
FSU TPI 01/06DFTUZ{01.12
Nahm Transform and Moduli Spa
esof C PN -Models on the Torus

M. Aguado, M. AsoreyDepartamento de F��si
a Te�ori
a. Fa
ultad de Cien
iasUniversidad de Zaragoza. 50009 Zaragoza. SpainandA. WipfTheoretis
h Physikalis
hes Institut, Universit�at Jena.Fr�obelstieg 1, D-07743 Jena, GermanyAbstra
tThere is a Nahm transform for two-dimensional gauge �elds whi
h establishes a one-to-one 
orresponden
e between the orbit spa
e of U(N) gauge �elds with topologi
al 
hargek de�ned on a torus and that of U(k) gauge �elds with 
harge N on the dual torus. Themain result of this paper is to show that a similar duality transform 
annot exist for CPNinstantons. This fa
t establishes a signi�
ative di�eren
e between 4-D gauge theories andCPN models. The result follows from the global analysis of the moduli spa
e of instantonsbased on a 
omplete and expli
it parametrization of all self-dual solutions on the two-dimensional torus. The boundary of the spa
e of regular instantons is shown to 
oin
idewith the spa
e of singular instantons. This identi�
ation provides a new approa
h toanalyzing the role of overlapping instantons in the infrared se
tor of CPN sigma models.



1. Introdu
tionTwo-dimensional sigma models have long been used as a testing ground for a varietyof ideas in non-perturbative Quantum Field Theory, espe
ially be
ause of some remarkablesimilarities with non-Abelian gauge theories in 3+1 dimensions [1℄ (for a review emphasizingthis 
onne
tion, see [2℄).They are s
ale invariant at the 
lassi
al level and asymptoti
ally free at the quan-tum level, some possess topologi
al winding numbers, instantons, a 
hiral anomaly when
oupled to fermions and generate a dynami
al mass by non-perturbative e�e
ts at zerotemperature and a thermal mass � g2T at �nite temperature. In this respe
t the O(3)nonlinear �-model with a
tionS = 18g2 Z d2x (��~n � ��~n); ~n 2(x) = 1; (1:1)has been very extensively studied, spe
ially by its numerous interesting appli
ations to
ondensed matter: (anti) ferromagnetism, Hall e�e
t, Kondo e�e
t, et
 (see Ref. [3℄ for areview stressing this point of view). The model has also been used to analyze the sphaleronindu
ed fermion-number violation at high temperature [4℄. By setting ~n = 	y~�	 with anormalized 	 2 C 2 , the a
tion (1.1) 
an be rewritten in the equivalent formS = 12g2 Z d2x ��D�	��2 ; with j	(x)j = 1 and A� = �i	y��	: (1:2)It is invariant under gauge transformations 	 ! ei�(x)	 and hen
e 	(x) may be viewedas an element in CP1 .There are two natural generalizations of the O(3) � CP1 model: O(N > 3) modelswith a
tion (1.1) but with ~n 2 SN�1 and CPNmodels with a
tion (1.2), but with 	 2 CPNinstead of CP1 [5℄ [6℄. In 
ontrast to the O(N) models they possess instanton solutionsfor all N; and a � term 
an be added to the a
tion so that their topologi
al properties 
anbe explored [7℄. These models are expandable in 1=N and have been solved in the largeN limit [8℄. The role of instantons and related sphalerons [9℄ is 
ru
ial for physi
al e�e
tsat � 6= 0 [10℄. In this paper we shall mainly be interested in the stru
ture of spa
es ofinstantons and hen
e shall only 
onsider the CPN extensions of the O(3)-model.In parti
ular we shall fo
us on the sear
h of a variant of the Nahm transform for2-dimensional models. In 4-dimensions this remarkable duality transformation relates dif-ferent instanton moduli spa
es of gauge theories formulated on the four-torus [11℄. Moreexpli
itly, it transforms a 
harge k self-dual (instanton) SU(N) gauge potential A on T4into a 
harge N self-dual U(k) potential Â on the dual torus T̂ 4 as follows:(Â�)ij(u) = �i ZT4 d4x  uyi (x ) ��u� uj (x ); (1:3)1



f uj ; j = 1 : : : ; kg being k orthonormal zero-modes of the Dira
 operator with shiftedpotential A� + 2�u�1, where the 
onstant pie
e u parametrizes the dual torus. Thistransformation being involutive means that the moduli spa
e MNk of SU(N) instantonswith 
harge k is equivalent to MkN that of SU(k) instantons with 
harge N .Our sear
h for a 
orresponding Nahm transform for CPNmodels on the two-torus wasmotivated by the observation that the 
omplex dimension of the moduli spa
e for 
hargek instantons in CPN is dim MNk = k(N + 1); k > 1; (1:4)exhibiting a duality that may be 
onje
tured to hold at the level of moduli spa
es, MNk �Mk�1N+1. This 
onje
ture was further prompted by the fa
t that there are no 
harge 1instantons on the 2-torus for any value of N [12℄[13℄, a property shared with gauge theorieson the 4-torus [14℄ [15℄. Similarly as for gauge theories this would be a 
onsequen
e ofsu
h a duality, sin
e there is no CP0 instanton. If this duality exists the dynami
s of theCPN models should simplify in se
tors with large k, as it happens for large N .The aim of the paper is to analyze the existen
e or not of a generalized Nahm transformfor these sigma models. Hen
e we shall only analyze the instantons on a torus, the onlyRiemann surfa
e whose dual (Ja
obian) is also a torus. This kind of 
ompa
ti�
ation ofspa
e time 
orresponds to the 
hoi
e of periodi
 boundary 
onditions whi
h are appropriatefor the study of �nite temperature e�e
ts [4℄.The spa
e time 
ompa
ti�
ation also presents some te
hni
al advantages. The a
tionof an instanton does not depend on the parameters of moduli spa
e. This then leads tozero-modes of the 
u
tuation operator in the instanton ba
kground. One expe
ts that forea
h parameter in moduli spa
e there is one asso
iated zero-mode or that the number ofzero-modes is not smaller than the dimension of the moduli spa
e. This expe
tation is notful�lled for the sigma models on R2 : if one varies some moduli parameter of the instantonone �nds non-normalizable zero-modes [16℄. In a 
ompa
t spa
e this 
an never happen,thus in our 
ase both methods of 
ounting the dimension of moduli spa
es of instantonsare equivalent.Sin
e CPN spa
es admit a K�ahler stru
ture, 2-dimensional CPN -models 
an be ex-tended toM=2 supersymmetri
 theories. More general purely bosoni
 or supersymmetri
nonlinear sigma models with K�ahler target spa
es have been studied on topologi
ally triv-ial spa
e-times by several authors, see [17℄. All these models admit regular instantonsolutions, the topologi
al 
harge of whi
h appears as lower BPS-bound on the a
tion.In addition to the regular instanton solutions these models possess singular ones.Although they are usually ignored, it has been pointed out re
ently that these singular2




on�gurations may be of relevan
e for some topologi
al �eld theories [18℄. In parti
u-lar, their 
ontribution to the renormalization group 
ow of supersymmetri
 theories and
orrelation fun
tions of topologi
al invariants seems to be 
ru
ial.We shall analyze singular instantons as boundary 
on�gurations of moduli spa
es ofregular instantons. In parti
ular, we shall dis
uss if they 
an appear as limit 
ase of stronglyoverlapping regular instantons as it happens for 4-dimensional Yang-Mills instantons [19℄.This paper is organized as follows: In the next se
tion we brie
y re
all the basi
features of 
lassi
al 2-dimensional CPN -models and their instanton solutions. Se
tion3 
ontains a detailed analysis of zero-modes of the asso
iated Weyl operator on the 2-dimensional torus. In the following se
tion we study the zero-modes for the shifted gaugepotential and expli
itly 
onstru
t the Nahm transform for two-dimensional gauge �elds. Inparti
ular, we show how this transformation maps U(1) gauge �elds with 
harge k over a 2-dimensional torus into U(k) gauge �elds with 
harge 1 over the dual torus. Se
tion 5 dealswith the global stru
ture of CPN moduli spa
es of instantons on T2. A general method fortheir 
onstru
tion is proposed. It is based on properties of the �ber bundles asso
iated withthe U(1) 
onne
tion, and yields a 
omplete des
ription of the moduli spa
es MNk : Somesimple examples are worked out expli
itly. The relevant topologi
al properties of thesespa
es are investigated in se
tion 6. The main result is that no invertible Nahm transformfor regular instantons 
an exist sin
e the 
orresponding moduli spa
es are topologi
allydistin
t. In se
tion 7 we investigate the role of singular instantons as limiting 
ases ofstrongly overlapping regular instantons. A summary of our results and 
on
lusions are
ontained in se
tion 8.2. Instantons in CPN modelsThe 
lassi
al CPN model in 2 Eu
lidean spa
e-time dimensions is de�ned by the a
tionS = N2g2 Z d2x ��D�	��2 ; D�	 = ��� � iA��	; (2:1)where 	(x) = (	a(x)); a = 0; : : : ; N is a (N+1)-
omponent 
omplex �eld with values inCPN+1 . We 
onsider 	(x) to be normalizedj	(x)j2 = NXa=0 j	a(x)j2 = 1 (2:2)and 
on�gurations di�ering by a phase fa
tor are identi�ed,	(x) � ei�(x)	(x): (2:3)3



The a
tion in
ludes a 
ovariant derivative D� = �� � iA� with respe
t to the 
ompositeU(1) gauge �eld de�ned in terms of the sigma �eld byA�(x) := �i	y��	: (2:4)With this gauge �eld the symmetry (2.3) 
an be restated as a usual U(1) gauge invarian
e.Indeed, the a
tion (2.1) is invariant under the phase transformation (2.3) of 	(x) if at thesame time the 
omposite �eld A� transforms as a true U(1) 
onne
tion,A� ! A� + ���(x); (2:5)as it follows from its very de�nition. A
tually, one may view 	 and A� in (2.1) as inde-pendent �elds. The algebrai
 equations of motion for the gauge potential are then just(2.4).A topologi
al 
harge (instanton number) 
an be de�nedk = 12� Z d2xF12 = 12�i Z d2x "����	y��	 = 18�i Z d2x "��D�	yD�	: (2:6)This 
harge takes integer values for smooth 
on�gurations with �nite a
tion, and thus thespa
e of 
on�gurations splits into dis
onne
ted instanton se
tors.Appli
ation of the Cau
hy-S
hwartz inequality to D�	; i"��D�	 yieldsS � N�g2 jkj; (2:7)The minimal a
tion is rea
hed by solutions of the �rst order equationsD�	(x) = �i"��D�	(x): (2:8)Antiselfdual solutions 
orrespond to instantons (�sign and k > 0), and selfdual solutionsto anti-instantons (+sign and k < 0).In 
omplex 
oordinates z = x1+ix2 the (anti)selfdual equations (2.8) 
an be writtenas follows D�z	 = (��z � iA�z)	 = 0 instantonsDz	 = (�z � iAz)	 = 0 anti� instantons; (2:9)where the 
omplex 
omponents of the gauge �eld are Az = 12 (A1�iA2); A�z = 12(A1+iA2):This provides the �rst 
hara
terization of the solutions as holomorphi
 solutions withrespe
t to the holomorphi
 bundle stru
ture indu
ed by the gauge �eld A.In summary, up to some 
ommon normalization fa
tor the 
omponents of instanton�eld solutions are holomorphi
 se
tions of a line bundle over spa
e-time. In the plane there4



is an in�nite dimensional spa
e of solutions, but only the 
onstants have a �nite a
tionand k = 0. In the torus T2 the di�erent holomorphi
 stru
tures are parametrized for �xedk by the points of the dual torus T̂ 2 and the spa
e of instantons has a �nite dimension[12℄[13℄.The topologi
al 
harge of su
h a solution is the sum of multipli
ities of the zeros of anynon-trivial 
omponent of 	: From now on we 
on
entrate on instanton solutions (k > 0).The anti-instanton 
ase is analogous.3. CPN -models on the torus and Fermioni
 zero-modesWe may view the torus as R2 modulo a two-dimensional latti
e � generated by twove
tors e1 and e2. For simpli
ity we will restri
t to orthonormal ve
tors e� and use dimen-sionless 
oordinates. In the se
tor with instanton number k we shall 
hoose as transitionfun
tions U� relating the �elds at x and x+ e�,	a(x+ e�) = U�(x)	a(x) ; A(x+ e�) = A(x)� iUy�(x)dU�(x); (3:1)the gauge transformations U1 = ei�kx2 and U2 = e�i�kx1 : (3:2)This means that A is de�ned on a non-trivial line bundle Ek(T 2;C ). In two dimensionsany gauge �eld A indu
es a holomorphi
 bundle stru
ture on Ek (in four dimensions thisonly holds for self-dual gauge �elds). Hen
e there is a lo
al 
omplex gauge transformationh su
h that A�z = ih ��z h�1 and D�z = ��z + h ��z h�1; (3:3)whi
h trivializes the 
onne
tion A (see e.g. Ref. [20℄).Next we 
onstru
t and dis
uss the zero-modes of the Dira
 operator on the 2-dimensional Eu
lidean torus. By the index theorem the number of right-handed minusthe number of left-handed zero-modes of the Dira
 equation,/DA = 0depends only on the �rst Chern 
lass of the gauge �eld. Sin
e there are only zero-modes ofone 
hirality the total number of su
h modes in the fundamental representation is k. Sin
ethey have de�nite 
hirality they are 
ompletely determined by one non-trivial 
omponentin the Weyl basis, i.e. by one ordinary 
omplex fun
tion  whi
h we will identify with thespinor �eld  itself. 5



Hen
e, in 
omplex 
oordinates a zero-mode solves the Weyl equation(��z � iA�z) = 0; k > 0 (3:4)and must satisfy the same boundary 
ondition (3.1) as the 
omponents of 	. Thus thefermioni
 zero-modes ful�ll the same di�erential equation and boundary 
onditions as the
omponents of the sigma �eld 	.After trivializing the 
onne
tion as in (3.3) the Weyl equation be
omes a holomorphi

ondition, D�z  = 0() ��z � = 0; where  = h�:However, as pointed out earlier, if k 6= 0 the transformation h 
annot be globally de�nedand this shows up in the the 
hange of boundary 
onditions between  and �,�(z + 1) = eU1(z)�(z) ; �(z + i) = eU2(z)�(z);where eU�(z) = h�1(x+ e�)U�(x)h(x)is holomorphi
. The holomorphi
 
hara
ter of the eU� also re
e
ts the fa
t that any holo-morphi
 se
tion � de�nes the holomorphi
 stru
ture of the bundle Ek asso
iated to thegauge �eld A.Now we 
onsider the parti
ular gauge potentialAI1 = ��kx2; AI2 = �kx1; or AI�z = i2�kz; (3:5)whi
h gives rise to a 
onstant �eld strength F01 = 2�k and instanton number k. The
omplex gauge transformation trivializing AI readsh = e��kz�z=2 (3:6)and the � satisfy the holomorphi
 boundary 
onditions with transition fun
tionseU1 = e(1+2z)�k=2 and eU2 = e(1�2iz)�k=2: (3:7)The zero-modes 
an be 
onveniently expressed in terms of Ja
obi's theta fun
tions# � ab � (�) = 1Xn=�1 ei��(n+a)2e2�i(n+a)b= �(i�) e2�iabq a22 � 124 Yn>0 �1 + qn+a� 12 e2�ib��1 + qn�a� 12 e�2�ib�; (3:8)6



where we have set q = e 2�i� . These holomorphi
 and quasi-periodi
 fun
tions have thefollowing shift properties# �a+m+ n�b � (�) = e2�in(a+b=�+n=2�) # � ab � (�) (3:9)and possess �rst order zeros at the points�a+ b 2 fm+ 12 + �(n+ 12 ); m; n 2 Zg: (3:10)In terms of these �-fun
tions a basis of linearly independent zero-modes reads `(x) = (2k) 14h(x)�`(z); �`(z) = e�kz2=2# � z+ k̀0 � (ik) (3:11)and  ` has k zeros at the following points on the torus:x1 = 
 12 � k̀� ; x2p = 
 1k (12 + p)�; p = 1; 2; : : : ; k; (3:12)where hai denotes the unique element in the latti
e fa+Zg lying in [0; 1). The basis f `gis orthonormal, ( `;  `0) = ZT2  �̀ `0 = Æ``0 :Let x`p 2 T2; p = 1; : : : k; be the k zeros of  `. Then their sum is independent of ` and isgiven by kXp=1x`p = 
k2� e modulo �; where e = e1 + e2: (3:13)That (for �xed k) the sum of the zeros is the same for all  ` (modulo the latti
e de�ning thetorus), follows from the fa
t that all holomorphi
 se
tions �l(z) satisfy the same boundary
onditions. This statement holds true for any 
hoi
e of a zero-mode basis.Under a translation by 1=k in either of the two dire
tions on the torus the spa
e ofzero-modes is left invariant. This is expe
ted on general grounds and is needed for theNahm transform. More expli
itly, let  denote the k-dimensional 
olumn ve
tor withentries ( 1; : : : ;  k). Then the transformations read (x+ 1k e1) = ei�x2S1 (x) and  (x+ 1k e2) = e�i�x1S2 (x); (3:14)with unitary k � k matri
esS1 = 0BB� 0 1. . . . . .0 11 0 01CCA and S2 = 0BB�� 0 00 �2 0.. .0 0 �k1CCA ; � = e�2�i=k; (3:15)7



satisfying Sk1 = Sk2 = 1 and S1S2 = �S2S1: (3:16)These shift identities are 
onsistent with the position of the zeros of  ` given in (3.12).Note that  may be viewed as a zero mode of the U(k) potential AI1 on the smaller toruswith 
ir
umferen
es 1=k and with instanton number 1. The last relation in (3.16) justguarantees that ei�x2S1 and e�i�x1S2in (3.14) are 
onsistent U(k) transition fun
tions on the smaller torus, that is, they satisfythe 
o
y
le 
onditions with periods 1=k.We 
ould as well have taken an alternative set of orthonormal zero modes,e (x) = S (x); SyS = 1: (3:17)For example using the zero-modese `(x) = (2k) 14 e��kz (�z+z)=2# � iz+ k̀0 � (ik) (3:18)instead of the ones in (3.11) amounts to ex
hanging x1 and x2 in the formulae above. Withrespe
t to the new basis one again �nds the shift identity (3.14) with the repla
ementsS� �! S S� S�1:The algebrai
 relations (3.16) remain inta
t and hen
e are independent of the 
hoi
e ofbasis.4. Nahm transform of gauge �elds on 2-dimensional torus T2Let A be an arbitrary two-dimensional U(N) gauge �eld with topologi
al 
harge
1(A) = ZT2 trF12(A)de�ned on a torus T2. Its Nahm transform is de�ned in terms of the zero-modes of theWeyl operator for a shifted ve
tor potentialAu� = AI� + 2�u�1 (4:1)whi
h has the same topologi
al 
harge. By the index theorem the dimension of the spa
eof zero-modes of /DAu is k. Let f uj ; j = 1; 2; � � �kg be an orthonormal basis of zero-modes.8



The Nahm transform assigns to the U(N) gauge potential A a U(k) potential Â on thedual torus T̂ 2 with topologi
al 
harge N as follows:(Â�)ij(u) = �i ZT2 d2x  uyi (x ) ��u� uj (x ); (4:2)Note that this 
onstru
tion does not require any spe
ial 
onstraint on the original gauge�eld A as it does in four dimensions where A must be selfdual. This is be
ause any2-dimensional gauge �eld de�nes a holomorphi
 stru
ture in the 
orresponding bundle,whereas in four dimensions this is true only for self-dual gauge �elds.Sigma model �elds are asso
iated to Abelian gauge �elds. But the Nahm transformdoes not preserve the Abelian 
hara
ter as we shall see below. This already is the �rstindi
ation that it might be problemati
 to extend the Nahm transform to sigma models.To analyze this problem let us now apply the Nahm 
onstru
tion to the Abelian �eld (3.5).An orthonormal basis of the zero-modes of the Dira
 equation for a shifted ve
torpotential Au� = AI� + 2�u� or Au�z = i2�kz + �w; w = u1 + iu2; (4:3)
an be 
onstru
ted from the solutions with u = 0 by shifting the arguments [21℄ ù(x) = ei�(u;x)  `�x+ 1k " u�; " = � 0 1�1 0� : (4:4)For later purposes it is useful to dis
uss some properties of these zero-modes:The k zeros of these modes are related to those of the  ` by the shift in (4.4),x1p 2 
 12 � 1k (`+ u2)� and x2p 2 
 1k (12 + u1 + p)�; p = 1; : : : ; k: (4:5)Hen
e two di�erent modes share no 
ommon zero unless u 2Z2.From (4.4) and (3.14) one sees at on
e that the ve
tor  u transforms in the same wayas  when either x1 or x2 is translated by 1=k, u(x+ 1k e1) = ei�x2S1 u(x) and  u(x+ 1k e2) = e�i�x1S2 u(x); (4:6)where the matri
es S� have been introdu
ed in (3.15) .The k-dimensional subspa
e spanned by the zero modes is also left invariant by thefollowing simultaneous rotations of x and u:(x; u) �! ("nx; "nu); n 2 f0; 1; 2; 3g: (4:7)This 
an be seen by 
he
king that the transformed states satisfy the same di�erentialequation and boundary 
ondition as the original ones. These rotations are represented by9



unitary k � k matri
es on the subspa
e spanned by the zero-modes. They are a remnantof the rotation symmetry on the torus for 
onstant �eld strength.In addition, the idempotent transformation(x; u) �! (x0; u0) = ( 1k "u;�k"x) (4:8)is proje
tively represented on the eigenmodes u0(x0) = e�2�i(x;u) u(x): (4:9)Under simultaneous translations of x and u the zero modes are invariant, up to aphase  u+��x) = ei�(�;x+ 1k "x) u�x+ 1k "��: (4:10)Later in this paper this shift identity will be rather important.Finally note, that for u 6= 0 the holomorphi
 gauge transformation (3.6) does nottrivialize the gauge �eld Au anymore. The modi�ed trivializing transformation readshu(x) = e��2 (kz�z+ 1kw �w�2i �zw); w = u1 + iu2:It not only transforms the unitary basis (4.4) into a z-holomorphi
 basis but also into anw-holomorphi
 basis, ù = (2k) 14 hu(x)�ẁ(z); �ẁ = �`(z � ikw); (4:11)where the �` have been introdu
ed in (3.11). This is the essential feature of the Nahmtransform. It follows that the Nahm transformed gauge �eld Â = (Â``0), de�ned by theMukai-Nahm 
onstru
tion,(Â �w)``0 def= � i� ù; � �w  ù0� = �i� ù;  ù0�(hu)�1� �w hu = i�2kw Æmodk``0 (4:12)is a redu
ible U(k) gauge �eld with 
onstant �eld strength on the dual torus. The dualtorus is given by T̂ 2 = R2= �̂; (4:13)where with our 
hoi
e for the shift in (4.1) the dual latti
e �̂ is generated by the twoorthonormal ve
tors ê� = e�. In real notation the potential Â takes the simple formÂ1 = Âw + Â �w = ��k u21 ; Â2 = i(Â �w � Âw) = �k u11:10



The transformed gauge potential is only apparently Abelian. The non-Abelian 
har-a
ter of this U(k) bundle 
an be seen from the pe
uliar boundary 
onditions of the holo-morphi
 stru
tures indu
ed by Â. The 
orresponding transition fun
tions whi
h relate uand u+ e� on the dual torus, u+e1(x) = Û1 u(x) ;  u+e2(x) = Û2 u(x) (4:14)are determined by the shift identity (4.10) and the transformation properties (4.6) asfollows, Û1 = e2�ix1+ ik�u2Ŝ1 and Û2 = e2�ix2� ik�u1Ŝ2; (4:15)where Ŝ1 = S�12 and Ŝ2 = S1:Re
all that the non-Abelian elements Ŝ� generate a �nite non-Abelian subgroup of U(k)Ŝk� = 1; Ŝ1Ŝ2 = e�i 2�=k Ŝ2Ŝ1: (4:16)The last relation guarantees that for any �xed x the  u are se
tions of a U(k)-bundle overthe dual torus T̂ 2 with 
oordinates u:Û2(u+e1) Û1(u) = Û1(u+e2) Û2(u): (4:17)The �rst Chern 
lass of this bundle follows from the fa
t that the (non-Abelian) Nahmtransformed gauge potential Â is just k times any of its diagonal elements, hen
eZT2 trF (Âu) = 2� =) 
1(Âu) = k̂ = 1:It 
an be shown that the Nahm transform of Â is A, i.e. the Nahm transformation is invo-lutive. It is a parti
ular 
ase of the more general Mukai transform de�ned for holomorphi
sheaves (whi
h do not ne
essarily de�ne holomorphi
 bundle stru
tures)[14℄[22℄1.1 see also [23℄ for a view 
loser to physi
al appli
ations11



5. Instantons in T2Let us 
onsider an instanton �eld 	 on the torus with 
harge k, that is, a solution of(2.9) subje
t to the boundary 
onditions (3.1) . The asso
iated U(1) gauge potential A is a
onne
tion de�ned in a line bundle Ek with �rst Chern 
lass 
1(Ek) = k. The holomorphi
stru
ture asso
iated to A in Ek is globally equivalent to one of the Au des
ribed in the pre-vious se
tion. This means that there is a global (periodi
) 
omplex gauge transformationg: T 2 ! C nf0g su
h thatA�z = g �Au�z + i ��z�g�1 and D�z = g (��z � iAu�z ) g�1: (5:1)Therefore, up to U(1) gauge transformations the N+1 
omponents of 	 
an be expressedin terms of the k independent solutions  ù of the zero mode equation (4.4) as follows,	 = 1p uyAyA u A u; where A = 0BBB� a 10 a 20 � � � a k0a 11 a 21 � � � a k1� � � � � �� � � � � �a 1N a 2N � � � a kN
1CCCA : (5:2)Hen
e, any instanton solution is 
hara
terized by a point u in the dual torus T̂ 2 and a(N+1)�k matrix A subje
t to 
ertain 
onstraints given below. This 
hara
terizationprovides a 
onstru
tive method to des
ribe the moduli spa
e of instantons with 
harge k.The proje
tive nature of the sigma �elds 	 implies that matri
es di�ering by a non-vanishing multipli
ative fa
tor must be 
onsidered as equivalent,A � �A; � 6= 0; (5:3)be
ause they give rise to the same instanton �eld. Furthermore, in order to satisfy thesigmamodel 
ondition 	y(x)	(x)=1 theA u should never vanish ( u 2C k never vanishessin
e the  ù have no 
ommon zeros) and this imposes a 
onstraint on A. Finally, be
auseof the boundary 
onditions (4.14) we have the identi�
ations(u;A) � T̂�(u;A) = �u+e� ; AÛ�1� �; (5:4)sin
e the two pairs give rise to the same 	 2 CPN and hen
e must be identi�ed. There isno further identi�
ation sin
e a shift u ! u + � with � =2Z2 
annot be 
ompensated bya (ne
essarily) unitary matrix. This would not be 
ompatible with  u being a se
tion ofthe U(k)-bundle over the dual torus with 
harge 1.12



In order to understand the remaining 
onstraint on the A matri
es let us 
onsider asimple example. It is the basi
 instanton of 
harge k of the CPk�1 model de�ned by thebasis (4.4) of zero-mode se
tions of Ek,	u� = 1p uy u  u: (5:5)In the (A; u) parametrization this solution 
orresponds to 	u� = (u;1k). Noti
e that in this
ase the 
onstraint is satis�ed be
ause se
tions of the basis (4.4) do not have a 
ommonzero [24℄.It is not hard to �nd suÆ
ient 
onditions on A for 	 to be normalizable. Clearly, thedenominator in (5.2) � uyAyA u�1=2is never zero if det(AyA) 6= 0. Sin
e the rank of the k � k matrix AyA is less or equalthat min(k, N+1), this 
an only be ful�lled for k � N+1. Hen
e in this 
ase the maximalrank 
ondition is suÆ
ient, i.e.kernA : C k ! C N+1o = 0 if k � N + 1: (5:6)However, even in that 
ase this 
ondition is not ne
essary. The fa
t that 	(x) has to be anon-null ve
tor for any point x requires that the matrix A be viewed as a proje
tive mapCPk�1 ! CPN from rays of CPk�1 into rays of CPN . This just means that the kernel ofA must not lie in the image of  u(x) for any x on the torus, that isrange( u) \ ker(A) = ;: (5:7)Otherwise A u will have zero norm at some point and will not be a true sigma model �eld.Noti
e the 
ompatibility of this 
onstraint with the identi�
ations (5.4). This 
on
ludesthe 
hara
terization of instanton solution and provides an expli
it pro
edure for a globaldes
ription of the moduli spa
e.Before dis
ussing the subtleties related to (5.7) in the general 
ase we 
onsider somesimple examples of moduli spa
es MNk . First of all is 
lear thatMN0 = CPN and MN1 = ; for N > 0:In the �rst 
ase be
ause 	u = 0 for u 6= 0 and 	0 is an arbitrary 
onstant ve
tor in CPN .The se
ond 
ase follows from the fa
t that for k = 1 there is only one zero mode  u whi
hhas exa
tly one zero on T2. Then all N+1 
omponents of 	 would vanish at this pointand hen
e it 
ould not be normalized. 13



A simple non-trivial 
ase where the moduli spa
e 
an 
ompletely be 
onstru
ted isM12, that is, the 
harge 2 se
tor of the CP1 model. Sin
e the range of the basi
 instanton	u� 
ompletely 
overs CP1 the 
onstraint (5:7) if ful�lled if and only if the matrix A isregular. In this 
ase the suÆ
ient 
ondition (5.6) is also a ne
essary one. Sin
e A mapsinto CP1 we may impose detA=1 and identify A with �A. It follows that the equivalen
e
lasses of matri
es are to be regarded as elements of SL(2,C )/Z2 =PSL(2,C ).Be
ause of the identi�
ations (5.4) the moduliM12 is just a non-trivial bundle over thedual torus (with 
oordinates u) with �ber PSL(2,C ). The bundle stru
ture is determinedby the 
oset de�ned by the lift of the a
tion of the dis
rete translation group Z�Z on thebundle Ĉ � PSL(2,C ), given by [13℄:Z� Z = f(T̂ n11 ; T̂ n22 ); n1; n2 2 Zg; (5:8)where T̂1 and T̂2 are the basi
 generators de�ned in (5.4). The �nal result is thatM12 = Ĉ � PSL(2,C )Z � Z : (5:9)In the general 
ase the 
onstru
tion of the moduli spa
e is more involved sin
e the solutionsof the 
onstraint (5.7) are not so expli
it. But on
e we have identi�ed the embedding ofthe spa
e-time torus T 2 into CPk�1 given by the basi
 instanton 	u� , the set of allowedmatri
es 
an be parametrized as follows: The basi
 instanton solution 	u� de�nes a map T 2! C k . Consider all linear subspa
es Vn of C k of dimension n<k having empty interse
tionwith range(	u� ). The spa
e of matri
es A whi
h de�ne regular instantons for a �xed u 
anbe identi�ed with the pairs (Vn;B) de�ned by the subspa
es Vn and the non-degeneratelinear maps B mapping the orthogonal 
omplement V ?n of Vn into the target spa
e C N+1 .This means that the moduli spa
e of instantons 
an be identi�ed with a bundle overthe dual torus with �ber isomorphi
 to the produ
t V �PL0(k�n;N+1) of the set V of Vnsubspa
es and the set PL0(k�n;N+1) of non-degenerate proje
tive maps from CPk�n�1into CPN . The bundle is de�ned by modding out the trivial bundle V�PL0(k�n;N+1)� Ĉby the lift of the dis
rete translation group Z�Z given by (5.4).To illustrate how the 
onstru
tion works let us 
onsider a simple non-trivial 
asein some detail: M23. In this 
ase we have a dense subset M23(0) whi
h is given by thebundle over the dual torus with �ber PSL(3,C )=SL(3,C )/Z3, the equivalen
e 
lasses of 3�3matri
es with det A = 1. The 
omplex dimension of the sub-manifold, dim M23(0) = 9,equals that of the total spa
e M23. However there is another sub-bundle inM23 with lower14



dimension. The �bers of this sub-bundle M23(1) are the 
lasses of 3�3 matri
es with one-dimensional kernel V1 whi
h does not interse
t the image of the map  u� : T2 !C 3 . The
omplex dimension of this subbundle is six. The total spa
e is the union of the two strata,M23 =M23(0) [M23(1): (5:10)the se
ond being the boundary of the �rst one. Noti
e that the subset of the se
ondstratum M23(1) asso
iated to a �xed kernel 
an be identi�ed with M13:6. Global properties of the moduli of instantonsThe 
omplex dimensions of the moduli spa
es aredimMNk = (N+1) kas follows at on
e from our matrix representation of the CPN -�elds. Note that this numberis invariant under the inter
hange of the instanton number k and the number N+1 of sigma�eld 
omponents.In the 
ase k � N+1 there is a natural strati�
ation of the moduli spa
es,MNk = k�2[n=k�N�1 MNk(n) ; (6:1)a

ording to the dimension n = dimkerA, but this does not mean that the moduli spa
eis not a smooth manifold. From the matrix parametrization it is obvious that MNk issmooth, although it might seem hidden by the strati�
ation (6.1) introdu
ed in Ref. [25℄.Moreover, MNk is a K�ahler manifold [17℄ and the asso
iated Riemannian stru
ture playsan important role in a

urate semi
lassi
al expansions of CPN models [13℄. The matrixparametrization permits to analyze the global features of these geometri
 stru
tures, inparti
ular, the in
ompleteness of the Riemannian metri
, but we shall only fo
us into theanalysis of the global topologi
al stru
ture of these moduli spa
es. Below we summarizesome of the relevant results.MNk is non-empty and 
onne
ted for any k > 1 and N > 1, i.e. �0(MNk ) = 0.MN0 =C PN , and M1k = ; for k > 1. The simplest non-trivial moduli spa
e is M12, andbe
ause of the identi�
ation (5.9) we have�1(M12) = Z2 � Z � Z: (6:2)The next 
ase MN2 has also a non-trivial bundle stru
ture over the dual torus. Its �berEu is the proje
tive set PL(2; N + 1) of equivalen
e 
lasses (N+1) � 2 matri
es A with15



detAAy 6= 0, whi
h 
an be identi�ed with the subset of the proje
tive spa
e CP2(N+1)�1de�ned by ex
luding rays of the form (�1~a; �2~a) 2 C N+1�C N+1. This �ber Eu =PL(2; N)is homeomorphi
 to CPN � C N+1. The bundle stru
ture is de�ned by the 
oset de�nedby the lift of the a
tion of the translation group Z�Z to the bundle Ĉ �PL(2; N) given by(5.8) . Thus, �1(MN2 ) = Z2 � Z � Z: (6:3)A more 
omplex moduli spa
e is M1k. In this 
ase the �ber Eu is identi�ed with the(proje
tive) set PL(k; 2) of 2�k matri
es A with maximal rank 2 whose kernel has anempty interse
tion with 	u� (x) for any x on the torus. In terms of the nodes of the
orresponding CP1 �eld, the �ber Eu 
an be seen as homeomorphi
 to the set of k pairs(ai; bi) 2 T2 � T2 (for i = 1; 2; � � � ; k), satisfying the following 
onstraintskXi=1 ai 2 
u+ k2 e�; kXi=1 bi 2 
u+ k2 e� and ai 6= bj 8i; j: (6:4)That means that the sum of the zeros are the same (modulo �) for both 
omponents ofthe CP1 �eld sin
e they ful�ll identi
al boundary 
onditions. The spa
e of nodes of anyof the two 
omponents of 	 is homeomorphi
 to CPk�1 (see appendix). The spa
e Z ofzeros of the two 
omponents of 	 satisfying the 
onstraint of having no 
ommon nodes isa bundle over CPk�1 with �ber CPk�1 � C, whereC = �fai; big 2 T2 � T2�� i = 1; 2; : : : ; k; with ai = bj for some i; j	:The �rst homotopy group of Z is �1(Z) = F2 � Zk�3;where F2 is the free group with 2 generators, i.e. the �rst homotopy group of a bouquetof two 
ir
les S1 _ S1. This follows from the following 
hara
terization of C: The se
ond
omponent 	2 of the sigma �eld 	 must be a holomorphi
 se
tion of the line bundleEk without 
ommon zeros with the �rst 
omponent 	1. Let a1; a2; : : : ; ak be the zerosof 	1. There is only one 
onstraint (6.4) on the position of these zeros. It is alwayspossible to 
hoose a di�erent point b in T2 su
h that b 6= ai for any i = 1; 2; : : : ; k: It isobvious that the points a1; : : : ; ak�1; b will never satisfy the 
onstraint (6.4). Then, thespa
e of ve
tors Ĉ whose rays are in C is given by all ve
tors in the subspa
es 	(a1) =0;	(a2) = 0; : : : ;	(ak) = 0. The spa
e of all holomorphi
 se
tions of Ek is parametrizedby the 
oordinates (�1; �2 � � ��k) de�ned by �1 =	(a1); : : : ; �k�1 =	(ak�1); �k =	(b).In this parametrization Ĉ is made out of the �rst k� 1 
oordinate hyperplanes �i = 0 ; i =16



1; : : : ; k�1 and the extra hyperplane 	(ak) = 0. Then, CPk�1 � C 
an be identi�ed withC�C k�3� �C �� , where C �� denotes the 
omplex plane C without two points 0; 1. From this
onstru
tion it is obvious that �1(CPk�1 � C) = F2 � Zk�3. Then, the �rst homotopygroup of 
onstrained 2 � k matri
es PL(k; 2)
 has a non-trivial non-Abelian homotopygroup �1(PL(k; 2)
) = F 2 � Zk�3 � Z2. This implies that the �rst homotopy group of themoduli spa
e M1k is �1(M1k) = F2 � Zk�1 � Z2: (6:5)These topologi
al properties of moduli spa
es of instantons (6.3) and (6.5) are very di�er-ent whi
h will be in 
ontradi
tion with the existen
e of any kind of Nahm transform forCPN sigma models. This turns out to be the major physi
al 
onsequen
e of the results ofthis se
tion.The fa
t that the spa
e of unit 
harge instantons is empty is reminis
ent of a similarproperty of the orbit spa
e of Yang-Mills �elds with 
harge one instantons on the torus T4[14℄[15℄. In that 
ase, it appears as a 
onsequen
e of the existen
e of Nahm transform andthe fa
t that there are no U(1) instantons. This analogy suggests that perhaps the sameproperty for CPN instantons 
an be derived from a similar duality transform. In addition,the dimensions of MNk and Mk�1N+1 are the same.A �rst indi
ation that the Nahm transform might not exist for the CPN models arisesfrom the fa
t that the transform Âz of the Abelian potential Az asso
iated with 	 is non-Abelian and thus 
annot be asso
iated to a CPN �eld on the dual torus. One dire
t wayof 
he
king whether su
h a duality exists is to 
ompare topologi
al properties of MNk andMk�1N+1.Now, the topologi
al stru
tures of MN2 and M1N+1 given by (6.3) and (6.5) are verydi�erent for N>1. This already allows us to ex
lude the existen
e of an invertible Nahmtransform, at least in these 
ases. The same topologi
al non-equivalen
e holds for moregeneral moduli spa
es, whi
h ex
ludes the existen
e of a generi
 duality transformation.The only 
ase where these topologi
al arguments fail to ex
lude the existen
e of a (gener-alized) Nahm transform is the selfdual moduli spa
esMNN+1 be
ause of the trivial identitybetween both moduli spa
es.7. Compa
ti�
ation of moduli spa
es and singular instantons.The moduli spa
es of instantons analyzed in the previous se
tions have natural 
om-pa
ti�
ations obtained by adding the boundaries 
onsisting of the matri
es A whi
h donot satisfy the 
onstraint (5.7). These 
on�gurations 
orrespond to �elds whi
h do have
ommon zeros in all its 
omponents. Properly speaking these are not CPN �elds be
ause17



at these 
ommon points they do not de�ne maps T2 ! CPN . These points 
an also beseen as singular points when one introdu
es the normalization fa
tor to have a unit normrepresentation of the �eld 	. These singular points 
an be interpreted as 
enters of singularinstantons. It is envisable to 
onsider the existen
e of 
ommon zeros as an e�e
tive 
hargeredu
tion indu
ed by the appearan
e of singular instantons. This observation providesadditional information about the stru
ture of the boundary of MNk in MNk .The resulting moduli spa
e MNk is 
ompa
t and has a bundle stru
ture over thedual torus with 
ompa
t �ber CPk(N+1)�1 . This 
ompa
ti�ed moduli spa
e is strati�eda

ording to the number of 
ommon zeros of the di�erent 
omponents of the �eld [18℄. Thegeneri
 dense stratum 
ontains all regular instantons. The other strata 
onsist of singularinstantons. The degree of singularity is parametrized by the number of 
ommon zeros.This is reminis
ent of a similar phenomenon o

urring in Yang-Mills theory [19℄.A single singular instanton 
an be viewed as a regular one with one topologi
al 
hargeless and with a pointwise singularity at a point x0. In fa
t, we 
an generate singularinstantons by adding su
h singularities to all regular instantons of lower 
harges, whi
hgives a 
omplete 
hara
terization of the subspa
e of singular instantons. Let 	 be a(pointwise normalized) C PN instanton 
on�guration of 
harge k: One 
an obtain a singularinstanton e	 of 
harge k+1 by simply multiplying ea
h 
omponent of 	 by the phase of atheta fun
tion 
arrying unit 
harge:e	 = #1(z � z0ji)j#1(z � z0ji)j	: (7:1)Observe that this phase has a singular point at the zero of the theta fun
tion, z = z0: The
orresponding holomorphi
 line bundle stru
ture is shifted to u+ z0.The asso
iated gauge potential splits into the previous, 
harge k pie
e and a new
ontribution 
oming from the singular phase:eA�z = �ie	y��z e	 = A�z + a�z; (7:2)where a�z = �ie�i arg #1(z�z0ji)��z ei arg #1(z�z0ji) = i2 ��z#1(z � z0ji)#1(z � z0ji) : (7:3)The additional 
ontribution to the topologi
al 
harge density is singular14�"��f��(x) = � 2i� �za�z(x) = 14�r2 ln#1(z � z0ji) = Æ(2)(x� x0); (7:4)
orresponding to a unit point 
harge at x0. Thus the total topologi
al density is14�"�� eF��(x) = 14�"��F��(x) + Æ(2)(x� x0): (7:5)18



The same singular behavior appears in the new distribution of the energy density and thisni
ely illustrates the e�e
t of in
luding singular instantons.Although the physi
al interest of singular 
on�gurations is not yet understood, �eld
on�gurations in the vi
inity of singular instantons appear in the regular spa
e. To further
larify the stru
ture near singular instantons we shall 
onsider some interesting 
ases.A regular instanton in the bulk of M13 
an be built by 
hoosing the parameters ofthe matrix A in su
h a way that the two 
omponents of the CP1 �eld have well separatednodal points (e.g. the instanton 
on�guration shown in �g.1.)
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Figure1. Energy density distribution of a CP1 regular instanton u = 0; A = � 2p2 2 00:9 0 0� with
harge k = 3 inM13We 
an approa
h the boundary of the moduli of regular instantons by 
hoosing pa-rameters of A in su
h a way that the nodal points of the two 
omponents of 	 are very
lose to ea
h other. We are near a singular instanton and �nd peaks in the energy den-sity lo
ated on the nodal points showing the strong lo
alization of energy and topologi
al
harge on singular instantons. 19
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Figure 2. Energy density distribution of a CP1 regular instanton u = 0; A = � 2p2 2 00 0:1 �i�with 
harge k = 3 
lose to one singular instanton inM13.In the limit 
ase we obtain a 
harge 3 instanton with one singular instanton and tworegular ones. The pi
ture is quite similar to Fig.2 with two lumps in the topologi
al density,
orresponding to two intera
ting instantons of 
harge 2 and �nite size, and one singularinstanton whi
h is not shown in the numeri
al simulation.Another way of approa
hing the boundary of the moduli spa
e is by 
hoosing one ofthe 
omponents of 	 very small. In this 
ase we approa
h a 
ompletely singular instantonwith k singularities and one null 
omponent.Now, the identi�
ation of single instantons in a multi-instanton 
on�guration is notalways 
lear. In fa
t, there are strongly overlapping 
on�gurations where it is hard toidentify the 
onstituent instantons. In Fig. 3 the 
on�guration seems to 
ontain fourlumps whereas its total 
harge is k = 2.
20
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Figure 3. Energy density distribution of a CP1 regular instanton u = 0; A = � 1 00 1� with
harge k = 2 inM12Moreover, the intera
tion between instantons 
an be very involved and we 
an �nddensities with the shape of a vol
ano as in Fig. 4 whi
h seems to des
ribe a ring ofinstantons whereas its total topologi
al 
harge is k = 2.
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0.5Figure 4. Energy density distribution of a CP1 strongly intera
ting regular instanton u = 0; A =� 0:42� 0:72i 0:27� 0:47i�0:49� 0:85i �0:10� 0:18i� with 
harge k = 2 inM12Strongly intera
ting instantons dominate in dense gas regimes whereas isolated in-stantons are more relevant for dilute gas phases. In general it is very di�
ult to identifythe number of instatons of a single 
on�guration in dense regimes. This diÆ
ulty in
reases21



in numeri
al simulations where the leading 
on�gurations are not exa
t selfdual solutionsand are made of instantons and anti-instantons.In any 
ase, singular instantons appear as a limiting 
ase of small size instantons.In parti
ular, they are responsible for the geodesi
 in
ompleteness of the moduli spa
e ofregular instantons [13℄. Su
h 
on�gurations be
ome of physi
al interest in supersymmetri
CPN theories where they are important to lo
alize topologi
al Green fun
tions in the
orresponding topologi
al �eld theory [18℄.We 
lose with some more general remarks about the possible role of singular instan-tons: The semi
lassi
al expansion in a dilute gas of instantons has a di�erent behaviordepending on the number of 
omponents of the sigma model. For N > 1 the expansionis dominated by large instantons and we 
annot trust this approximation to des
ribe thedeep infrared behavior of the theory [26℄. In parti
ular, their relevan
e for the 
on�nementme
hanism is un
lear. On the other hand, for the CP1 model the expansion is dominatedby instantons of small sizes be
ause of the di�erent � fun
tion [26℄. In the extreme 
ase,singular instantons 
arry the leading e�e
ts and this is self-
onsistent with the dilute gasapproximation. However, an ultraviolet regularization is in any 
ase ne
essary. In latti
eregularization the size of small instantons is bounded below by the latti
e spa
ing and as a
onsequen
e the s
aling properties of the topologi
al sus
eptibility are 
hanged. This leadsto diÆ
ulties when one approa
hes the 
ontinuum limit [26℄[27℄. The above dis
ussion in-di
ates that a 
ontinuum approa
h is feasible. Although similar e�e
ts are expe
ted too

ur, they might be less severe and lead to the stabilization of the ultraviolet 
atastropheseen in the latti
e approa
h.In some sense the appearan
e of singular instantons is a dual e�e
t of the existen
e ofredu
ible instantons. A CPN instanton is redu
ible when it 
an be 
onsidered as living ina lower dimensional CPN�1 proje
tive subspa
e of CPN . Redu
ible instantons belong tothe strata ofMNk asso
iated with matri
es A with rank lower than N . In the 
ompa
ti�edmoduli spa
eMNk there are two 
lasses of strata, one 
orresponding to redu
ible instantonsand the other to singular instantons. In one 
ase there is a 
harge redu
tion and in theother a dimension redu
tion. The role of the two kinds of strata are inter
hanged whenwe 
ompare the dual 
ases MNk and Mk�1N+1. If we ex
lude both types of instantons weare left with the modular spa
e of generi
 regular instantons. The global stru
ture of thespa
e of generi
 regular instantons in Mk�1k is mu
h simpler. It is always a bundle withthe dual torus as basis and as typi
al �ber the group PSL(k;C ), twisted by the boundary
onditions (5.4). 22



8. Con
lusionsThe global stru
ture of the moduli spa
e of instantons in the CPN model on a torushas a more expli
it des
ription than for Yang-Mills theory. However, this by no meansimplies that its geometri
al and topologi
al properties are simpler. In fa
t, in the 
aseof gauge theories there exists a Nahm transform establishing a one-to-one 
orresponden
ebetween two a priori very di�erent moduli spa
es of instantons,MNk andMk�1N+1. We haveshown that su
h a map 
annot exist for the CPN sigma models.We have identi�ed the boundary of the spa
e of regular instantons with the spa
e ofsingular instantons. This identi�
ation of singular instantons as boundary 
on�gurationsof the spa
e of regular instantons provides a new approa
h to the analysis of the physi
alrole of overlapping instantons in a dense gas and in topologi
al �eld theories. The role ofinstantons in the 
on�nement me
hanism seems to be very di�erent in the CP1 model andhigher N models. The dominan
e of small or large instantons indi
ates a 
riti
al transitionor 
rossover between these two regimes. The behavior of the theory in the presen
e of a �term is also very mu
h dependent on the regime and size of leading instanton 
ontributions.In parti
ular, the CP1 model shows a se
ond order phase transition at � = � whereas inhigher N models it is not yet known whether a similar transition exists or not. It isvery plausible that the instantons will play a role in the presen
e or absen
e of su
h atransition. If that 
ase the global stru
ture of MNk analyzed in this paper is expe
ted tohave interesting physi
al e�e
ts.A
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Appendix. Nodal stru
ture of holomorphi
 se
tionsHere we establish the 
onne
tion between two di�erent geometri
 
hara
terizations ofthe spa
e of holomorphi
 se
tions of a 
omplex line bundle whi
h have been used in thepaper. First, it is 
lear that this spa
e is linear. On the other hand the holomorphi
 se
tionsare 
hara
terized up to a 
onstant by its zeros (divisors). From the relation between thetwo approa
hes it follows that the spa
e of zeros of non-trivial holomorphi
 se
tions has aproje
tive spa
e stru
ture. Let us dis
uss in detail how this proje
tive stru
ture emerges.Indeed, the spa
e of holomorphi
 se
tions of a 
omplex line bundle on the torus withChern 
lass k is a linear spa
e isomorphi
 to C k : Let us 
onsider the basis introdu
ed in(4.11), �ẁ(z) = �`(z � ikw); �`(z) = e�kz2=2# � z+ k̀0 � (ik); (.1)for the holomorphi
 stru
ture de�ned by w = u1+ iu2 in Ek(T 2;C ). With this 
hoi
e forthe basis any holomorphi
 se
tion in Ek is given by the expansion 
oeÆ
ients 
` in (z) = kX̀=1 
` �ẁ(z); (.2)The nodes of �ẁ(z) are simple zeros and de�ne the following latti
ezm;n = ikw � k̀ + �m+ 12�+ �n+ 12� ik ; m; n 2 Z: (.3)Hen
e, there are k su
h zeros in the fundamental domain and the se
tion belongs indeedto the bundle of 
harge k: The boundary 
onditions�ẁ(z + 1) = e�k(z+1=2�iw=k)�ẁ(z) and �ẁ(z + i) = e�i�k(z+i=2�iw=k)�ẁ(z) (.4)have been derived in the main body of the paper. They depend on w 2 T̂ 2 whi
h has beenintrodu
ed to shift the gauge potential.To dis
uss the topology of the CPN �elds it is advantageous to use an alternativeparametrization of the se
tions for whi
h the nodal stru
ture is expli
it (but linearity isnot). It is given by the produ
t representation�(z) = kYi=1 e�2 f(z�ai)2+(1�i)zg�1�z�aij i�; #1(zji) =Xn (�)ne��(n+z� 12 )2 : (.5)Ea
h #1(z � aiji) has zeros at the points of the latti
e ai + �, i.e. only a simple zerowithin the fundamental domain. Coales
en
e of some of these zeros is allowed. � ful�llsthe boundary 
onditions�(z + 1) = e�k(z+1)��a+i�k=2 �(z) ; �(z + i) = e�i�k(z+i) + i�a�i�k=2 �(z); (.6)25



where a =P ai. They must 
oin
ide with those in (.4) in order to have a parametrizationof the same spa
e. This gives rise to the following 
onstraint on the ai in (.5)kXi=1 ai = iw + k2 (1 + i): (.7)It is easy to see that this sum is identi
al to that obtained for the nodes in (.3).Sin
e quasiperiodi
 meromorphi
 fun
tions on the torus are determined, up to a mul-tipli
ative 
onstant, by the boundary 
onditions and the position and degenera
y of theirzeros, one should be able to write all se
tions (.5) in the form (.1) by mapping the nodal
on�guration into the set of 
omplex 
oeÆ
ients 
`:Assume then, for a given 
on�guration fa1; : : : ; akg of nondegenerate zeros (the de-generate 
ase will be dis
ussed below) that�(z) = kX̀=1 
` �ẁ(z): (.8)Then, the k 
onditions �(ai) = 0 imply the following homogeneous set of equations forthe 
oeÆ
ients 
`; X̀Bi` 
` = 0; where Bi` = �`(ai): (.9)The equivalen
e of both parametrisations implies that the matrix B = (Bi`) has rankk�1 or that its kernel is one-dimensional. Hen
e the linear system (.9) determines the
oeÆ
ients 
`, up to an overall fa
tor. The overall 
onstant may be �xed by mat
hing thevalues of the se
tions in both parametrisations at a non-nodal point. In 
ases where somezero is degenerate one pro
eeds in an anologous way. A node a with multipli
ity r yieldsr 
onditions �(a) = �0(a) = : : : = �(r)(a) = 0, and the 
orresponding rows in B 
onsistof derivatives of �ẁ(z) at a.Hen
e, any se
tion has the produ
t representation (z) = � kYi=1 e�2 f(z�ai)2+(1�i)zg �1�z�aij i� (.10)The parameter spa
e for non-trivial holomorphi
 se
tions 
onsists of a nonzero 
omplex
onstant � and k points on T2 subje
t to the 
onstraintX ai = i! + k2 (1 + i) mod �: (.11)As an example 
onsider k = 2 and take w = 0. Then the 
onstraint on the two nodes readsa1 + a2 = 1 + i: (.12)An unambiguous parametrization of the positions of the zeros ful�lling this 
onstraint isa
hieved by pi
king the node a1 in the region 0 < Re a1 < 12 , together with the segmentsRe a1 = 0; 0 � Im a1 � 12 and Re a1 = 12 ; 0 � Im a1 � 12 . The following �gure shows theremaining identi�
ations one needs to make:26



a1

a2

1/2 1Figure 4. The domain R for a1 with the ne
essary identi�
ations.This region with identi�
ations is homeomorphi
 to a two-sphere S2. The parameter � in(.10) 
ontributes a positive 
onstant j�j and a phase arg �. This phase takes values in the�ber of a prin
ipal U(1) bundle over S2; and to identify it, we need to 
ompute the �rstChern 
lass 
1(P ) = 14�i I�R (d ln � d ln �) = 12�i I�R d ln ; (.13)where R is the region de�ned above. Sin
eln = ln�+ ln#1(z � a1ji) + ln#1(z � a2ji) + Polynom(z); (.14)only the theta fun
tion asso
iated with the unique zero a1 2 R is relevant for the 
ontourintegral in (.13). Moreover, from the in�nite produ
t expansion for thetas, only a sinefa
tor 
ontributes:
1(P ) = 12�i I�R d ln#1(z � aji) = 12�i I�R d ln sin[�(z � a)℄ = 1; (.15)yielding unit Chern 
lass by the residue theorem. Then the U(1) �bration on S2 is theHopf bundle S3:The topologi
ally nontrivial spa
e R4 n f0g is the union of all 3-spheres with radiij�j 2R+ . The null se
tion  (z) = 0 belonging to a singular instanton 
ompletes it to the
ontra
tible spa
e R4 � C 2 :This 
onstru
tion generalizes to arbitrary k, sin
e the spa
e of k points on the toruswith �xed sum is topologi
ally equivalent to C P k�1 : The phase arg � de�nes the sphereS2k�1 as a prin
ipal U(1) bundle over this proje
tive spa
e. The spa
e of se
tions R2k �C k is 
onstru
ted as before with the null se
tion and all S2k�1 with positive radii. Charge2 is a parti
ular 
ase sin
e C P 1 � S2: 27


