
BKT phase with quasi-long-range order. For example,
the low-temperature regime, where we have signals of
(in)homogeneous ordering over the whole lattice, is well
explained by the analytically predicted correlation length
exceeding the finite box size and it shrinks consistently in
the thermodynamic limit. Additionally, the decay prop-
erties of pertinent correlation functions are well fitted by
the analytically predicted ansätze with reasonable pa-
rameter values.

The latter suggests that for T = 0 fluctuations of the
phase field θ on all scales exist and are responsible for the
restoration of the axial symmetry. We demonstrated that
θ is uniformly distributed on unit circles in complex field
space and that large system sizes allow for long-range
phase fluctuations strong enough to change the winding
number. This behavior is predicted by the effective low-
energy theory for θ which has been taken from [44] and
extended to µ 6= 0.

Despite this, our second finding is that, rather unex-
pectedly, our simulations at finite temperature and den-
sity reveal that the cGN model with only Nf = 2 fla-
vors resembles the analytic large-Nf solution in many
ways. The chiral spirals are still seen in the dominant
configurations and their winding numbers increase lin-
early with the chemical potential. The only qualitative
difference at low temperatures is that these structures are
only coherent in finite but – depending on the temper-
ature – potentially very large regions of space. Instead
of a temperature-driven phase transition at intermediate
temperatures, we found a competition of the two impor-
tant scales in the system, viz. the temperature-induced
finite correlation length and the density-induced wave-
length. So, the question whether or not oscillating be-
havior was observed (on potentially short scales) can be
answered only from comparison of the wavelength with
the correlation length. Or, put differently, it is very likely
that oscillating behavior can be found for any tempera-
ture and non-vanishing chemical potential as long as the
wavelength is shorter than the correlation length of the
system. This is qualitatively different from the large-
Nf behavior where there is a strict critical temperature
above which no oscillation can be observed.

We have verified these results mainly via the corre-
lator C in (22) and by analyzing the phase of the av-
eraged field ∆, defined in (49). We generated many en-
sembles for the control parameters T and µ on grids with

up to 192 points. To quantify finite-size and discretiza-
tion effects the simulations were repeated on lattices with
63, 127 and 255 points in the spatial direction. While we
have good signals for the behavior in the thermodynamic
limit, whether the inhomogeneities remain after the con-
tinuum limit has been taken is less clear. With the cho-
sen scale setting, which is a subtle issue in a theory with
quasi-long-range order, we observe that inhomogeneities
remain in the limit aρ0 → 0. We hope to gain a more
thorough understanding of this limit in the future.

Although we found strong evidence that consistently
supports the analytical predictions, our method of MC
simulations will never be able to prove this in a rigorous
sense. Therefore, it would be interesting to compare our
findings with results from other methods, for example the
functional renormalization group. It would be valuable
to continue the study of the (1 + 1)-dimensional Gross-
Neveu-Yukawa model in [45] to related systems in finite
volumes and inhomogeneous background fields.

The mechanism of how the cGN-model realizes the
UA(1) symmetry is similar to the flattening of the con-
straint effective potential for a spacetime-averaged order
parameter ∆̄ [46]. For example, in the Ising model at
low temperature, if we impose that the spatially averaged
spin vanishes in the sum over spin configurations, then
in a typical configuration we observe large regions with
spin up and large regions with spin down. Despite the
surface energy stored in the walls separating the ”up”
and ”down” regions, this is the energetically preferred
way of fulfilling the external constraint.

Models with a continuous symmetry react differently
to the constraints. For example, in the 3-dimensional
O(2) model with a Mexican hat potential for a complex
scalar field ∆ the constraint |∆̄| < 〈|∆|〉 is met by inho-
mogeneous spin-wave-like configurations with |∆(x )| ≈
〈|∆|〉 [47]. These configurations resemble the chiral spi-
ral in the cGN model, for which the modulus of ∆̄ can
be much smaller than 〈|∆|〉. In the 2-dimensional cGN
model the constraint ∆̄ ≈ 0 is not imposed by hand but
by general theorems which ensure that 〈∆̄〉 = 0. In a
typical configuration the modulus of ∆(x ) is near the
minimum ρ̄ of the effective potential – in order to mini-
mize the bulk energy – but the real and imaginary parts σ
and π have vanishing expectation values caused by large
phase fluctuations about the relevant chiral spiral. The
main difference between the 3-dimensional O(2) model
and the 2-dimensional cGN model is that in the former
model the wavelength of the inhomogeneity is given by
the box size [47] and in the latter by the inverse chemical
potential.

In [48] it has been emphasized that the occurrence of
correlation functions exhibiting damped oscillations in
the spatial directions is directly related to particular fea-
tures of the dispersion relations. The associated quantum
spin liquid behavior, which we also spotted in the 2-flavor
cGN model, may thus be observed in a larger class of field
theories.

After publishing the initial draft of our manuscript a
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similar study of the (1+1)-dimensional cGN model using
the naive fermion discretization was published in [49]. Its
results are in qualitative agreement with ours.
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Appendix A: Details of scale setting

For an easy comparison of our results with the analytic
large-Nf solution we use ρ0 = 〈ρ〉T=µ=0 to set the scale.
Unfortunately, it is difficult to obtain an accurate esti-
mate for 〈ρ〉 in our simulations. In this appendix, we first
explain the (statistical) problems with direct approaches
to measure 〈ρ〉 and afterwards present our solution.

From a field theory perspective, the direct lattice es-
timator for 〈ρ〉 would be ρt,x for any (fixed) point (t, x)
on the lattice. Now, ρt,x should be homogeneous up to
fluctuations and, hence, one can improve the statistics by
combining the data from all estimators ρt,x for all lattice
points. Example data for this estimator can be seen in
Fig. 14a.

The final estimate for 〈ρ〉 would then read

〈ρ〉 ≈ (meanτ ◦meanx ◦meant ◦ abs) ∆
(τ)
t,x , (A1)

where τ is the MC time, ∆
(τ)
t,x the field value at site (t, x)

of the τ ’th configuration and mean# means averaging
with respect to the respective subscript. In order to actu-
ally show the distribution from which the final estimates
are calculated, we present (here and in the following) the
histograms one obtains by stripping the means after the
absolute values have been taken.

The histogram of the straightforward estimator shown
in Fig. 14a is dominated by its broad variance (as is ex-
pected for a local estimator). More importantly, since
the field θ is quasi-long-range, it requires many sweeps
through the lattice to obtain a θ-independent distribu-
tion of ∆ like the ones depicted in Fig. 2. In fact, a
typical configuration in the simulations is not distributed
symmetrically around the origin but rather around some
finite value ∆0. The center of the configurations moves

slowly (in Monte Carlo time) around the origin in field
space. For this reason, taking the modulus right in the
beginning leads to a significant bias towards larger values
in the estimator (A1).

The broad variance mentioned above is a known statis-
tical phenomenon in MC simulations and is usually cured
by averaging over the spacetime lattice before taking the
absolute value, schematically

〈ρ〉 ≈ (meanτ ◦ abs ◦meanx ◦meant) ∆
(τ)
t,x . (A2)

This sharpens the distribution but is less well motivated
from a field theory perspective. The choice (A2) can
be justified if there is spontaneous symmetry breaking
and a small trigger is sufficient to align the values of the
field on the lattice sites. In this case the absolute value
does not change the result if we take the limits in the
correct order, i.e. the spatial volume to infinity before
removing the trigger. In the symmetric phase, on the
other hand, already the spatial average should vanish in
the thermodynamic limit and again taking the absolute
value does not make a difference. Example distributions
of this estimator are shown in Fig. 14c. Note the different
scales on the x axes.

It may come as a surprise that there is a second peak
visible that distorts the mean of this distribution. This
is due to the fact that at any non-zero temperature
there are contributions from inhomogeneous configura-
tions, which average out over the lattice to a very good
approximation, see also Fig. 11. While for these data the
distortion might be mild, we are not willing to take the
risk of severely underestimating the observable for scale
setting.

In the present work, what is even more problematic
is that long-range (quasi-periodic) inhomogeneities must
not be averaged over the spatial direction before taking
absolute values. But, since we have to improve statistics
as much as possible we will compromise by using

〈ρ〉 ≈ (meanτ ◦meanx ◦ abs ◦meant) ∆
(τ)
t,x , (A3)

where we, similarly as in the spatial correlation functions
(37), first average over time.

As Fig. 14b indicates, this yields acceptable statistics
while only using the assumption of temporal homogeneity
which is a feature of all large-Nf results we know of and
was checked to be valid in our MC data, see, for example,
Fig. 4. One should note that this procedure does not
work in the high-temperature regime as the distribution
in this case approaches that of Eq. (A1).

In future works other scale settings could be used and
the corresponding results should be compared with those
obtained in the present work. For example, the mass
of the field ρ(t, x) may serve as an energy scale. The
drawback of choosing a scale different from the minimum
of the effective potential Ueff(ρ) (at zero temperature and
density) is that it is less straightforward to relate to the
analytic results for large Nf . In the large-Nf limit the
field ρ becomes infinitely heavy.
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FIG. 14: Histogram data of various estimators of 〈ρ〉 for Ns = 255, Nt = 72, µ = 0 and g−2 = 1.0540. The vertical axes show the relative
number of hits per bin, with 200 bins used for each histogram. Note that all values of ρ shown here are raw numerical data not in

physical units.

Appendix B: Autocorrelation analysis

During our simulations, we had to tackle severe au-
tocorrelations similar to those described in [25]. In this
appendix we summarize our extensive analysis of auto-
correlation functions (ACFs) of various lattice estimators
and provide details on how we arrive at the conclusion
that our qualitative statements are robust despite large
autocorrelations for certain parameter regions.

1. Identifying autocorrelation scales in an example

To facilitate such a discussion it is useful to visualize
the topography of the effective action of the theory. In
the infinite volume and – less important for this argu-
ment – continuum case, [31] found the general form of
the saddle points of the effective action. The spatial pro-
files of the order parameter ∆ are given as a continuous
family with four parameters related to overall scale, am-
plitude and phase variations, and a phase offset which is
tightly related to translations. The finite volume we work
in subjects these self-consistent solutions to the imposed
boundary conditions such that for some of these param-
eters only a discrete subset of allowed solutions yields
saddle points in finite volume. This entails a ragged land-
scape of valleys with local minima of the effective action
that are separated by ridges stemming from the finite-
volume effects and melting in the infinite-volume limit.
From the analytical results, we expect chiral–spiral-like
local minima (including the degenerate one, i.e. the con-
stant order parameter) to be most important and our
simulations confirm this expectation.

The above discussion immediately suggests that there
are three qualitatively different kinds of autocorrelations:
Sampled configurations will typically tend to fluctuate
around one local minimum correlated within this valley
on a (MC-time) scale τfluct. During this process the ref-
erence chiral spiral will rotate the overall phase offset on
a time scale τU(1) which, for non-degenerate chiral spi-

rals, is equivalent to translating this spiral. Eventually,
the algorithm will climb (or tunnel through) a ridge and
arrive in another valley on a time scale τkmax .

From these three time scales, τU(1) is of minor impor-
tance to us because we carefully crafted all of our ob-
servables to respect the U(1) (and closely related trans-
lational) symmetry. From the notable exceptions Fig. 2
and Fig. 13, however, we learned that it is quite sizable
but clearly under control as the almost-perfect circles of
Fig. 2 illustrate.

The other autocorrelation scales can be clearly distin-
guished in Fig. 15. For one exemplary parameter set, the
figure shows ACFs of Cσσ(x) for some randomly chosen
lattice points x as well as the average and the (local in
MC-time separation) maximal autocorrelations obtained
over all lattice points. The latter rather unconventional
quantity can be considered as a worst-case scenario for
autocorrelations in Cσσ.
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FIG. 15: Autocorrelation functions for Cσσ(x) for three different
x, a maximum over all x and an average over all x for Nf = 2,

Ns = 63, T/ρ0 ≈ 0.09, µ/ρ0 ≈ 0.61, aρ0 ≈ 0.46.

All of these are well described by an ansatz

A[Cσσ](t) = be−t/τ1 + (1− b)e−t/τ2 ,
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where b, τ1 and τ2 are free parameters. While the detailed
numbers obviously depend on the data set chosen for fit-
ting, the orders of magnitudes are consistent (cf. Tab. I).

TABLE I: Fit parameters b, τ1 and τ2 for the autocorrelation
function of Cσσ(x) for some values of x as well as an average and

a maximum over all x (cf. Fig. 15).

b τ1 τ2

x/a = 5 0.65 0.3 111.5

x/a = 19 0.86 0.8 101.5

x/a = 27 0.94 0.5 32.8

avg 0.79 0.6 87.0

max 0.66 0.9 125.5

In order to associate the two numerical values τ1
and τ2 with the mechanisms described above, we con-
sider representative time evolutions on each time scale in
Fig. 16. Fig. 16a shows the Fourier spectrum of Cσσ over
20 × τ1 MC configurations where we conservatively use
τ1 ≈ 1. It is clearly seen that there is a constant peak at
νmax = 3, while the MC evolution produces small fluctu-
ations around this reference configuration. We conclude
that the small time scale for this parameter set is gen-
erated from fluctuations around one local minimum, i.e.
τfluct = τ1.

To probe the larger time scale, we show a MC-time
window of 20 × τ2 configurations in Fig. 16b, where we
conservatively estimated τ2 ≈ 126. For visual clarity, we
averaged blocks of τ2 MC configurations which should
be thought of as a coarse graining integrating out the
high frequencies similar to an RG transformation. On
this scale, the correlator spectra are smooth (due to the
coarse graining) and sharp peaks and the MC evolution
produces jumps in the dominant frequency kmax. This
finding relates the long time scale to τkmax

that was sug-
gestively named after its effect of jumping between val-
leys changing kmax. One should also stress that it is a
non-trivial statement that 126 configurations tend to be
rather coherent – again strengthening the association of
τ2 with τkmax .

2. Analysis and reasoning about the rest of
parameter space

The previous example indicates two important facts:
Firstly, our choice of algorithmic parameters rendered
τfluct negligible while τkmax

is of considerable size. Sec-
ondly, besides τkmax

being large it is still under control in
the sense that we have a statistically significant number
of independent configurations NMC/τkmax

≈ 380 even in
the worst case discussed above. As the chosen parameter
set is well inside the region of intermediate-scale inho-
mogeneous order we conclude from a statistically robust

ensemble that our claims of intermediate-scale inhomo-
geneities without spontaneous symmetry breaking of any
kind are robust with respect to autocorrelation effects.
We checked for similar examples on all lattice sizes and
lattice spacings.

However, the above example was taken from a moder-
ate temperature region. As we confirmed in this study, at
the T = 0 line the system is critical which implies diverg-
ing correlation lengths – also in the MC-time evolution
as is well known around practitioners [50]. We therefore
expected and a posteriori verified huge autocorrelations
for temperatures close to zero. One should stress that
this is a physical effect; it can likely be circumvented by
an appropriately adapted algorithm but still bares phys-
ically relevant information. Still, for a small region of
very low temperatures τkmax can easily exceed our great-
est efforts of up to 8 · 104 configurations generated for
some parameter sets. We therefore suggest to view the
very-low-temperature results with a grain of salt quan-
titatively: They surely give a good impression of what
phenomena to expect in the exceedingly large regions of
space that are correlated for these temperatures but they
might be quantitatively off due to autocorrelations sup-
pressing the interference from subdominant local minima.

We remark that τkmax
has a clear tendency to decrease

in the infinite-volume limit. This is the opposite behavior
of what is typically found in symmetry-breaking systems
and considered further evidence in support of the exis-
tence of a BKT phase and against spontaneous symmetry
breaking, as was also mentioned in the main text.

The effect of larger flavor numbers is to reduce quan-
tum fluctuations or, in the pictorial language from above,
to deepen the valleys and grow the ridges. This effect is
responsible for ultimately obtaining actual spontaneous
symmetry breaking in the limit of infinite number of fla-
vors. It also greatly enhances autocorrelations, particu-
larly in suppressing jumps between different valleys. For
Nf = 8 the temperatures necessary to clearly observe
inhomogeneities on average and jumps in the dominant
wave number during the MC evolution occur concur-
rently are higher than in the 2-flavor case. This strength-
ens our finding in this and previous papers [24, 25] that
the convergence to mean-field behavior is quite rapid with
the number of flavors. While technically this casts some
doubt on the quantitative accuracy of the Nf = 8 data,
we want to point out again that this is driven by physical
properties of the system more than technical difficulties.

Finally, we want to share some thoughts on how to im-
prove on the situation: Due to extensive analytical results
about the effective action, we were able to obtain a clear
picture of the cause of autocorrelations in this model.
One can easily imagine algorithmic improvements lever-
aging this knowledge. As the local minima can be enu-
merated by their dominant wave number kmax, local up-
dates in Fourier space might suffice, e.g. local Metropolis-
like updates or swapping of Fourier components. As the
current updating scheme is very efficient to reduce some
part of the autocorrelations, it would probably be advan-
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FIG. 16: MC timelines of the Fourier spectra of Cσσ for the same parameters as Fig. 15.

tageous to combine both kinds of updates into a single
update step. Similar ideas are already used, e.g. [51].
Another approach could be to constrain the simulations
to a single sector and a posteriori combining the results
into a weighted sum.

However, these approaches would be very specific and
hardly generalizable to related problems, e.g. topological
freezing in lattice QCD [52]. A modern approach that
is agnostic of analytical knowledge, which is usually not
as easily employed in more realistic theories, could be
independence samplers from generative models, i.e. in-
dependently drawing the configurations from an efficient
approximation of the probability distribution. Promis-
ing results in this direction were presented in [53], where
they overcame topological freezing in 1+1D U(1) gauge
theory.

Appendix C: On fermionic 4-point functions

We aim at relating the UA(1)-invariant fermion 4-point
function (44) to the spatial correlation functions Cσσ and
Cσπ defined in Eq. (37). To find such a relation we exploit
the following Dyson-Schwinger equations, which can be
derived in analogy to Eq. (6):

〈ψ̄ψ(x )ψ̄ψ(y)〉 = −κ2〈σ(x )σ(y)〉+ κδ2(x − y) ,

〈ψ̄ψ(x )ψ̄γ∗ψ(y)〉 = iκ2〈σ(x )π(y)〉 ,
〈ψ̄γ∗ψ(x )ψ̄ψ(y)〉 = iκ2〈π(x )σ(y)〉 ,
〈ψ̄γ∗ψ(x )ψ̄γ∗ψ(y)〉 = κ2〈π(x )π(y)〉 − κδ2(x − y) ,

(C1)

wherein we used the abbreviation

κ =
Nf

g2
. (C2)

Recalling that ∆ = σ + iπ we can write the invariant
4-point function as

C4F(x ;y) = −κ2〈∆∗(x )∆(y)〉+ 2κ δ2(x ) , (C3)

and the axial UA(1) symmetry implies (cf. Eq. (38))

〈∆∗(x )∆(y)〉 = 2〈σ(x )σ(y)〉+ 2i〈σ(x )π(y)〉 . (C4)

In analogy to the spatial correlation functions (37) for the
condensate fields we introduced the spatial correlation
function for the Nf Fermi fields on the lattice in Eq. (46).
Inserting (C4) into (C3) we can relate (46) to (37) as
follows:

C4F(x) = −2κ2 (Cσσ(x) + iCσπ(x)) + 2κδ(x) , (C5)

where on the lattice the spatial δ distribution on the
right-hand side turns into the Kronecker symbol δx,0.

Appendix D: Parameters

TABLE II: Lattice spacings for each set of (Nf , Ns, g2). The
right column contains the values of Nt at which the scale setting
was performed and the asterisk on one value of aρ0 indicates that

the given uncertainty was estimated by hand to be larger than
the computed jackknife uncertainty due to small statistics.

Nf Ns = L/a 1/g2 aρ0 Nt

2 63 1.0540 0.45655± 0.00061 72

2 127 1.0540 0.45844± 0.00095 72

2 255 1.0540 0.4573± 0.0012 72

2 127 1.3895 0.1904± 0.0027 240

2 255 1.8254 0.08± 0.01∗ 648

8 63 5.1013 0.41235± 0.00023 80

In order to calculate the various phase diagrams we
generated many ensembles characterized by the control



20

parameters (Nf , T, L, µ) or (Nf , Nt, Ns, ρ0µ), plus the
four-Fermi coupling g2 tuned to the required lattice spac-
ing measured in units of ρ0 = 〈ρ〉T=µ=0. We summarize
the lattice spacings corresponding to the different values
of Nf , Ns and g2 in Tab. II.

As explained in the main text, we used different initial
conditions for the fields to deal with thermalization prob-
lems: We performed scans with Gaussian-distributed
seeds with mean zero, a freeze-out from high tempera-
tures to reduce thermalization times and a heat-up pro-
cedure from the lowest temperature to exclude any hys-
teresis effects from the freeze-out. We also used a ho-
mogeneous cold start, in the sense of setting the initial
configuration to ∆(x ) = 1 + i for all x , at small µ, where
inhomogeneous configurations are suppressed. In Tab. III
we collect the control parameters Nt and µ for which
we generated ensembles in equilibrium for each of these
methods. Notice that we use the same lattice spacings
as in Tab. II, which were determined via the freeze-out
procedure, irrespective of the initial conditions.
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TABLE III: Parameter sets used in the simulations. Note that the uncertainty of aρ0 (from Tab. II) propagates to the values of µ/ρ0,
although we did not make this explicit for the sake of readability.

Ns = L/a 1/g2 Nt = 1/Ta µ/ρ0

infinite-volume extrapolation (Nf = 2)

63 1.0540
2, 4, 6, 8, 10, 12, 16,

24, 32, 40, 48, 72 0, 0.0876, . . . , 1.3142

127 1.0540
2, 4, 6, 8, 10, 12, 16,

24, 36, 48, 72 0, 0.0873, . . . , 1.3088

255 1.0540
2, 4, 6, 8, 10, 12, 16,

24, 36, 48, 72 0, 0.0875, . . . , 1.3121

continuum extrapolation (Nf = 2)

127 1.3895
4, 6, 8, 10, 12, 16, 24,

36, 48, 72, 96, 144 0, 0.1050, . . . , 1.5756

255 1.8254
8, 12, 16, 24, 36,
48, 72, 96, 144 0, 0.1250, . . . , 1.8750

independent initial conditions (Nf = 2, for crosschecks)

63 1.0540
16, 24, 32, 40,
48, 56, 64, 80 0, 0.0876, . . . , 1.3142

127 1.0540 24, 32, 40, 48, 64, 80 0, 0.0873, . . . , 1.3088

255 1.0540
8, 16, 24, 32, 40,

48, 64, 80 0, 0.0875, . . . , 1.3121

127 1.3895 8, 16, 40, 48, 64, 80 0, 0.1050, . . . , 1.5756

255 1.8254 24, 32, 40, 48, 64 0, 0.1250, . . . , 1.8750

independent initial conditions (Nf = 8)

63 5.1013
4, 6, 8, 12, 16, 20, 24, 28,
32, 36, 40, 48, 56, 64, 80 0, 0.0970, . . . , 1.4551

heat-up initial conditions (Nf = 2, for checking hysteresis effects)

127 1.0540 16, 24, 36, 48, 72 0.4363, 0.8725, 1.3088

cold start (Nf = 2, small µ)

63 1.0540
2, 4, 6, 8, 10,
12, 24, 48, 72 0, 0.0876, 0.1752



22

[1] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345
(1961).

[2] E. Fermi, Z. Phys. 88, 161 (1934).
[3] C. T. Hill and E. H. Simmons, Phys. Rep. 381,

235 (2003), [Erratum: Phys.Rept. 390, 553 (2004)],
arXiv:hep-ph/0203079 [hep-ph].

[4] V. A. Miransky, M. Tanabashi, and K. Yamawaki, Phys.
Lett. B 221, 177 (1989).

[5] W. E. Thirring, Ann. Phys. 3, 91 (1958).
[6] D. J. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974).
[7] D. K. Campbell and A. R. Bishop, Nucl. Phys. B 200,

297 (1982).
[8] A. Chodos and H. Minakata, Phys. Lett. A 191, 39

(1994).
[9] H. Caldas, J. Stat. Mech. 2011, P10005 (2011),

arXiv:1106.0948 [cond-mat].
[10] Y. Kuno, Phys. Rev. B 99, 064105 (2019),

arXiv:1811.01487 [cond-mat].
[11] M. Thies and K. Urlichs, Phys. Rev. D 72, 105008 (2005),

arXiv:hep-th/0505024.
[12] D. Ebert and D. Blaschke, Prog. Theor. Exp. Phys. 2019,

123I01 (2019), arXiv:1811.07109 [cond-mat].
[13] D. Ebert, K. G. Klimenko, P. B. Kolmakov, and

V. C. Zhukovsky, Ann. Phys. 371, 254 (2016),
arXiv:1509.08093 [cond-mat].

[14] W. V. Liu, Nucl. Phys. B 556, 563 (1999).
[15] V. C. Zhukovskii, K. G. Klimenko, V. V. Khudyakov,

and D. Ebert, JETP Lett. 73, 121 (2001), arXiv:hep-
th/0012256.

[16] M. Thies, Phys. Rev. D 69, 067703 (2004), arXiv:hep-
th/0308164.

[17] V. Schön and M. Thies, Phys. Rev. D 62, 096002 (2000),
arXiv:hep-th/0003195.

[18] V. Schön and M. Thies, (2001), arXiv:hep-th/0008175.
[19] M. Thies, J. Phys. A. 39, 12707 (2006), arXiv:hep-

th/0601049.
[20] P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964).
[21] A. I. Larkin and Y. N. Ovchinnikov, Zh. Eksp. Teor. Fiz.

47, 1136 (1964).
[22] R. Casalbuoni and G. Nardulli, Rev. Mod. Phys. 76, 263

(2004), arXiv:hep-ph/0305069.
[23] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys.

80, 885 (2008), arXiv:0704.3011 [cond-mat].
[24] J. J. Lenz, L. Pannullo, M. Wagner, B. H. Wellege-

hausen, and A. Wipf, Phys. Rev. D 101, 094512 (2020),
arXiv:2004.00295 [hep-lat].

[25] J. J. Lenz, L. Pannullo, M. Wagner, B. H. Wellege-
hausen, and A. Wipf, Phys. Rev. D 102, 114501 (2020),
arXiv:2007.08382 [hep-lat].
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