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The symmetry restoration of scalar models at finite temperature and in less than four dimensions
is investigated. For that purpose a series of approximations to the constraint effective lattice poten-
tial is introduced. The continuum limit of these mean-field-like potentials is discussed and it is
shown that the symmetry is always restored at finite temperature. As an application we derive an

estimate for the critical temperature.

I. INTRODUCTION

A convenient and widely used method to study the
temperature effects in a (continuum or lattice) quantum
field theory is to use the finite-temperature effective po-
tential. It is generated by the same one-particle-
irreducible Feynman diagrams as the zero-temperature
effective potential.! The T dependence comes solely from
the boundary conditions: For 7> 0 one imposes periodic
boundary conditions for imaginary time which results in
a T-dependent free propagator.

However, in certain theories perturbative calculations
are plagued with severe infrared divergences.>® This
prevents one, for example, from calculating a reliable
value for the critical temperature in less than four dimen-
sions. Even worse, the loop expansion predicts that cer-
tain scalar models with two fields show no symmetry res-
toration,? contrary to one’s expectation and to the im-
proved method of summing over all daisy graphs.* Clear-
ly, to study the transition from the broken to the sym-
metric phase a nonperturbative treatment is required.

The lattice formulation provides such an alternative to
explore the phase diagrams at finite temperature. Re-
cently one-component models have been studied by
means of Monte Carlo simulations.’ The calculations in-
dicate that in three dimensions these models exhibit a
symmetry restoration. However, because of finite-size
effects, the prediction for the critical temperature is inac-
curate.

In view of what has been said it is desirable to find an
alternative method. The ordinary mean-field (MF) ap-
proximation, which is such a useful tool to investigate the
phase structure at T=0 (Ref. 6), is volume independent
and therefore temperature independent. To incorporate
the temperature effects one must keep the finite-size
effects due to the finite length in the imaginary-time
direction. In this work we combine the loop expansion
with the lattice formulation to develop an approximation
which is analytic and infrared (IR) convergent.

The development of the paper is as follows. In Sec. II
we recall the relevant properties of finite-temperature
effective potentials. In particular we introduce the con-
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straint effective potential. We will derive our results
starting with this potential rather than the conventional
one. A thorough discussion of its properties can be found
in Refs. 7 and 8. Then we show that scalar theories on
lattices with fixed lattice constant may remain broken at
all (unphysical) “temperature.” Mean-field-like poten-
tials incorporating the temperature effects are introduced
and discussed in Sec. III. Of particular interest is the ap-
proximation of the d-dimensional systems by quantum-
mechanical ones on an interval of length f=1/kT. In
Sec. IV we find the renormalization flow in these MF-like
theories. Actually, we are able to determine the asymp-
totic renormalization of the bare parameters by reinter-
preting the lattice constant as #i. This key observation al-
lows for an application of the ordinary loop expansion to
construct the continuum limit. The last section is devot-
ed to the problem of symmetry restoration of nonsym-
metric two-component models. These models are in-
teresting because they show no symmetry restoration in
the conventional loop expansion and for suitable chosen
quartic coupling constants. We find that in three dimen-
sions these models find themselves always in the sym-
metric phase at sufficiently high temperature. This result
agrees with the prediction of the self-consistent perturba-
tion theory* but not with the one-loop result. Finally, as
an application of the developed methods, we give an esti-
mate for the critical temperature of one- and two-
component models. It may be worth repeating that, con-
trary to the conventional and the self-consistent loop ex-
pansion, our approximations are infrared finite.

II. LATTICE POTENTIALS AT FINITE TEMPERATURE

Consider a field theory described by a Lagrangian den-
sity L [¢(x)], with a scalar field on Q=BV. To study the
combined quantum and finite-temperature corrections to
the classical potential in the action

S[91= [ [4(Ver+V($)1d%

one conveniently introduces effective potentials (EP’s).
Most approaches to this subject begin with the Schwinger
function

(2.1
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, 1
WB(j)=ElnfD¢ exp

—S[¢]+jf¢(x>ddx] 2.2)

in the presence of a constant external current j. The tem-
perature dependence is hidden in the boundary condi-
tions on the allowed configurations in (2.2). At finite tem-
perature one sums over fields periodic in the (imaginary)
time 7 with period B: (7, x)=¢(7+pB,x).

Conventionally one defines the effective potential as the
Legendre transform of the Schwinger function

TA(®)= sup [j®— WP(j)]=(LWPA®) . 2.3)
J
Clearly, being a Legendre transform, I'? is manifestly

convex.” However, for our purposes it is more con-
venient to use the so-called constraint effective potential

1 -
Ul®)=—In [ D¢ b e S (24)

= [x-o

This alternative potential has been introduced by Fukuda
and Kyriakopoulos.” It can be shown that these poten-
tials approach each other when the volume tends to
infinite.® This zero-temperature result generalizes im-
mediately to the finite-temperature case. For finite
volumes it follows immediately from (2.2) and (2.4) that

enW’i(ﬁ-_—fd(DeQU"’—Uﬁ(@] ) (2.5)

Thus W? and I'® can always be recovered from U? (and
conversely) and nothing is lost by considering U? instead
of T'A. Note however, that contrary to I'’ the constraint
EP is not necessarily convex for finite volumes.® Only in
the limit when the spatial volume ¥ tends to infinity does
it coincide with the convex I'?.

One way to regularize the above formal expressions is
to discretize the space-time region {1 by a d-dimensional
lattice with lattice spacing a. By rescaling the field,
current, masses and coupling constants according to their
dimensions (e.g., m; =a’m) the lattice action reads

S[el=1 3 (¢,—¢j)2+ > Vig;) . (2.6)
(ij) i

Here i runs from 1 to A=IN%~!, where [ is the number
of time slices and N¢~! the number of sites in a given
time slice. The first sum is over all nearest-neighbor pairs
and V' (¢;) is the classical potential with rescaled parame-
ters. At finite temperature we must impose periodic
boundary conditions in the time direction, while in the
remaining spatial directions we, for convenience, assume
periodicity as well. Then the regularized Schwinger func-
tion and effective potentials are (up to a factor @ ~¢ and
a-dependent constants) equal to their lattice counterparts

po 1
W(;):me [1d¢.exp

iSé—S[4] ] 2.7)

and

V@)= —~ln [ [Id4,8 |+ 36, ~® e 5. @8

In what follows we shall be interested in the dependence
of the various potentials on the “temperature” /~!. We

use quotation marks to indicate that / and N 4-T are both
dimensionless, unphysical numbers. They are related to
their physical counterparts by a dimensionful scale pa-
rameter (see Sec. IV).

Before studying the temperature dependence of the
various potentials one lets the “spatial volume” of the lat-
tice approach infinity to eliminate finite (spatial) size
effects. Thus, from now on we shall assume that the limit
N — oo has been taken. We shall assume that our scalar
models are spontaneously broken at low ‘“‘temperature,”
i.e., that for sufficiently large I’s the expectation value of
the scalar field

l .
(¢,)'= tim T (2.9)
j—0 dj

is positive. Then, for large I’s, the Schwinger function ex-
hibits a bend at the origin

(WHY'(j=0)=3 ($od;) = . (2.10)
1

Some words about the order of limits are necessary. In
(2.10) the current was first set to zero and afterwards the
thermodynamic limit N — « has been taken. Whenever
the limits are taken in the reverse order we indicate this,
like in (2.9). The order of limits is crucial since in the
broken phase (¢, ); in

(W' (=3 (o), — (9}
1
is zero or not zero, depending on the order of limits. We
see that in the broken phase (2.10) differs from the sus-
ceptibility lim; o W"(j), which diverges at T =T, only,
by an infinite constant. Therefore (W')"'(0) as defined in
(2.10) is infinite for all temperature below T, and not only
at the critical temperature.

To see whether the model exhibits a symmetry restora-
tion, i.e., has a critical “temperature” [! such that
(¢;)'>0for I >1, and (¢, )'=0 for I <l one squeezes
the lattice in the time direction. When the Schwinger
function becomes smooth at high “temperature” then the
symmetry is restored.

So far we did not bother removing the lattice regulari-
zation. We shall discuss this continuum limit carefully in
Sec. IV. However, at this point it seems worth noting
that for any fixed lattice constant the system may exhibit
properties which are artifacts of the regularization only.
We shall now discuss such a lattice result which is quali-
tatively different from its corresponding continuum result
(see Sec. 1V), partly to see how the arguments break down
in the continuum limit. The lattice result we can show to
hold in three and more dimensions is the following.

For any fixed lattice constant and for sufficiently nega-
tive masses (how negative depends on the chosen lattice
constant) the symmetry is broken for all values of /.

In a moment we shall see that this follows from the in-
equality

(W)'(m,j=0)>(W,;_)"(m +1,j=0), 2.11)

which compares the curvatures of the Schwinger func-
tions of two different models: the d-dimensional finite
“temperature” model with the (d —1)-dimensional zero
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“temperature” model, but with a shifted mass
m —>m + 1, where the mass term in V is defined by m ¢’
in our notation. We shall prove (2.11) in Appendix A.
The point is that zero “temperature” ¢* lattice models
have been studied extensively and are known to be spon-
taneously broken when d >2 and m <m_ <0 (Ref. 9). In
those cases their Schwinger functions [which appear on
the right-hand side of (2.11)] develop a singularity in the
thermodynamic limit. This, together with the inequality
(2.11), tells us that

(WH"(j=0)=o0

when d >3 and m <m_ =1, irrespective of the “‘tempera-
ture” I ~'. Thus the lattice model is broken for all values
of I. To sum up, therefore, for a fixed lattice constant a
the squeezing of the lattice does not necessarily force the
system into a symmetric state [concerning this aspect, a
careful investigation has been done in the SU(2) lattice
Higgs model at finite temperature'°].

On a first sight this shift of the bare mass may look
rather insignificant. However, the bare parameters have
to be related to physical quantities by renormalization
and we have to consider whether this renormalization
affects our conclusions. In order to discuss the system at
finite temperature T =1/(al), one must, in the ¢ —0 lim-
it, keep al fixed, not /. Thus the bare parameters are to
be regarded as functions m (a) and g(a), determined by
the renormalization conditions. Therefore to achieve the
high temperature, one must carefully locate a region in
the parameter space so that T >>typical physical mass for
a fixed [, or equivalently la <<correlation length. This
consideration would affect the above argument. Indeed
in less than four dimensions the parameters (m (a),g (a))
both tend to zero when a does. Thus, for small a the
“effective mass” m(a)+ 1 on the right-hand side of
(2.11) becomes positive and W (m +1,j) stays smooth as
N — . We see that in the continuum limit the inequali-
ty (2.11) is worthless and allows the symmetry restoration
at high temperature. Indeed, as we shall see in Sec. IV,
the symmetry is always restored in the continuum model.

III. MEAN-FIELD-LIKE POTENTIALS

The most crude one-body approximation, i.e., mean-
field theory, provides us with a good qualitative picture
of the phase structure at zero temperature.® However, in
the ordinary mean-field approximation one loses the
volume dependence and hence the temperature depen-
dence of the theory. In this section we formulate a
modified mean-field approximation to the constraint lat-
tice potential which incorporates the finite-temperature
effects. In this approximation the scalar theory simplifies
to a one-dimensional field theory or a quantum-
mechanical system. The main result of this section,
namely, the approximating potential (3.2), will serve as
starting point for our considerations in the remaining sec-
tions.

A. Approximations to the constraint effective potential

More generally we introduce a series of approxima-
tions, labeled by an integer p, such that for p =d we re-
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cover the exact theory and for p=0 the ordinary MF ap-
proximation. Let us, for this purpose, consider the d-
dimensional lattice as product A=A, XA, _,. Later we
shall be mainly concerned with the case p=1. Then
Ay_, may be thought of as a time slice of the d-
dimensional lattice and A, as the sites with the same spa-
tial coordinates. In analogy to this case we shall call
A4 _, a given time slice of the lattice, even in the more
general cases when d > 1.

Instead of replacing the interaction of ¢; with all of its
nearest neighbors by the interaction with the mean field
M =3¢, /A (as it is done in the ordinary MF approxima-
tion), we make this approximation only for nearest neigh-
bors in the same time slice. Thus we replace the action
(2.6) by
T 2

ij)
i—jEA,

(¢;—;’—(d —pAM*+ 3 V,(4,) , (3.1)

where V,(¢)=(d —p)¢*+V(¢) and the first sum is over
neighbors with the same spatial coordinates. Note that,
because of the constraint in (2.8), the second term be-
comes (d —p)A®%. The action above describes Ag_p
noninteracting copies of a p-dimensional lattice model
and hence we are left with a p-dimensional system. In
Appendix B we show that the constraint effective poten-
tial (2.8) simplifies to

U,(®)=—(d —p)P*+ sup Le—-w,jl, (3.2)
where
L1 .
Wp(])zA—plnf {Idcbjexp i3 —S,[4] (3.3)
¥

is the Schwinger function of a p-dimensional model which
differs from the original theory by a shifted mass
m —m +d —p (see the definition of V). With (3.2) we
derived the desired approximations to the exact potential
(2.8). We are left with the functional integral on the sub-
lattice A, instead of the functional integral on the whole
lattice A. Clearly with increasing p the MF-like poten-
tials (3.2) become better approximations. Especially for
p =d one recovers the potential (2.8). We shall now
study the cases p=0and p=1 in turn.

B. The case p=0 (ordinary MF approximation)
and symmetry restoration

In the extreme case p=0, W(j) is the Schwinger func-
tion of a zero-dimensional “field theory” with mass
m +d. We shall discuss this crudest of our approxima-
tions explicitly, although our primary interest is in p=1.
Our main motivation being that the cases p=0 and p>0
are conceptually very similar but the manipulations are
less involved in the first case. For p=0 the potential (3.2)
becomes

Up(®@)= —d D>+ (LW ) (D)= —d D>+ T((P) , (3.4)
where
Wolj)=In [dge’* ™" (3.5)
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is given by an ordinary integral and is independent of A.
Such zero-dimensional models with a shifted mass, so-
called incoherent models, were used in Ref. 8 to bound
the constraint EP from below and above.

In Sec. IV we shall need the minimum &, of U, and
the curvature at this minimum. Using j(®)=I"(®),
which relates the current to its conjugate field, one sees at
once that the minimum condition becomes

Jo=1J(®g)=2d®, . (3.6)

Since Ty is the Legendre transform of W), the inverse re-
lation reads ®(j)=W;(j). By inserting the minimum
condition into that equation we find the well-known self-
consistency equation®

fdd’ ¢ej0¢~V0(¢)

4)0: fd¢ej0¢f VO(¢)

for the expectation value of the Higgs field. So one re-
covers the ordinary mean-field approximation.

To compute Uqy(dy) we wuse the relation

I"(®)=W"[j(®)]"! between the curvatures of I" and
W. Together with the minimum condition one obtains

mo=Ug (Dg)=—2d +(($—Dg)*) ' (3.8)

={(¢);, 3.7

for the Higgs-boson mass in the broken phase. Clearly
the incoherent Schwinger function (3.5) is strictly convex
and symmetric and hence j(®) vanishes when @ does.
From (3.8) we conclude that the curvature of U, at the
origin is negative when (¢?),>1/2d. Consequently the
potential (3.4) is spontaneously broken in cases where

[ gt

f e Vold)

Suppose, for example, that the mass m in
V($)=m¢*+ge*is less than —d. Since the m derivative
of (¢?), is manifestly negative, the expectation value
(¢?), decreases with increasing mass and becomes small-
er when M is replaced by —d. However, for this value of
m the effective mass (m +d) in V| vanishes and the ex-

={(¢*)y>1/2d . (3.9)

1.6 ---Uyr
1 dimension —u
MC
1.2
0.8
0.4
P
-0.8 -0.4 0.4 0.8

YASUSHI FUJIMOTO, ANDREAS WIPF, AND HIROSHI YONEYAMA 38

pectation-value can be computed explicitly. In this way
one finds from (3.9) that the potential (3.4) is spontane-
ously broken when

m< —d and g <[2dT(3)/T(1)]*.

This result can easily be generalized to the case where
the field has several components. Consider for simplicity
an even potential V(4% ...,¢2). Then the matrix
9,0, W,(0) and its inverse 9,3,I((0) are both diagonal.
One sees at once that the condition (3.9) for a spontane-
ous symmetry breakdown is now replaced by

max{{¢?)g, ..., {(d2)o}>1/2d .

In Fig. 1 the approximation (3.4) to the constraint EP
is compared with the results of Monte Carlo simulations
on a one-dimensional and a four-dimensional lattice with
160 and 8* lattice sites, respectively.® For the chosen pa-
rameters the approximation is surprisingly accurate.

(3.9

C. The case p=1 (modified MF approximation)

As pointed out earlier, the potential U, is volume in-
dependent. However, at finite temperature we must keep
the finite-size effects due to a varying lattice length in the
time direction. This suggests that we keep the timelike
interactions correctly and approximate in the remaining
spatial direction(s). So we take p=1 and A,=I/ in (3.2)
and call

Ul(®)=—(d —1)®*+T}(®) (3.10)

the modified MF effective potential. Note, that I"; is now
the Legendre transform of a quantum-mechanical
Schwinger function

a1 !
Wi)=-In [ 1 dg;exp (3.11)
1

iXéi—S:[4]|,

and we are left with a one-dimensional field theory with a
shifted mass m —m +d —1. One sees at once that the
generalizations of the self-consistency equation (3.7) and
the Higgs-boson mass (3.8) read

16 ~=Uyr
4 dimensions
—Umc
1.2
0.8
0.4
-0.8 -0.4 0.4

FIG. 1. The mean-field (MF) and Monte Carlo (MC) approximations to the constraint effective potential in one and four dimen-

sions, respectively, for the classical potential ¥ with mass m = —

7.5 and coupling constant g=10.
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Do=(M); , (3.12)

mo=UY(®g)=—2(d — D)+ {(M —Dp)*) ;' . (3.13)
The expectation values of M =3¢, /] and (M —®,)? are
to be computed with the integrand on the right-hand side
of (3.11) where the current is j =j,=2(d —1)®,, i.e., the
current conjugate to P,

By applying the inequality (2.11) with d=1, namely,
(M?),>($?*),, where the second expectation value was
defined in (3.9), one obtains the upper bound
—2(d —1)4+{¢*)5 ! for the curvature of U, at the ori-
gin. We conclude that the potential (3.10) is spontane-
ously broken at all I’s, when

—Vy(e)
[ 1
[et0® Z2ad-1)

(3.14)

This implies that there will never be a symmetry restora-
tion at finite “temperature” if m <—(d —1) and
g <[2(d —DI'(2)/T(1)]%, similarly to the statement
below (3.9). As we have seen in the last section, this is
not a peculiarity of the mean-field approximation. In the
full lattice theory one has the same situation. Once more
we conclude that it is essential to take the continuum lim-
it to study the temperature dependence of U, .

Although we have discussed the special cases p=0 and
p=1 of the series of approximations (3.2), it should be
clear how these results apply to the other cases. In par-
ticular, whenever the self-consistency equation allows
nontrivial solutions, then the approximating potentials
U, (®) are nonconvex. This is true even in the infinite-

p
volume limit, while the exact potential becomes convex.

IV. THE CONTINUUM LIMIT

In the preceding sections we have not introduced any
explicit renormalization. However, the bare quantities
(m,g) we have considered have to be related to physical
quantities by renormalization. As physical parameters we
take the expectation value of the Higgs field @, and the
Higgs-boson mass m, in the broken phase. One con-
veniently introduces a dimensionless lattice constant
A=apu, where u is a scale parameter of mass dimension,
and measures the various physical quantities in y units.

Let us first consider the ordinary MF potential (3.4).
To construct the scaling limit one compares the lattices
Z? and (AZ)? when A is allowed to take values in the in-
terval 0 <A < 1. One sees at once that the potential on
(AZ)? becomes

Ub(®)=A"Uy A" D)
=—dA 722+ A"Ty(m (A),g (M), AY* D) ,
4.1)

where the scaled bare parameters are to be determined by
some renormalization condition.!! As fixed physical pa-
rameters we take the expectation value ®, which mini-
mizes U} and the Higgs-boson mass m, = Uy (@

).
Obviously, when ®, minimizes U} then kd/z_ffbp min-
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imizes U, and satisfies the self-consistency equation (3.7).
Thus, the first renormalization condition reads
d2—1g _

A q)l’_<¢>f,, , (4.2)
where j, =2dld/2"‘l>p, and the expectation values have
been defined in (3.7). In the same way, by using (3.8), one
obtains the second renormalization condition
M, =AUG (@)= —2d +{($—A""271d,)") 1. (4.3)
In Eq. (4.3) the wave-function renormalization constant
Z has not been introduced since Z=1 in the present case.
To see that one needs the nonlocal part in the effective ac-
tion

Sldl= [LUG+1Z(VEP+ - ].

In the ordinary MF approximation the effective action is
easily computed to be'!

T (‘Zi—‘;j )+ > Uo(d;)

(ij)

which shows that Z=1 in this case.

To find the asymptotic form of the bare parameters in
the classical potential ¥ =m¢?+g¢* for small A one ex-
pands the expectation values about A=0. Since the
leading-A behavior of m and g is not known a priori, we
used the solvable model V(¢)=(m +V'2g )¢?
—In(14V2g ¢*) ~md>+gd*+ - - - (Ref. 11) for making
a first guess. Next, by inserting the small-A expansion
into the above renormalization conditions we determined
the coefficients of A" and found the following renormal-
ization flows in two and three dimensions:

d=2 g(M)m—2 32 m(A)m —(24202)g (L)
=2 g ~2aa s miM)~—(3+2 ),
P 4.4)
mp
d=3: g(A)~—2=
307

A, m(A)~—g(A).

For an alternative method for deriving (4.4) one can ap-
ply similar arguments to those presented in Appendix C.
In order to find the complete mean-field
renormalization-group flow we solved Egs. (4.2) and (4.3)
numerically for A= 1,274, ...,27% In Fig. 2 the numer-
ical results are compared with the asymptotic flow (4.4)
in three dimensions. One sees that the ratios approach 1
as A tends to O rather quickly.

With respect to the continuum limit, it may be worth
referring to the triviality property of the theory in vari-
ous dimensions d. As we have seen, in d <4 the continu-
um limit is consistently taken within the broken phase
and therefore it leads to an interactive theory. In four di-
mensions one can show that both m(A) and g(A) ap-
proach a constant value when A—0. This contradicts the
expectation that the theory is trivial, since if this is the
case, the renormalization conditions (4.2) and (4.3) are
not compatible with the triviality. In other words, the
MF approach fails to predict the triviality in this dimen-
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FIG. 2. Ratios of the complete mean-field renormalization
flow and the asymptotic flow (4.4) in three dimensions for vari-
ous values of the scale parameter A.

sion. In d >4, on the other hand, the conditions (4.2) and
(4.3) really fall into the contradiction; one cannot get con-
sistent solutions. This reflects the triviality of the theory,
which has been rigorously proven in these dimensions.

Let us now consider the scaling limit of the modified
MF potential (3.10). For that purpose one compares the
lattices I/ X Z%~! and (Al)X(AZ)? ™!, where the (dimen-
sionless) inverse temperature B=Al[ is to be kept fixed.
To determine the renormalization flow of the bare param-
eters in the scaled potential

UYB,®)=—(d —1)A72®?

+A7I0 (m (R),g (A), A2~ 1) 4.5)

we, like in the p=0 approximation, fix the expectation
value @, and the Higgs-boson mass m,,. Since it suffices
to renormalize the bare parameters at zero temperature
to regularize the finite temperature theory, we compute
the renormalization flow on the lattice (AZ)X(AZ)? "1,
by using the renormalization conditions

)\d/2—1q>p:<M)jp (4.6)
and
Mm,Z ' =AU} (0, 9,)
=—2(d —1)+{((M —12"1o )2) =1, (47

P

where Z is the wave-function renormalization of the
® field. The expectation values are computed with the
integrand in (3.11), wherein /=0 and j=j,=2(d
-1 )kd/2_1<1>p.

The nonlocal terms in the effective action determining
Z have two contributions. One is the simple kinetic term
coming from the spatial directions and the other, less
trivial one, comes from the timelike one-dimensional
chain. The latter may yield a wave-function renormaliza-
tion Zs1. Fortunately a wave-function renormalization
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only rescales the effective potential but does not change
the sign of its curvature at the origin. Since the critical
temperature is the temperature at which (U?})"(0)
changes sign, we see that T, is independent of the value
of Z. For that reason we shall not be concerned with the
wave-function renormalization in what follows. In par-
ticular with m, we actually mean the combination
m,Z"~ I

At this point we make the following important obser-
vation: since m (A) tends to zero in the continuum limit,
the effective mass m (A)+d —1 in the potential V| in
(3.11) is positive for small A and thus the ordinary loop
expansion is not plagued with infrared divergences. This
is true even when the original theory is spontaneously
broken. In addition we shall see that the A dependence of
the parameters and the field does not ruin the expansion

Ti(m,g, A2 0) =V, 1, , )4V jopl » )+ 77"
4.8)

Actually, it turns out that V, ;.. is of O (g" 1) relative to
the one-loop contribution and since the bare coupling
constant tends to zero in the continuum limit, the % ex-
pansion (4.8) becomes an expansion in the lattice con-
stant. Since, contrary to i, the lattice constant really
tends to zero, the one-loop result (at zero temperature)
gives the correct asymptotic renormalization flow. So it
suffices to take the quantum-mechanical one-loop
contribution on the lattice, ¥ ,,(®)=7arccosh[l
+ 1V _1(®)] (Ref. 12). Part of the classical mass term
in (4.8) cancels the first term on the right-hand side in
(4.5) and we end up with the expansion

Ut(oo,®)~mA~2d24grd 4ot
)\‘d
+—2—arccosh[1+(m +d—1)(1+8)],

(4.9)

where §=6gA? "2®?/(m +d —1). After expanding the
one-loop contribution in powers of 8 and by using the re-
normalization conditions (4.6) and (4.7), one obtains the
following asymptotic renormalization flows in two and
three dimensions:

d=2: g(A)~ s )2 m(A)~—(V34+202)g (1)
8p2 P ’

2
? 4.10)

d=3 g m—Ph m(A)m——3_
© 8 82 ok

p

(A).

By comparing (4.10) with (4.4) one sees that the ordinary
and the modified MF approximations give rise to the
same A dependence of the bare parameters in two and
three dimensions. This is not very surprising, since U,
and U, only differ by a MF approximation in the time
direction and since a one-dimensional field theory needs
no renormalization. More surprising is the fact that the
bare quantities m (a) and g(a) tend to zero as a—0. In
an exact treatment this need not necessarily be so. It is
generally only the case for quantum-mechanical systems
and in field theories in the tree approximation.



38 SYMMETRY RESTORATION OF SCALAR MODELS AT FINITE. ..

Let us now verify that the A dependence of the parame-
ters and the field in (4.8) does not spoil the above expan-
sion of the effective potential. For that we apply the re-
sults in Ref. 13 for the general form for the r-loop contri-
bution to the effective potential
r—1

Vrloop=‘/m +d—1 Fr(A) ’

g
(m+d—1)3"?

where A=1+-0 is dimensionless and F, has the expansion
F,(A)~a +¢8+c8*+ ---. Thus, up to a constant, the
r-loop contribution in (4.8),

v, loop( s )~7»_2g’(c,¢2+czxd—2g¢4+ cee),

is of O(g"™") relative to the one-loop contribution. It
follows that, since the bare coupling constant g ap-
proaches zero in the continuum limit, one may neglect
the higher-loop contributions to the flows (4.10).

We are now ready to show that the symmetry restora-
tion takes place in three-dimensional Higgs models. To
see this, we compute the second derivative of U}(B,®) at
the origin on a lattice with two time slices, that is for the
highest possible temperature. For that we must calculate
the curvature of the quantum-mechanical Schwinger
function on two sites and with scaled parameters. From
(4.10) we take the asymptotic behavior g (1)~ tm,A/®;
and m (L)~ —(1+4¢€)g(A) and find the following asymp-
totic form (see Appendix C, where the computation for a
more general model is presented):

m,
3242

where a=9—6V'2 is positive for the flow (4.10). With
B=IA=2)A << 1 it follows that at high temperature the
curvature of the potential at the origin,

Ut (B,0)~a

A,

m
Ul"(B,0)~a—2-T,
1602

(4.11)

is positive and therefore the symmetry is restored. We
may use (4.11) to obtain an estimate for the critical tem-
perature. For that we add the high-temperature contri-
bution (4.11) to the zero-temperature EP, which yields

m 1 m
Ut B,®)~——L |1— T &'+ 244 -
1P 4 | ez 84
(4.12)
The mass term changes sign at
CDZ
T.=8—2% (4.13)
a

which serves as a first guess for the critical temperature
of the one-component model. To examine the quality of
the estimate (4.13) we compared it with the correspond-
ing MC result for the three-dimensional scalar model.
From Ref. 5 we took the continuum value T, ~0.62 for
®,~0.308. This value is about half of our estimate
(4.13), which yields T, ~1.47.

If we wish to make contact with the conventional loop
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expansion, then we must compare (4.12) with the high-
temperature expansion of the conventional one-loop
effective potential in three dimensions, namely, with

m 3T m
T 1o0pBr®)=——L |1— 24 —L 4
oo 4 2?2 82
_EB8) s V" " 2
- 2. Tin i +0(M?*/T) .

(4.14)

The remaining terms are positive integer powers of M 23?
times an overall factor 8~ 'M? and are negligible at high
temperature. One observes that the high-temperature ex-
pansion in three dimensions has a worse infrared behav-
ior than the corresponding expansion in four dimensions.
The trouble is that already the leading mass correction
(the logarithmic term) shows an infrared divergence. If
we would discard this singular term in (4.14) then we re-
cover (4.12) and (4.13), wherein a=12/7. This yields a
lower critical temperature as the one we found with our
method (actually 0.20 for the above parameters).

As mentioned in the Introduction we never met any in-
frared divergences in the course of our derivation. The
one-loop contribution in (4.9), which may become com-
plex in the conventional loop expansion, stays real for
small A for which m(A) is small and therefore the
effective mass m +d — 1 is positive.

V. SYMMETRY RESTORATION
OF THE NONSYMMETRIC
TWO-COMPONENT MODEL

In the previous section we introduced methods for dis-
cussing the symmetry restoration of scalar theories at
finite temperature. We shall now apply the apparatus
developed to the subtle and interesting case when there
are two interacting fields with classical potential:

V(d>1,¢2)=m,¢%+g1¢‘,‘+m2¢%+g2¢‘2‘—g12¢%¢§ .

For the model to be stable we must impose 4g,g, >g2,.
This model is interesting, since it shows no symmetry res-
toration at finite temperature in the conventional loop ex-
pansion when g, >2g,, > g, (Ref. 2). On the other hand,
when one self-consistently solves the equations for the
effective masses it shows a transition at some critical tem-
perature.*

To see whether the modified MF approximation pre-
dicts a symmetry restoration we first compute the renor-
malization flow for the bare parameters. We apply the
same strategy as in the previous section and use the one-
loop contribution

(5.1)

V1 1oop (@1, @) =Ftrarccosh[ 1+ 1V (D, P,)]

to the quantum-mechanical effective potential I'; on the
right side of (4.5). After separating the field-independent
and the field-dependent contributions to 1V}, namely,
(d —1)/Id and
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6g1¢%_g12¢%
—28,9,9,

—28,,0,9,

VI’____ s
68,0 —g 1, P}

(5.2)

one easily finds the small-A expansion V), lm,p:%(d2
—1)""2%ry" 4+ -+, Combining this one-loop result
with (4.8) and (4.5) finally yields the desired approxima-
tion to U}. At this point it is convenient to fix the physi-
cal parameters. Again we take the expectation values
(®y,,P,,)=®, of the two fields and the diagonal ele-
ments (m,,,m,,) of the second derivative of the effective
potential at its minimum ®,. In order to restrict the
number of parameters to four, we furthermore assume
that U{(0) is proportional to the identity matrix. In
terms of these parameters the potential may be written as

1 Mip 12 22
(¢) 3 ; ®, (67 —D},)
1 Am
2 M,f (67— D7 ))($3—D2)y) , (5.3)
P
where Amp =m,,—m,, and A(Dlz, =<I>%p —d)%p, Note that

the two fields decouple when m,, =m,,,.

By comparing the one-loop result for U} with the pa-
rametrization (5.3) one extracts the small-A dependence
of the bare parameters in U}. In this way one obtains in
three dimensions

A m, N Am,
8i Sq’%p’ g12 4A<1>f, ,
(5.4)
m —1—(6 i—8g12)
i~ g —812) -

One sees that the interaction term —g;,®®2 in (5.1)
modifies the A dependence of the bare masses relative to
the flow (4.10). Like in the one-component case the
higher-loop contributions would not change the asymp-
totic expansion of the bare parameters.

Again we can use the result (5.4) to obtain information
about the high-temperature behavior of the two-
component theory. For that we, like in the previous sec-
tion, calculate the small-A expansion of U 1”(3,0) on a
lattice with two lattice sites in the time direction. In Ap-
pendix C we show that

m Am
3—e P 0
o | O AP
N
Ul (B,O) 96)\. m2p A’np
0 33—t —
?;, A,
+const , (5.5)

where a=9—6V'2> 0. The stability condition for the pa-
rameters in (5.3) and the fact that the geometric mean of
two positive numbers is less than or equal to their arith-
metic mean, tells us that m ip / pr is greater than
2| Am,7/A®} |. Thus both entries in the matrix (5.5) are
positive, regardless of the sign of Am, / A<I>,2,. We see that
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for a lattice with two time slices, for which B=2A, the
curvature of U? at the origin becomes always positive at
high temperature. We conclude, and that is the main re-
sult of this section, that the modified MF approximation
predicts a symmetry restoration for all “stable parame-
ters, contrary to the conventional loop expansion.

To estimate the critical temperature we again add the
high-temperature contribution (5.5) to the zero-
temperature EP to see at which temperature the mass
terms change signs. In this way one obtains
ﬁ(p? mzpd)%p —m lpd)%p
¥ 3m, AD] + D7 Am,

(5.6)

T, = max
1

for the critical temperature. In particular, for m,=m,,,
when the two fields decouple, (5.6) becomes

8
*(1)2
a ?

T, = max , (5.7)

in agreement with (4.13).

We conclude this section by indicating how one can ex-
tend our method to cases where the scalar field @ has
more than two components. It is not hard to see that the
one-loop correction, which determines the renormaliza-
tion flow, is still given by Voo, =23(d*—1)""2tr¥”.
The only calculational challenge is the computation of
the A derivative of W{(0) at A=0. For its computation it
helps to observe that W7{(0) is diagonal for an even classi-
cal potential and its diagonal elements are given by (C4).
All one needs for their evaluation is Wick’s theorem with
respect to a Gaussian measure like the one in (C5). One
sees that nothing conceptually new is required in cases
where the Higgs field has more components.

It would be very interesting to extend our method to
coupled Yang-Mills-Higgs systems. Since the modified
MF approximation for pure lattice gauge systems at finite
temperature is known,'* this extension, at least to Abeli-
an Higgs theories, presents itself.

Note added. After this work was completed we became
aware of another paper'> addressing similar problems.
However the approach is quite different from ours. In
Ref. 15 a high-temperature expansion has been used to
prove the symmetry restoration for high temperature.
Also, the authors took the time continuum limit only,
whereas the spatial lattice constant was fixed to be one.
We thank J. Jersak for bringing this work to our atten-
tion.
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APPENDIX A

To derive (2.11) we consider the one-parameter family
of actions
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Sl¢l=— 3 é:i¢;—€ 3 ¢¢,+2Vo(¢, (AD)
SLNN TLNN
which interpolates between [ copies of a (d —1)-

dimensional model and the original theory (2.6). The first
(second) sum in (A1) is over spacelike (timelike) nearest-
neighbor pairs and V,(¢)=d@>+ V(¢). Later we show
that for any €>0 and any finite N (we assume that the
lattice has a finite spatial length)

d

e (doti)e20, (A2)
where (O[#]), denotes the expectation value of O[¢]
computed with S [¢]: namely,

[TId¢:0[4]e
f Idé:e ~5.14]

To get the desired inequality (2.11) we integrate the
“differential inequality” (A2) from €=0 to €é=1 and sum
over i. For e=1 the action (A1) becomes (2.6) and the
sum 3, ($op; )._, is, according to (2.10), the left-hand
side of the inequality (2.11). In order to recover the
right-hand side of (2.11) when €é=0 we observe that in
this case the action (A1) belongs to ! noninteracting
copies of a (d —1)-dimensional model. Thus {@qé;)._,
vanishes if the sites 0 and i/ lie in different time slices of
the lattice. When they belong to the same slice then the
integrals over fields on the other / —1 slices cancel in the
fraction (A3). One sees at once that the remaining
(d — 1)-dimensional action (on the slice defined by ¢, and
¢;) has a shifted mass m —m + 1, and therefore the sum
S, (o)., coincides with the right-hand side of the
inequality (2.11). This proves (2.11) for any finite spatial
“volume.” Now, letting N — oo this inequality holds also
in the infinite (spatial) ‘“‘volume” limit. It remains to
prove (A2), which the experts will recognize as one of
Griffith’s inequalities. For the sake of completeness we
give the arguments leading to (A2). For that we intro-
duce the abbreviations

H = E ¢i¢j and H,= 2 ¢i¢j ’

SLNN TLNN

=514}

(O[] = (A3)

(A4)

where the first sum is over all spacelike (SL) separated
nearest neighbors and the second over all timelike (TL)
separated nearest neighbors. Then the actions S in (A1)
read S,=—H,+V,=—H;,—eH,+V,. One easily
derives
d
E<¢O¢i)e=(¢0¢th)E_<¢O¢i)e(Ht>e . (A5)
By doubling the fields, the right-hand side can be written
as

—S,[¢]1-5,[x]

Z72 [ {goti(H,[$]—H,[X]D}e [1dé,dx, .

(A6)

To see that this expression is positive we change variables
by an orthogonal transformation
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b= ——(t,+q,) and X,=—=(1,—q,)
i ‘/2 ql ‘/2 ql »
in terms of which
dod:(H,[¢]1—H,[X])=3(to+qo)(t; +q;)
X 3 (teq+gxty) ,
TLNN
H€[¢]+H€[X]= 2 (tltj+qlqj)
SLNN
TLNN

Voldl+VolX]= 3 [(m +d)t}+q})

+12g(z +6t q, +q, )] .

Next one expands ¢od;(H,[¢]—H,[X])exp(H [$]
+H_[X]) in a power series and observes that all monomi-
als in the #’s and g’s have positive coefficients. However,
Volé1+Vy[X] is an even function in both the g and ¢
variables, and hence only even powers in the expansion
contribute after integration. Therefore, as a sum of mani-
festly positive terms, the right side in (A5) is positive.

APPENDIX B

In this appendix we show that the action (3.1) gives rise

to the approximating effective potential (3.2). For that
purpose we insert the identity (g =d —p)
Lsgo|-fTiaes|t 5 4- ]
iEA i=1 P jEA
X8| S &, -
Aq i€A,

for the constraint. By observing that the Boltzmann fac-
tor in (2.8) factorizes, one obtains, after integration over
the fields ¢;, the approximating potential

1
U,(®)=—(d —p)® ——1nf Hd(DS(Aq zo,._Q]

sce Mo Un @)

Here U,(®;) denotes the constraint effective potential for
a p-dimensional lattice theory on A, with a shifted mass

m—m +d —p. Next we insert the Fourier representa-
tion

=A [ dk exp [iAkq>_ikApzq>,.

1
Aq E(Dl -

for the & distribution and end with

U,(®)=—(d —p)d?

ALik®+ W (—ik)]

1 —
—in A fdke b
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where
exp[A, W,(—ik)]= [ d®exp{ —A,[ik®+U,(®)]} .

In the limit when the volume tends to infinity the integral
coincides with its value at the saddle point on the imagi-
nary axis. Setting k =ij we finally obtain the potential
(3.2).

APPENDIX C

In three dimensions the bare coupling constants and
bare masses scale linearly with A and thus the Schwinger
function for a two-component model on two time slices
reads

W, (j)=1tIn [ (explj, () +d5)+ir (X, +X;)]
X expi2(d,d,+XX;) —d (1 + 3+ XT+X3)
—AVI6:X1}) , (C1)

where j =(j,,j,) and the parameters in V are determined
by the coefficients in the flow (4.10). For A=0 one finds
W =(4d —4)~'(j?+j3) and hence A~“T in (4.5) has the
leading term

A9 (A2 1) ~(d — DA™ A DI+ DY), (C2)

which cancels the first term on the right-hand side of
4.5).
Next we evaluate the A derivative of
(¢, +6,)%) (¢ + )X, +X,))
2WEO= 104 16000 +0)) (X +X)

(C3)
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at A=0. For example, the derivative of the 1-1 com-
ponent is

(@146 VXD o—(($14+6)°V[$,X])o . (CH)

Here { ), is computed with the Gaussian measure

d —-1 0 0
-1 d4 0 O
0O 0 d -—-1]|°
0O 0 -1 d

e~ (WAY) 4

1
du(®)= N

(CS)

where W is the four-component vector (¢,,¢,,X,X,). The
expectation values in (C4) can easily be calculated by ap-
plying Wick’s theorem. For the model (5.1) and its flow
(5.4), we found, after some arithmetic,

d
2 oW (0)
dA A—0
m Am
Yot T
a q)lp p
= 6 m Am
8 X9 0 3 211> +A¢P
chp P

With 2W7{(j =0,A=0)=1/2Id and T"(0)=W"(0)"!,
one finds that the A derivative at A=0 of I'"’(0) is, up to a
factor — 16, equal to the A derivative at A=0 of W"'(0).
Together with (C2) and (4.5) this establishes the asymp-
totic expansion (5.5) for the modified MF potential.
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